INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO
ISO/IEC JTC1/SC29/WG11

MPEG2003/N6211
December 2003, Waikoloa, USA

Title:
Technology under Consideration for the ISO Base Media File Format

Source:
Systems subgroup

Status:
For discussion

0. Introduction

This is a documentation of technology that is currently considered for inclusion in Amendment 1 of the ISO Base Media File Format, ISO/IEC 14496-12 & 15444-12, and has been submitted as a response to the mandate of the file format ad-hoc group N5996 to study generalized addressing schemes for the ISO File Format.

The technology includes an addressing scheme for items in an ISO file such that they can be addressed and ordered in a file-tree structure. The technology uses the existing Item location box that has already been introduced in the Amendment for locating resources.

A file-tree structure provides a natural way to address items by filename. This way an ISO file will resemble a directory and the considered technology will be a natural extension to the file system, allowing items to be addressed by URLs in the same way as outside a file. It defines how to address items both from outside or relative within an ISO file and can be used transparently for text-based presentation languages (such as SMIL or HTML).

1. Background

The ISO base media file format (ISO FF) [1] has been successfully adopted as the basis for several file formats both inside and outside the MPEG/JPEG domain. The 3GPP file format (3GP) [2] uses the ISO FF for carriage of MPEG codecs, such as MPEG-4 visual and AAC, as well as 3GPP codecs, such as AMR speech and Timed text. However, as 3GPP uses SMIL rather than MPEG Systems for scene description, the scope of the 3GP file format is currently limited to presentations of audio, video (and Timed text). The 3GPP2 file format (3GP2) is similar to 3GP, but has a slightly different codec repertoire.

The present proposal extends the ISO base media file format to a general container format for multimedia presentations by including a file tree for binary files. It also provides a mechanism to address such binary files and tracks within an ISO file from a standard scene description document. The proposal includes an example for SMIL, but can be used for other presentation formats as well. These extensions will enable derived file formats to contain not only continuous or timed multimedia in tracks, but also non-timed media such as images and graphics together with a scene description.

The proposed presentation and file-tree extensions, which also include an addressing scheme, are intended for Amd.1 to the ISO FF that is currently in draft status [3]. The necessary structures can easily be included in the general framework that was originally defined with MPEG-7 and MPEG-21 in mind. Included binary files can be divided into chunks (the same as for tracks) and can be interleaved with other data chunks in order to make ISO files (with both tracks and a file tree) suitable for progressive download.

The main advantage of including the extensions for a file tree in the ISO FF, rather than in a derived file format, is that the structural elements, such as dependencies between binary files, chunks and tracks, are binary coded and common to all derived file formats. This will enable editing a file by a general-purpose editor without facing the risk of losing data or corrupting the file structure.

2. Overview

The proposed extensions are mainly to include a top-level file tree within an ISO file (a file of a derived file format). Hence, the binary files are not contained in usual tracks, which are designed for timed multimedia, but in a file tree outside the movie box – see outline in Figure 1. In principle any kind of multimedia can be contained as a binary file in the file tree. This way a presentation composed of several files, e.g. a SMIL file, some images, and an audio track can be packaged within a single file. The included binary files can be interleaved, or even split into multiple chunks that can be interleaved, with the usual tracks. Hence, the entire ISO file can be used for progressive download as one entity and be played locally.

[image: image1.wmf]

”show.3gp”

moov

track audio

track video

ftyp

3gp6

ftre

start.smil

img/cat.jpg

img/dog.jpg

mdat

interleaved data chunks

referred by ftre and moov

Figure 1: Schematic example of a file with the proposed extensions. It is divided into file type (brands), file tree (SMIL and JPEG files), movie (audio and video tracks) and media data (chunks of data).

The packaging of binary files into the file tree of an ISO file is designed to be transparent and preserve the directory structure of the binary files. The relationships between the files are the same for separate files and within the ISO file, ensuring that a presentation can be packed into an ISO file without modifications. Once binary files have been included in an ISO file there is no need to unpack them in order to play or serve the content.

In addition to adding a file directory to ISO files with tracks, we also propose that the file tree can be used for files that only contain a file directory and no tracks (no movie box). Such ISO files would be very useful for making presentations that don’t necessarily include continuous media carried by tracks.

An alternative usage of the extensions is for server files. A single file can contain a complete multimedia presentation for streaming and download, including scene description. Rather than downloading the entire ISO file to the client, the server receives a request for the included SMIL file and delivers it over HTTP. The SMIL file may contains references to images, or other binary files, as well as (hint) tracks located in the server file. Upon request from the client, the server delivers the images over HTTP [4] and streams the audio or video track over RTP [5] to the client. All references from the SMIL file to other media can be expressed naturally via the proposed addressing scheme.

