3GPP SA4 PSM Ad-Hoc #32
Tdoc S4-040446

Prague, Czechia, August 16-20 2004
Agenda Item: 6.5.4.1

Source:
Digital Fountain
Title:
Systematic Raptor code specification for MBMS file download
Document For:
Discussion and Approval
1. Introduction

This document describes the systematic Raptor encoder and decoder that is based on the Raptor encoder and decoder described in [1] and [2], respectively. The overall descriptions in [1] and [2], and the terminology, variable names, conventions are assumed in this document. Only the additional elements needed to describe the systematic Raptor encoder and decoder are included here.

2. Overview of encoding and decoding

The source file to be encoded is partitioned into one or more source blocks using exactly the same algorithms as described in [1] for determining the number of source blocks, the size of symbols, the number of symbols in each source block and the mapping of symbols into packets. Similarly, the overall methodology for decoding a file follows the description in [2].

The systematic Raptor encoder partitions each source block into some number K of source symbols. A transformation step is used to produce L intermediate pre-coding symbols from the K source symbols.

The sent symbols of the systematic Raptor encoder are divided into two categories: the original source symbols and the encoding symbols that are generated from the intermediate pre-coding symbols. The Raptor encoder generates systematic keys as described in Section 3 in order to generate the intermediate symbols from the source symbols, and uses keys to generate encoding symbols from the intermediate pre-coding symbols as described in [1].

The sent symbols are organized into packets. Each packet carries either source symbols or encoding symbols together with a key that identifies all of the symbols carried in that packet. The source symbols of each source block are partitioned into groups of G source symbols, where G is determined in the same way as described in [1], and each packet that contains source symbols will carry the same group of source symbols from each of the source blocks. The key in a packet carrying source symbols from the ith group is the value i.

The systematic Raptor encoder generates encoding symbols carried in a packet from intermediate pre-coding symbols based on the key in the packet in exactly the same way as the Raptor encoder described in [1] generates encoding symbols from source symbols based on the key in the packet. To avoid packets containing encoding symbols from being confused with packets containing source symbols, packets carrying encoding symbols should not carry a key in the range 0 through K/G - 1.

3. Generating the systematic keys

The generation of systematic keys uses as a sub-process the decoding schedule computation of the Raptor decoder, as described in [2]. We denote by ε the reception overhead of the Raptor decoder. In this document, we assume that the decoding schedule is computed so that not only source symbols, but also their corresponding pre-coding symbols are calculated.

Let V​0​​, V​1​​, V​2 and V​3​​ be arrays of 256 entries each, where each entry is a random 4-byte unsigned integer. These arrays can coincide with the corresponding arrays described in the Raptor encoder document [1]. For a 32 bit integer Y and for j = 0,…,3, let Yj be the jth byte of Y. The systematic keys X[0], X[1], …., X[K-1] are computed as follows:

1. Set Y = 536870923

2. Repeat the following until the systematic keys are found:

a. Compute N = ceil((1+ ε) K)

b. Repeat the following for i = 0,…,N-1

i. Set X[i] = (V​0[Y0] ^ V​1[Y1] ^ V​2[Y2] ^ V​3[Y3])

ii. Set Y = (Y * 1220703125) % pow(2, 32)

c. Calculate a decoding schedule as described in [2] using keys X[0], X[1], …., X[N-1]

d. If the decoding schedule is not successful, then set Y = (Y * 1220703125) % pow(2,32) and return to Step 2-b.

e. If the decoding schedule is successful, then record the set of keys that were used for recovery, and reorder the initial keys X[0],…,X[N-1] so that the first keys are the ones used for recovery. Then, repeat the following steps:

i. Set d = K
ii. Calculate a decoding schedule for the keys X[0], X[1], …., X[d-1] using the algorithm in [2].

iii. If the decoding schedule is successful, then go to Step 2-f.

iv. If the decoding schedule is not successful, then set d = d +1, and go to Step 2-e-ii.

