Page 1

3GPP TSG-SA4#36 Meeting
S4-050546

Paris, France, 5-9 September 2005

	CR-Form-v7

	CHANGE REQUEST

	

	(

	26.346
	CR
	0030
	(

rev
	-
	(

Current version:
	6.1.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Splitting Annex-B to separate normative FEC encoder and informative FEC decoder

	
	

	Source:
(

	Nokia

	
	

	Work item code:
(

	MBMS-TSMBMS
	
	Date: (

	03/09/2005

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

	
	

	Reason for change:
(

	Un-clear and potentially misunderstandable Annex B. SA4 was asked by SA#28 to split Annex B into two annexes, i.e. a normative annex for encoder and an informative annex for decoder (split to be done at SA4#36 meeting).

	
	

	Summary of change:
(

	Annex-B now has normative FEC encoder spec text only.

Annex-B.8 which had informative FEC decoder spec text is now moved to Annex-E.

Annex-E which had change history is now moved to Annex-F.

Rest of the document is updated to reflect the above changes.

	
	

	Consequences if
(

not approved:
	Un-clear and potentially misunderstandable specification

	
	

	Clauses affected:
(

	7.2.2., 8.2.2., Annex-B, Annex-E, Annex-F

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

*********Next change********
7.2.2
Symbol Encoding Algorithm

The "Compact No-Code FEC scheme" - RFC 3452 [12] (FEC Encoding ID 0, also known as "Null-FEC") shall be supported.

The “MBMS FEC scheme” is described in clause 7.2.12.

A UE that supports MBMS User Services shall support a decoder for the “MBMS FEC scheme”.

If a UE that supports MBMS User Services receives a mathematically sufficient set of encoding symbols generated according to the encoder specification in Annex B for reconstruction of a source block then the decoder shall recover the entire source block. Note that the example decoder described in Annex E fulfils this requirement.

*********Next change********
8.2.2
FEC mechanism for RTP

The “MBMS FEC scheme” is described in clause 8.2.2.8.

A UE that supports MBMS User Services shall support a decoder for the “MBMS FEC scheme”.
This section defines a generic mechanism for applying Forward Error Correction to streaming media. The mechanism consists of three components:

(i)
construction of an FEC source block from the source media packets belonging to one or several UDP packet flows related to a particular segment of the stream(s) (in time). The UDP flows is include RTP, RTCP, SRTP and MIKEY packets.

(ii)
modification of source packets to indicate the position of the source data from the source packet within the source block

(iii)definition of repair packets, sent over UDP, which can be used by the FEC decoder to reconstruct missing portions of the source block.

The mechanism does not place any restrictions on the source data which can be protected together, except that the source data is carried over UDP. The data may be from several different UDP flows that are protected jointly.

A receiver supporting the streaming delivery method shall support the packet format for FEC source packets and may also support the packet format for FEC repair packets.

At the sender, the mechanism begins by processing original UDP packets to create:

(i)
a stored copy of the original packets in the form of a source block; and

(ii)
FEC source packets for transmission to the receiver.

After constructing the source block from the original UDP payloads to be protected and their flow identity (based on destination IP address and UDP port), the FEC encoder generates the desired amount of FEC protection data, i.e. encoding symbols. These encoding symbols are then sent using the FEC repair packet format to the receiver. The FEC repair packets are sent to a UDP destination port different from any of the original UDP packets' destination port(s) as indicated by the signaling.

The receiver recovers the original packets directly from the FEC source packets and buffers them at least the min-buffer-time to allow time for the FEC repair. The receiver uses the FEC source packets to construct a (potentially incomplete) copy of the source block, using the Source FEC Payload ID in each packet to determine where in the source block the packet shall be placed. In indication of the UPD flow (i.e. destination IP address and UDP port) the packet is part of is included in the source block with the UDP payload.
If any FEC source packets have been lost, but sufficient FEC source and FEC repair packets have been received, FEC decoding can be performed to recover the FEC source block. The original packets UDP payload and UDP flow identity can then be extracted from the source block and provided to the upper layer. If not enough FEC source and repair packets were received, only the original packets that were received as FEC source packets will be available. The rest of the original packets are lost.

If a UE that supports MBMS User Services receives a mathematically sufficient set of encoding symbols generated according to the encoder specification in Annex B for reconstruction of a source block then the decoder shall recover the entire source block. Note that the example decoder described in Annex E fulfils this requirement.
Note that the receiver must be able to buffer all the original packets and allow time for the FEC repair packets to arrive and FEC decoding to be performed before media playout begins. The min-buffer-time parameter specified in clause 8.3.1.9 helps the receiver to determine a sufficient duration for initial start-up delay.