3. Extensions to the ISO base media file format

The proposal includes the following additions to the boxes of the file format:

1. definition of a new handler type for SMIL presentations and associated boxes,

2. alterations to the Item location box for splitting items into chunks,

3. definition of a file tree in terms of boxes.

In addition, we propose an addressing scheme that will be detailed more in Section 4.

3.1 Handler type for SMIL

We define the handler type ‘smil’ to be used in the Handler box ‘hdlr’ contained in the Meta data box ‘meta’.

The ‘smil’ handler type can be used in Meta data boxes contained in file. It is not intended for Meta data boxes in ‘moov’ or within a track. The handler type also mandates the Start location box ‘sloc’ to be present in the Meta data box and that there exists a file tree containing a SMIL file (as indicated by the Start-location box).

3.1.1 Start location box

The Start-location box ‘sloc’ is defined as follows

aligned(8) class StartLocationBox

extends FullBox(‘sloc’, version = 0, 0) {

string
start_file_location;

}
where start_file_location is a null-terminated string in UTF-8 characters containing the path to the start file in the file directory, relative to the top level. As an example, to indicate that a file stored at the top level (in the file tree box) is a scene description, start_file_location would just contain the file name, e.g. start.smil.

The location of the files of the file tree is indicated by a Data information box in the Meta data box. If the file is self-contained, this is marked with a flag in the Data reference box. However, binary files in the file tree can also be stored elsewhere, as indicated by the Data reference box and the corresponding data reference indices of each item in the Item location box. Note that the data reference index of an item can also be used to indicate that the item is stored in the same file as the Meta data box.

3.1.2 Progressive download information box

The Progressive download information box aids the progressive download of an ISO file containing a file tree. The box can be used optionally with the ‘smil’ handler type and is located in the Meta data box. It is defined as follows:
aligned(8) class ProgressiveDownloadInfoBox

extends FullBox(‘pdin’, version = 0, 0) {

unsigned int(32) rate;

 //number pairs repeated

unsigned int(32) initial_delay;
 //until end of box

}
The box contains pairs of numbers (to the end of the box) specifying combinations of effective file download bitrate in units of bits/sec and initial download delay in units of ms. By using this information, the receiving party can obtain an upper estimate for the initial delay by linear interpolation between pairs.

3.1.3 Other handler types

Handler types for other scene description languages can be defined in the same way and using the same Start location box, Progressive download information box as well as the same file tree boxes. One example would be a handler type for HTML that can be used for the visual layout of a presentation. It is out of the scope of this proposal to define such handler types though.
3.2 Chunks in the Item location box

In order to allow for more flexibility when storing binary files we propose to refer to them as one or more chunks. The possibility of splitting a file into multiple chunks is mainly of interest for media files which can be progressively downloaded themselves, such as a JPEG-2000 image or a progressively downloadable SVG file. Using multiple chunks gives the possibility of interleaving such files with continuous media tracks.

We propose to replace the current Item location box with the version given below:

aligned(8) class ItemLocationBox

extends FullBox(‘iloc’, version = 0, 0) {

unsigned int(4)
offset_size;

unsigned int(4)
length_size;

unsigned int(4)
base_offset_size;

unsigned int(4)
reserved;

unsigned int(16)
item_count;

for (i=0; i<item_count; i++) {

unsigned int(16)

item-ID;

unsigned int(16)

data-reference-index;

unsigned int(base_offset_size*8)
base_offset;

unsigned int(16)

chunk_count;

for (j=0; j<chunk_count; j++) {

unsigned int(offset_size*8)

chunk_offset;

unsigned int(length_size*8)

chunk_length;

}

}

}
where added lines are marked with boldface. Each item is divided into one or more chunks, as specified by chunk_count, and each chunk has a separate offset and length. The sum of all chunk_length of an item is the total length of the item. The base_offset field has been moved and placed outside the list of chunk offsets and lengths, as there is probably no reason to specify base_offset for each chunk of an item.

3.3 File tree

An example of a file tree is shown in Figure 2.