f. If d = K, then return the systematic keys X[0], X[1], …., X[K-1]

g. Set T = 0, r = 0

h. Repeat the following steps until d = K or until T = 10 or until r = K:

i. Calculate a decoding schedule for the keys X[0], X[1], …., X[d-2] using the algorithm in [2].

ii. If the decoding schedule is not successful, then exchange X[d-1] and X[r], and set r = r+1

iii. Set T = T+1, d = d – 1, and go to Step 2-h-i.

i. If d > K, and r < K, then go to Step 2-b.

j. Otherwise, return the systematic keys X[0], X[1], …., X[K-1]

4. Encoding a source block

In this section we describe how the intermediate symbols and their corresponding redundant symbols are generated from the source symbols.

4.1. Calculating the intermediate pre-coding symbols

The intermediate pre-coding symbols are obtained by applying the Raptor decoder described in [2] to the source symbols C[0], C[1], …, C[K-1] using the decoding schedule associated with the systematic keys X[0], X[1], …., X[K-1]. The procedure for obtaining the systematic keys guarantees that the decoding is successful. The result of this operation are the L intermediate pre-coding symbols I[0], I[1], …, I[L-1].

4.2. Generating encoding symbols

The encoding symbol E[X] that corresponds to key X is generated from the intermediate pre-coding symbols I[0],…, I[L-1] of the source block using the algorithm in Section 3.3 of the Raptor encoder document [1].

4.3. Encoding work

The intermediate pre-coding symbols can be calculated with average work between 10.5 and 17 times the source block length in bytes. From the degree distribution shown in Table 2 of Section 3.3 of the Raptor encoder document [1], it can be seen that the work to generate encoding symbols from intermediate pre-coding symbols is on average 4.63 times the total length in bytes of generated encoding symbols.

5. Decoding a source block

The decoding process for a source block is subdivided into different tasks:

· Calculation of systematic keys,

· Reception of encoding symbols and their associated keys,

· Decoding the intermediate pre-coding symbols from the received symbols,

· Calculation of the missing source symbols.

5.1. The decoding algorithm

Set N = ceil((1+ε)K), let Y[0], Y[1], …, Y[N-1] denote the keys of the received symbols, and E[0], E[1], …, E[N-1] denote the received symbols. Further, e denotes the number of missing source symbols, and S[0], S[1], …, S[e-1] denote the positions of these source symbols. The decoding algorithm can now be described as follows:

1. Calculate the systematic keys from the number K and the reception overhead ε, as described in Section 3.2. Call these keys X[0], X[1], …, X[K-1].

2. Decode the intermediate pre-coding symbols I[0], I[1], …, I[L-1] from the received symbols and their corresponding keys using the algorithm described in [2]. If a source symbol C[j] is received, then the key corresponding to this source symbol is X[j].

3. Calculate the missing source symbols:

a. Repeat the following for i = 0,…,e-1:

i. Set X = X[S[i]]

ii. Generate the missing source symbol C[S[i]] as the encoding symbol corresponding to the key X from the intermediate pre-coding symbols as described in Section 3.3. of [1].

5.2. Decoding Work

The work measure is used to determine the computational speed for decoding. The total work depends on the number of original source symbols lost. The work is largest when all the source symbols are lost, and is trivially zero when no source symbols are lost. The algorithm given in the previous section can have a work between 7 and 11.3 when K=1000, and a work between 4.5 and 15.3 when K=10000, where the actual number depends on the number of source symbols lost.

5.1. Decoding Error Probability

The decoding error probability of the systematic Raptor decoder for a given reception overhead is the same as for Raptor decoder described in [2].

6. References

[1] “Raptor encoder specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Agenda item 6.5.4.1,Tdoc S4-040444, August 16-20, 2004

[2] “Raptor decoder specification for MBMS file download”, Digital Fountain, 3GPP SA4 PSM Ad-Hoc #32, Agenda item 6.5.4.1,Tdoc S4-040445, August 16-20, 2004
