TSG System Aspects WG4#34
S4-050036
Lisbon, Portugal, 21-25 February 2005

Source:
Digital Fountain

Title:
FEC code overheads
Document for:
Discussion and decision

Agenda Item:
PSM MBMS 6.5.4.1
1.
Introduction

It has often been stated that Reed-Solomon codes have zero overhead and are therefore optimal for MBMS. However, this is not correct except in certain very limited circumstances. Furthermore, the code overhead for Raptor codes is such that decoding can be attempted whenever as least as much data as the source block size is available. The probability of success falls exponentially with the excess data received. In practice this means that Raptor codes are practically equivalent to the ideal FEC code, whereas Reed-Solomon codes are far from ideal whenever they require the data to be partitioned into blocks. When the data is small enough to be protected as a single Reed-Solomon block the two codes have practically equivalent performance.
2.
Sources of overhead

The FEC transmission overhead is the amount of data over and above the source block size that has to be transmitted. There are a number of contributing factors to this overhead:

· “Packet header overhead” – is simply the packet or frame headers that need to be sent along with the data itself.

· “Packet Loss overhead” is the most obvious component – the extra data which has to be sent to make up for packet losses between sender and receiver. The packet loss overhead depends on the BLER of the underlying radio packet network, the radio packet size and the packet size.

· “FEC Coding overhead” is an overhead inherent in the erasure correction code which must be received by the decoder in order to correctly decode the data

· “Blocking overhead” is an overhead that occurs when the source data is broken into independent blocks. In this case, it is likely that the receiver will receive more data than necessary for some blocks and less than necessary for others due to randomness in the location of errors. In order to ensure that the receiver has enough data for every block, some additional data must be sent.

· “Padding overhead” occurs when fixed length symbols are used to encode variable length packets – the packets are padded out to multiples of complete symbols. Although this padding data is not sent, the result of its inclusion is that additional parity data is needed for the same amount of protection.

3.
Overheads with Reed-Solomon codes

3.1
Blocking overhead
The Reed-Solomon codes proposed for MBMS are limited to a block length of 255. As a result, source data must be broken into short source blocks, resulting in Blocking Overhead. This overhead depends on the number of blocks and the error rate and can be very significant as shown in Figure 1 below.

[image: image1.emf]Blocking overhead

10% packet loss

0%

2%

4%

6%

8%

10%

12%

0 10 20 30 40

Number of blocks

Blocking overhead

RS(255,191) avg blocking overhead

RS(255,191) 99.9% blocking overhead

Figure 1: Overhead caused by multiple source blocks

The figure shows the average amount of data received over and above the source block size before decoding success in 10,000 trials. The blocking overhead grows as the number of interleaved source blocks grows. (The blocking overhead also grows as the packet loss grows, although this is not shown in the above figure.) Also shown is the 99.9th percentile, which represents the overhead required to ensure that all but 1 in 1000 users have sufficient data.

In download applications, with 512 byte payloads, then these overheads are evident as soon as the source file is larger than 95KB(with a rate 0.75 code). The threshold would be smaller with a lower rate code or with smaller packet payloads or where there are multiple symbols carried in each packet. As discussed in a companion contribution, smaller packet sizes may be much more efficient when Header Compression is used.

In streaming applications, with 160 byte symbols, then these overheads are evident at protection periods above 5s for a 48kbit/s media stream or above 1.25s for a 192kbit/s media stream, in which cases multiple separate interleaved RS codes must be used.

3.2
Padding overhead

An additional source of overhead in streaming applications is padding overhead caused by variable length source packets. Certain video encoders can be configured to generate roughly equal sized packets, however, fundamentally, this cannot be done without degradation to the video quality in the case that not all packets are recovered by the FEC code. For example, with H.264 then the encoder generates data in the form of variable length “NAL Units”. These are then encapsulated into RTP packets. Two approaches are possible to achieve constant RTP packet size:

· Configure the encoder to generate constant sized NAL units, or

· Segment NAL units across RTP packets

Both approaches are discussed in the RTP payload format for H.264 [1], which considers Forward Error Correction based on RFC2733 in Section 12.5. Regarding equal length NAL units, it states:

 “3) The video encoder produces NAL units, where a certain frame

 contains k slices of possibly almost equal length. Then,

 applying FEC, a better code, e.g. (n=24, k=12), over the sequence

 of NAL units for each frame can be used. The delay compared to

 (2) may be reduced, but several disadvantages are obvious.