[image: image2.wmf]

ftre

–

 file tree

fent

–

 file entry

diry

–

 directory

dirn

–

directory name

“img”

fent

–

 file entry

fent

–

 file entry

finf

–

 file info

“start.smil”

item ID, MIME

finf

–

 file info

“cat.jpg”

item ID, MIME

finf

–

 file info

“dog.jpg”

item ID, MIME

Figure 2: Detailed view of the boxes corresponding to the file tree of Figure 1.
The ‘smil’ handler type requires a file directory for storage of binary files. It shall be stored at the top level of the containing ISO file. The file itself is the container of the file tree and not the movie box. The tree looks like a normal directory and can include any type of binary file and/or sub directories. The file directory is stored as meta data in the File tree box, whereas the binary content of the included files is typically stored as chunks in the Media data box ‘mdat’ of the containing file or elsewhere as indicated by the Data location box in the Meta data box.

3.3.1 File tree box

The File tree box ‘ftre’ is a container box. It is a top-level box and shall be located after the File type box ‘ftyp’ in an ISO file and preferably before the Movie box ‘moov’, if present. (See Figure 1.) In order to allow for future revisions, the File tree box is based on a Full box with version number, and is defined as follows:

aligned(8) class FileTreeBox

extends FullBox(‘ftre’, version = 0, 0) {

}

3.3.2 Directory box

The File tree box defines the root level of the file tree, whereas a hierarchy of Directory boxes ‘diry’ defines lower levels of the file tree. Directory boxes are contained in the File tree box or other Directory boxes.

aligned(8) class DirectoryBox

extends FullBox(‘diry’, version = 0, 0) {

}

3.3.3 Directory name box

Each directory box is required to contain exactly one Directory name box ‘dirn’. It is defined as follows

aligned(8) class DirectoryNameBox

extends FullBox(‘dirn’, version = 0, 0) {

string
directory_name;

}

where directory_name is a null-terminated string in UTF-8 characters with the name of the directory.

3.4 File entry

3.4.1 File entry box

A file in the file tree is defined by a File entry box ‘fent’, that can be stored at any level in the file tree, including the root level. The File entry box is a container box and is defined below:

aligned(8) class FileEntryBox

extends FullBox(‘fent’, version = 0, 0) {

FileInfoBox

file_information;

ProtectionInfoBox
protection_information;
//optional

}

The File entry box shall include a File information box that provides the filename, item ID etc of the file. The Protection information box is optional. See section 5 for further details.

3.4.2 File information box

The File information box governs the link between a filename and an item ID. The filename is used for addressing the file, e.g. from a SMIL file, whereas the item ID refers to the item-ID of the Location information box, which contains the references where the actual file is located.

aligned(8) class FileInfoBox

extends FullBox(‘finf’, version = 0, 0) {

unsigned int(16)

item-ID;

string

file_name;

string

content_type;

string

content_encoding;
//optional

}

file_name and content_type are null-terminated strings in UTF-8 characters. file_name contains the name of the binary file including its extension. content_type should be the MIME type for the file [6]. content_encoding is an optional null-terminated string in UTF-8 characters used to indicate that the binary file is encoded and needs to be decoded before interpreted. This is similar to Content-Encoding for HTTP /1.1[4]. Some possible values are “gzip”, “compress” and “deflate”.

4. Addressing of files and tracks

4.1 Internal addressing

All binary files in the file tree can be addressed by URLs. The addressing is relative to the item that includes the URL. The corresponding “filename” of a track is “trackID=N” where N is the track ID of the track. The file directory and all tracks of an ISO file reside at the same level, at the top of the ISO file.

4.1.1 Example 1

Consider the file outlined in Figure 1. It contains an MPEG-4 visual track with, let’s say, track ID=1 and an AAC track with track ID=2. It also contains a SMIL file (start.smil) at the top level of the file tree and two images (cat.jpg and dog-jpg) in a directory (img) in the file tree.

The scene description in the SMIL file, located at the top level of the ISO file, would refer to the media as follows:

MPEG-4 visual
as trackID=1

AAC

as trackID=2

cat.jpg

as img/cat.jpg

dog.jpg

as img/dog.jpg

4.1.2 Example 2

Now consider moving the SMIL file in the previous example to the directory img containing the images. Relative to the SMIL file, the media is now referred as follows:

MPEG-4 visual
as ../trackID=1

AAC

as ../trackID=2

cat.jpg

as cat.jpg

dog.jpg

as dog.jpg

4.2 External addressing

The top level of an ISO file can be addressed with a “/” after the filename. Hence, all files and tracks within an ISO file can be addressed consistently both internally within the ISO file as well as externally. The file directory and all tracks of an ISO file reside at the top level, e.g. the following are valid addresses:

example.3gp/toplevelfile.smil

example.3gp/trackID=2

4.2.1 Example 3

All tracks and binary files (including the SMIL file) in Example 1 can be addressed externally as follows:

SMIL

as show.3gp/start.smil

MPEG-4 visual
as show.3gp/trackID=1

AAC

as show.3gp/trackID=2

cat.jpg

as show.3gp/img/cat.jpg

dog.jpg

as show.3gp/img/dog.jpg

4.2.2 Example 4

All tracks and binary files (including the SMIL file) in Example 2 can be addressed externally as follows:
SMIL

as show.3gp/img/start,smil

MPEG-4 visual
as show.3gp/trackID=1

AAC

as show.3gp/trackID=2

cat.jpg

as show.3gp/img/cat.jpg

dog.jpg

as show.3gp/img/dog.jpg

4.3 Delivery of files over HTTP

Files contained in the file tree may be delivered over HTTP before or during a (streaming) session. An HTTP server delivering a binary file stored inside an ISO file shall

set the Content-Type to the value of the File information box,

set the Content-Location to the URI of the binary file within the ISO file.

As an example, consider the ISO file in Figure 1. When the client accesses the SMIL file over HTTP, it also receives the Content-Location of the SMIL file, e.g. “http://mediaportal/show.3gp/”. All HTTP references within the SMIL file will then be based upon the Content-Location, enabling HTTP GET to refer to binary files within the ISO file.

A client shall in the same manner resolve the URIs for RTSP based on the Content-Location of the SMIL file, enabling RTSP DESCRIBE to refer to the ISO file and, RTSP SETUP to refer to tracks.

4.3.1 Example 5

Retrieval of SMIL file and resolving URI to resources pointed out within the SMIL file (based on Example 2 and 4).

GET /exampledir/show.3gp/img/start.smil HTTP/1.1
Host: www.example.com

HTTP/1.1 200 OK
Content-Location: http://www.example.com/exampledir/show.3gp/img/start.smil
Content-Size: xxxxxx
Content-Type: application/smil

<smil>

<body>

<seq>

<image src="cat.jpg" dur="3s"/>

<image src="dog.jpg" dur="5s"/>

</seq>

</body>

</smil>

The above fetched SMIL presentation will thus be given the base URI:

"http://www.example.com/exampledir/show.3gp/img/start.smil"

which when the processing of the SMIL file is performed will result in that the resolved HTTP URIs:

"http://www.example.com/exampledir/show.3gp/img/cat.jpg"
"http://www.example.com/exampledir/show.3gp/img/dog.jpg"

5. Encryption

By default, binary files are stored “in the clear” without encryption or protection. However, it is also possible to include encrypted binary files in the file directory of an ISO file. The presence of a Protection information box in a File entry box indicates that the content of the binary file (media data) is encrypted and/or protected. Moreover, the Protection information box identifies the encryption scheme and all information required to decrypt the corresponding media data.

The Protection information box is the same as the Protection information box proposed for encrypted tracks [7]. The definition is the same, although the Original format box shall be ignored (should not be included) for binary files. Note that the purpose of the Protection information box for binary files is two-fold: it indicates that media is encrypted/protected and it gives the requirements for decrypting it.

As an option to using Protection information boxes for each file entry, it would be useful to use one Protection information box that applies to a full Media data box ‘mdat’ or byte range within ‘mdat’. We have not considered the exact details of this usage, but note that it could be useful for presentations that include many small files.

6. References

[1] ISO/IEC 14496-12:2003 | 15444-12:2003: "ISO base media file format".

[2] 3GPP TS 26.244: "3GPP file format (3GP)", Release-6 draft V1.0.0 at
ftp://ftp.3gpp.org/TSG_SA/WG4_CODEC/TSGS4_29/Docs/S4-030835.zip.

[3] MPEG contribution M10170: "Amendment 1 to the ISO Base Media File format Proposed WD 3.0", Singer D.

[4] IETF RFC 2616: "Hypertext Transfer Protocol – HTTP/1.1", Fielding R. et al., June 1999.

[5] IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", Schulzrinne H. et al., July 2003.

[6] IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, Freed N. et al., Nov. 1996.

[7] N6090, PDAM ISO/IEC 14496-12/Amd.1 on extensions to the ISO Base Media File Format.

PAGE
1

_1131866416.doc

ftyp

3gp6

moov

track audio

track video

ftre

start.smil

img/cat.jpg

img/dog.jpg

mdat

interleaved data chunks referred by ftre and moov

”show.3gp”

_1131894536.doc

fent – file entry

finf – file info

“cat.jpg”

item ID, MIME

fent – file entry

ftre – file tree

finf – file info

“dog.jpg”

item ID, MIME

diry – directory

finf – file info

“start.smil”

item ID, MIME

fent – file entry

dirn – directory name

“img”