*********Next change********
Annex B (normative):
FEC encoder specification
This Annex specifies the systematic Raptor forward error correction code and its application to MBMS [7]. Raptor is a fountain code, i.e., as many encoding symbols as needed can be generated by the encoder on-the-fly from the source symbols of a block. The decoder is able to recover the source block from any set of encoding symbols only slightly more in number than the number of source symbols.

The code described in this document is a Systematic code, that is, the original source symbols are sent unmodified from sender to receiver, as well as a number of repair symbols.

B.1
Definitions, Symbols and Abbreviations

B.1.1
Definitions

For the purposes of this Annex and Annex E, the following terms and definitions apply.

Source block: a block of K source symbols which are considered together for Raptor encoding purposes.

Source symbol: the smallest unit of data used during the encoding process. All source symbols within a source block have the same size.

Encoding symbol: a symbol that is included in a data packet. The encoding symbols consist of the source symbols and the repair symbols. Repair symbols generated from a source block have the same size as the source symbols of that source block.

*********Next change********
B.2
Overview

The Raptor forward error correction code can be applied to both the MBMS file delivery and MBMS streaming applications described in the main body of this document. Raptor code aspects which are specific to each of these applications are discussed in Sections B.3 and B.4 of this document.

The principle component of the systematic Raptor code is the basic encoder described in Section B.5. First, it is described how to derive values for a set of intermediate symbols from the original source symbols such that knowledge of the intermediate symbols is sufficient to reconstruct the source symbols. Secondly, the encoder produces repair symbols which are each the exclusive OR of a number of the intermediate symbols. The encoding symbols are the combination of the source and repair symbols. The repair symbols are produced in such a way that the intermediate symbols and therefore also the source symbols can be recovered from any sufficiently large set of encoding symbols.

This document defines the systematic Raptor code encoder. A number of possible decoding algorithms are possible. An efficient decoding algorithm is provided in Annex E.

The construction of the intermediate and repair symbols is based in part on a pseudo-random number generator described in Section B.5. This generator is based on a fixed set of 512 random numbers which must be available to both sender and receiver. These are provided in Section B.7.

Finally, the construction of the intermediate symbols from the source symbols is governed by a ‘systematic index’, values of which are provided in Section B.6 for source block sizes from 4 source symbols to KMAX = 8192 source symbols.

*********Next change********
	
	K
	S
	H

	S
	GLDPC
	IS
	ZSxH

	H
	GHalf
	IH

	K
	GLT

Figure B.5.2.5.2-1: The matrix A

The intermediate symbols can then be calculated as:

C = A-1·D
The source triples are generated such that for any K matrix A has full rank and is therefore invertible. This calculation can be realized by applying a Raptor decoding process to the K source symbols C’[0], C’[1],…, C’[K-1] to produce the L intermediate symbols C[0], C[1],…, C[L-1].

To efficiently generate the intermediate symbols from the source symbols, it is recommended that an efficient decoder implementation such as that described in Annex E be used. The source symbol triples are designed to facilitate efficient decoding of the source symbols using that algorithm.

B.5.3
Second encoding step: LT encoding

In the second encoding step, the repair symbol with ESI X is generated by applying the generator LTEnc[K, (C[0], C[1],…, C[L-1]), (d, a, b)] defined in Section B.5.4 to the L intermediate symbols C[0], C[1],…, C[L-1] using the triple (d, a, b)=Trip[K,X] generated according to Sections B.3.2.2 and B.4.2.

*********Next change********

·
·
·

	
	
	

	
	
	

Annex C (informative):
IANA registration
Annex D (informative):
RTP packetization guidelines

*********Next change********
Annex E (informative):
Example FEC decoder specification
E.1 General

This section describes an efficient decoding algorithm for the Raptor codes described in this specification. Note that each received encoding symbol can be considered as the value of an equation amongst the intermediate symbols. From these simultaneous equations, and the known pre-coding relationships amongst the intermediate symbols, any algorithm for solving simultaneous equations can successfully decode the intermediate symbols and hence the source symbols. However, the algorithm chosen has a major effect on the computational efficiency of the decoding.

E.2 Decoding a source block

E.2.1 General

It is assumed that the decoder knows the structure of the source block it is to decode, including the symbol size, T, and the number K of symbols in the source block.

From the algorithms described in Sections B.5, the Raptor decoder can calculate the total number L = K+S+H of pre-coding symbols and determine how they were generated from the source block to be decoded. In this description it is assumed that the received encoding symbols for the source block to be decoded are passed to the decoder. Furthermore, for each such encoding symbol it is assumed that the number and set of intermediate symbols whose exclusive-or is equal to the encoding symbol is passed to the decoder. In the case of source symbols, the source symbol triples described in Section B.5.2.2 indicate the number and set of intermediate symbols which sum to give each source symbol.