 Firstly, the coding efficiency of the encoded video is lowered

 significantly as slice-structured coding reduces intra-frame

 prediction and additional slice overhead is necessary. Secondly,

 pre-encoded content or, when operating over a gateway, the video

 is usually not appropriately coded with k slices such that FEC

 can be applied. Finally, the encoding of video producing k

 slices of equal length is not straightforward and might require

 more than one encoding pass.”

The alternative of segmenting NAL units across multiple RTP packets compounds the error rate by introducing the possibility that NAL units may be partially received and then discarded. For example, loss of a single RLC SDU may already cause loss of multiple RTP packets and this would then be further compounded by the NAL unit <> RTP packet segmentation – in fact it is possible for NAL units which were in fact completely received at the RLC layer to be discarded as shown in Figure 2 below:

[image: image2.emf]RLC blocks

RTP packets

NAL units

Lost RLC block

Lost RTP packet Lost RTP packet

Lost NAL units

Lost NAL units were

actually received at RLC layer

Figure 2: Compounding of errors due to segmentation at RLC and RTP layers

This effect is especially problematic if it is intended that receivers without FEC decoders should be able to receive the stream. The alternative of dealing with variable length RTP packets at the FEC layer introduces an overhead due to padding. This overhead depends on the symbol size, as shown in Figure 4 below:

[image: image3.emf]Reception overhead due to padding

64kbit/s bearer, rate 0.75 code, Foreman clip

0%

2%

4%

6%

8%

10%

12%

14%

16%

0 100 200 300 400 500 600

Symbol size

Padding overhead

Average overhead (10% loss)

Max overhead (10% loss)

Average overhead (5% loss)

Max overhead (5% loss)

Figure 3: Effect of padding for streaming

This figure shows the average and maximum observed padding overhead for a Rate 0.75 ideal code with various symbol sizes, using the 48Kbps Foreman clip at 5% and 10% random packet loss and testing 10,000 source blocks. The padding overhead is the amount of additional data that, as a result of padding alone, had to be received to recover the source block.

As noted above, Reed-Solomon codes are limited to a 5s protection period with 160 bytes symbols for 48Kbps media rate, without introducing blocking overheads. If the symbol size is reduced, then the possible protection period becomes shorter – e.g. with 32 byte symbols it is just 1s.

4.
Overheads with Raptor codes

The blocking overhead discussed above is not applicable to Raptor codes unless the source block size is greater than 4MB. The padding overhead discussed above can be minimised by using smaller symbols without introducing blocking overheads as with Reed-Solomon.

Raptor codes also have a small FEC coding overhead. It is not necessary to receive any specific amount of additional data – Raptor decoding can be attempted whenever the amount of received data is at least the source block size. The chance of decoding failure decreases exponentially with the amount of additional data received, as shown in Figure 4 below. This figure shows the chance of decoding failure based on the number of received symbols over and above the file size when the number of symbols in the source block is at most 2,000. As the number of symbols grows beyond 2,000 the relative overhead becomes smaller. Note that when the number of symbols is at most 2,000 the failure probability does not depend on the size of the symbols or the number of symbols in the file, just on the number of symbols received above the file size. So, for a file consisting of 1024 symbols (512KB file, if symbols are 512 bytes) then an overhead of 11 symbols represents a 1% overhead. When the file is partitioned into more than 2,000 symbols the relative overheads are even smaller.

[image: image4.emf]Raptor code failure probability

k < 2000

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

024681012141618202224

Received overhead (symbols)

Failure probability

Figure 4: Raptor code failure probability as a function of received symbols

A code failure is the case where the following two points are true:

· The user has received data equal to the source block size, or greater, AND

· Decoding is not possible

In practice, if the system is engineered such that some target percentage of users (say 99.5%) receive as least as much data as the source block size then code failures will almost never be seen with Raptor codes: the vast majority of users will receive a significant amount of overhead data. For those very few who receive close to the source block size, the chance of code failure is still low and for those who receive less than the source block size there is no chance of success with any code.

In an explicit 2MB download test to 10,000 users with 12% BLER, the transmit overhead was set at 31% so that over 99.5% of users are expected to receive data equal to the file size or greater. In the actual simulation 11 users received less data than the file size i.e. 99.89% of the users received at least as much data as the file size. When using the Raptor code to recover, a further 3 experienced a code failure, resulting in 99.86% of users recovering the file, and therefore 0.14%% of the users were not able to recover the file. By contrast, for a Reed-Solomon code with the same overhead, 9,741 of the 9,989 users that received data at least equal to the file size experienced a code failure, - i.e. only 252 successes out of 10,000. Thus, overall, 97.48% of the users were not able to recover the file. For a 2-Dimensional Reed-Solomon code, 9044 of the 9,959 users that received data at least equal to the file size experienced a code failure, and thus overall 90.55% of the users were not able to recover the file. In order for the 2D Reed-Solomon code to successfully deliver the file to 99.8% of the users, the transmission overhead needs to be increased from 31% to 41%. Thus the 2D Reed-Solomon code uses substantially more transmission bandwidth than Raptor for the same delivery guarantees.

In order for a 1D Reed-Solomon code to achieve the same thing, the overhead needs to be 45.6%. Additionally, we tested the decoding speed on an 206MHz ARM9 handheld platform for this Reed-Solomon code, using the public domain source code for Reed-Solomon codes based on Vandermonde matrices. The 1D Reed-Solomon decoding speed was approximately 2Mbps. This compares to the Raptor code, implemented on the same platform, which achieved 27.5Mbps – 12.5 times faster.

The transmission overhead required to reach 99.8% of the users at different BLER rates using an RS(246,164) interleaved code and Raptor codes is shown in Figure 5 below. Note that for the lower BLER rates, many of the RS parity packets need not be sent, so it would be possible to use a higher rate code. This is an example, though, of the need to always carefully choose RS parameters according to the expected loss conditions – which in practice are very uncertain.

[image: image5.emf]File download example

2MB file, 64kbit/s UMTS channel, 80ms TTI, 99.8% target users

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

BLER

Transmission overhead

Raptor

RS (246,164)

Figure 5: File download example
The only case in which Reed-Solomon improves on Raptor codes in terms of transmission overhead is when the file can be protected as a single 1D Reed-Solomon block. However, even in this case the improvement is marginal, as shown in Figure 5 below, which shows the transmission overhead required for 99% of users to receive the file at various BLER rates. Furthermore, Raptor codes would offer the possibility to encode the file into smaller packets, which as shown in a companion contribution is much more efficient when Header Compression is used.

[image: image6.emf]Short file UTRAN simulations

64kbit/s, 80ms TTI, 512 byte packets

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

RLC BLER

Transmission overhead

Raptor - 50k

Raptor - 100k

RS(128,100) - 50k

RS(255,200) - 100k

RS(142,100) - 50k

RS(142,100) - 100k

Figure 6: Short file simulations with Raptor and Reed-Solomon

5.
Conclusion

This paper considered the different sources of overhead with Reed-Solomon and Raptor codes. Whilst for a single Reed-Solomon block there is no coding overhead, in practice other overheads are introduced:

· Blocking overhead arising from the need to break files/streams into small blocks

· Padding overhead arising from the mapping of variable length packets into symbols

Raptor codes have a small coding overhead, but in practice this rarely affects the operation of the code. This is because in order to ensure that almost all users receive at least the amount of data in the file the system anyway needs to be engineered so that most users receive considerably more data than the size of the file. For the few users receiving only a very small overhead, there is still a reasonable probability of success.

Thus the coding overhead introduced by Raptor codes is significantly smaller than the blocking overhead incurred with Reed-Solomon. Furthermore, since Raptor codes allow the use of shorter symbols than Reed-Solomon the padding overhead can be reduced as well.

Finally, for very small files, which can be protected as a single 1D Reed-Solomon block then the performance of Reed-Solomon is fractionally better than Raptor in terms of transmission overhead. However, this only applies to very small files (certainly less than 40k if short packets are used with header compression).

We conclude that Raptor effectively is at least as efficient in terms of transmission bandwidth and often considerably more efficient than Reed-Solomon in all practical cases.

1
5

_1166857743.ppt

RLC blocks

RTP packets

NAL units

Lost RLC block

Lost RTP packet

Lost RTP packet

Lost NAL units

Lost NAL units were

actually received at RLC layer