Let N ≥ K be the number of received encoding symbols for a source block and let M = S+H+N. The following M by L bit matrix A can be derived from the information passed to the decoder for the source block to be decoded. Let C be the column vector of the L intermediate symbols, and let D be the column vector of M symbols with values known to the receiver, where the first S+H of the M symbols are zero-valued symbols that correspond to LDPC and Half symbols (these are check symbols for the LDPC and Half symbols, and not the LDPC and Half symbols themselves), and the remaining N of the M symbols are the received encoding symbols for the source block. Then, A is the bit matrix that satisfies A·C = D, where here · denotes matrix multiplication over GF[2]. In particular, A[i,j] = 1 if the intermediate symbol corresponding to index j is exclusive-ORed into the LDPC, Half or encoding symbol corresponding to index i in the encoding, or if index i corresponds to a LDPC or Half symbol and index j corresponds to the same LDPC or Half symbol. For all other i and j, A[i,j] = 0.

Decoding a source block is equivalent to decoding C from known A and D. It is clear that C can be decoded if and only if the rank of A over GF[2] is L. Once C has been decoded, missing source symbols can be obtained by using the source symbol triples to determine the number and set of intermediate symbols which must be exclusive-ORed to obtain each missing source symbol.

The first step in decoding C is to form a decoding schedule. In this step A is converted, using Gaussian elimination (using row operations and row and column reorderings) and after discarding M – L rows, into the L by L identity matrix. The decoding schedule consists of the sequence of row operations and row and column re-orderings during the Gaussian elimination process, and only depends on A and not on D. The decoding of C from D can take place concurrently with the forming of the decoding schedule, or the decoding can take place afterwards based on the decoding schedule.

 The correspondence between the decoding schedule and the decoding of C is as follows. Let c[0] = 0, c[1] = 1…,c[L-1] = L-1 and d[0] = 0, d[1] = 1…,d[M-1] = M-1 initially.

· Each time row i of A is exclusive-ORed into row i’ in the decoding schedule then in the decoding process symbol D[d[i]] is exclusive-ORed into symbol D[d[i’]] .

· Each time row i is exchanged with row i’ in the decoding schedule then in the decoding process the value of d[i] is exchanged with the value of d[i’].

· Each time column j is exchanged with column j’ in the decoding schedule then in the decoding process the value of c[j] is exchanged with the value of c[j’].

From this correspondence it is clear that the total number of exclusive-ORs of symbols in the decoding of the source block is the number of row operations (not exchanges) in the Gaussian elimination. Since A is the L by L identity matrix after the Gaussian elimination and after discarding the last M – L rows, it is clear at the end of successful decoding that the L symbols D[d[0]], D[d[1]],…, D[d[L-1]] are the values of the L symbols C[c[0]], C[c[1]],…, C[c[L-1]].

The order in which Gaussian elimination is performed to form the decoding schedule has no bearing on whether or not the decoding is successful. However, the speed of the decoding depends heavily on the order in which Gaussian elimination is performed. (Furthermore, maintaining a sparse representation of A is crucial, although this is not described here). The remainder of this section describes an order in which Gaussian elimination could be performed that is relatively efficient.

E.2.2
First Phase

The first phase of the Gaussian elimination the matrix A is conceptually partitioned into submatrices. The submatrix sizes are parameterized by non-negative integers i and u which are initialized to 0. The submatrices of A are:

(1)
The submatrix I defined by the intersection of the first i rows and first i columns. This is the identity matrix at the end of each step in the phase.

(2)
The submatrix defined by the intersection of the first i rows and all but the first i columns and last u columns. All entries of this submatrix are zero.

(3)
The submatrix defined by the intersection of the first i columns and all but the first i rows. All entries of this submatrix are zero.

(4)
The submatrix U defined by the intersection of all the rows and the last u columns.

(5)
The submatrix V formed by the intersection of all but the first i columns and the last u columns and all but the first i rows.

Figure A.2.2-1 illustrates the submatrices of A. At the beginning of the first phase V = A. In each step, a row of A is chosen.

	Identity matrix I
	All zeroes
	U

	All zeroes
	V
	

Figure A.2.2-1 – Submatrices of A in the first phase
The following graph defined by the structure of V is used in determining which row of A is chosen. The columns that intersect V are the nodes in the graph, and the rows that have exactly 2 ones in V are the edges of the graph that connect the two columns (nodes) in the positions of the two ones. A component in this graph is a maximal set of nodes (columns) and edges (rows) such that there is a path between each pair of nodes/edges in the graph. The size of a component is the number of nodes (columns) in the component.

There are at most L steps in the first phase. The phase ends successfully when i + u = L, i.e., when V and the all zeroes submatrix above V have disappeared and A consists of I, the all zeroes submatrix below I, and U. The phase ends unsuccessfully in decoding failure if at some step before V disappears there is no non-zero row in V to choose in that step. In each step, a row of A is chosen as follows:

-
If all entries of V are zero then no row is chosen and decoding fails.

-
Let r be the minimum integer such that at least one row of A has exactly r ones in V.

-
If r ≠ 2 then choose a row with exactly r ones in V with minimum original degree among all such rows.

-
If r = 2 then choose any row with exactly 2 ones in V that is part of a maximum size component in the graph defined by X.

After the row is chosen in this step the first row of A that intersects V is exchanged with the chosen row so that the chosen row is the first row that intersects V. The columns of A among those that intersect V are reordered so that one of the r ones in the chosen row appears in the first column of V and so that the remaining r-1 ones appear in the last columns of V. Then, the chosen row is exclusive-ORed into all the other rows of A below the chosen row that have a one in the first column of V. Finally, i is incremented by 1 and u is incremented by r-1, which completes the step.

E.2.3
Second Phase

The submatrix U is further partitioned into the first i rows, Uupper, and the remaining M – i rows, Ulower. Gaussian elimination is performed in the second phase on Ulower to either determine that its rank is less than u (decoding failure) or to convert it into a matrix where the first u rows is the identity matrix (success of the second phase). Call this u by u identity matrix Iu. The M – L rows of A that intersect Ulower – Iu are discarded. After this phase A has L rows and L columns.

E.2.4
Third Phase

After the second phase the only portion of A which needs to be zeroed out to finish converting A into the L by L identity matrix is Uupper. The number of rows i of the submatrix Uupper is generally much larger than the number of columns u of Uupper. To zero out Uupper efficiently, the following precomputation matrix U’ is computed based on Iu in the third phase and then U’ is used in the fourth phase to zero out Uupper. The u rows of Iu are partitioned into ceil(u/8) groups of 8 rows each. Then, for each group of 8 rows all non-zero combinations of the 8 rows are computed, resulting in 28 - 1 = 255 rows (this can be done with 28-8-1 = 247 exclusive-ors of rows per group, since the combinations of Hamming weight one that appear in Iu do not need to be recomputed). Thus, the resulting precomputation matrix U’ has ceil(u/8) ·255 rows and u columns. Note that U’ is not formally a part of matrix A, but will be used in the fourth phase to zero out Uupper.

E.2.5
Fourth Phase

For each of the first i rows of A, for each group of 8 columns in the Uuppersubmatrix of this row, if the set of 8 column entries in Uupper are not all zero then the row of the precomputation matrix U’ that matches the pattern in the 8 columns is exclusive-ORed into the row, thus zeroing out those 8 columns in the row at the cost of exclusive-oring one row of U’ into the row.

After this phase A is the L by L identity matrix and a complete decoding schedule has been successfully formed. Then, as explained in Section C.2.1, the corresponding decoding consisting of exclusive-ORing known encoding symbols can be executed to recover the intermediate symbols based on the decoding schedule.

The triples associated with all source symbols are computed according to B.5.2.2.The triples for received source symbols are used in the decoding.The triples for missing source symbols are used to determine which intermediate symbols need to be exclusive-ORed to recover the missing source symbols.

*********Next change********
Annex F (informative):
Change history

	Change history

	Date
	TSG SA#
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2005-03
	27
	SP-050082
	
	
	Approved at TSG SA#27 Plenary
	2.0.0
	6.0.0

	2005-06
	28
	SP-050250
	001
	1
	Corrections to QoE metrics specification for MBMS
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	002
	1
	Using two TMGIs
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	003
	
	MBMS Service Descriptions over HTTP
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	004
	1
	Corrections to the specification of Associated Delivery Procedures for MBMS
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	005
	2
	Usage of MBMS Session Identity
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	010
	1
	MBMS user service announcement via point-to-point push bearers
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	011
	
	Removal of obsolete note
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	013
	
	Specification of Raptor Forward Error Correction and Streaming User Service bundling
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	015
	
	Clarification of Associated Delivery Procedure
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	016
	
	Corrections of FLUTE Support Requirements
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	017
	
	Corrections of the reference list
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	018
	
	Definition of RTP Session
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	019
	
	Corrections and editorial modifications to chapter 4
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	020
	
	MBMS Repair
	6.0.0
	6.1.0

	2005-06
	28
	SP-050250
	021
	
	MBMS Media Codec Support
	6.0.0
	6.1.0

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

