3GPP TSG-SA4#30 meeting
Tdoc S4-040047

February 23-27, 2004, Málaga, Spain

Source:
STMicroelectronics

Title:
Additional cases for the Memory Assessment of the SES reference codec

Agenda item:
7

Document for:
Discussion and decision

1. Introduction

This document proposes to update the verification plan for the SES codec selection. Section 4.2 from the verification plan describes through different examples how the memory of the SES reference codec shall be accounted by the verification laboratories. It turns out that some cases were not considered during the initial drafting stage of the verification plan. In order to clarify the verification plan and to align it with methods and usages from other exercises (cf. AMR permanent document in [1]), we propose to update the example C-code of the verification plan with an additional example.

2. Array initialization

2.1 Motivation

In C, it is possible to initialise variables and arrays at the time when they are instanced. Consider for instance the sample code in Annex: example C-code. In this example, the two arrays swRand[] and autoBuff[] are pre-initialised. Those initialisations most certainly use ROM resources and possibly also MIPs resources.

2.2 Static RAM array initialization

The array swRand[] is allocated in the static RAM.

It is also necessary to store the values 8, 12, -4 and -7 in ROM in order to initialise the array. Therefore, we suggest that swRand[] is accounted simultaneously in static RAM and in ROM.

2.3 Stack array initialization

The array autoBuff[] is stored in the program stack.

In this example, the algorithm implicitly re-initialises the array autoBuff[] each time it evaluates the function. STMicroelectronics suggests that this code is instrumented with as many move16() (resp. move32()) basic operations than necessary in order to take into account the actual initialisation process. In our example, four move16() would be needed in order to take into account the initialisation of autoBuff[].

STMicroelectronics assumes that most C-compilers will recast the implicit initialisation algorithm by an explicit initialisation code (as illustrated before), the constant being inlined in the assembly code. Therefore, in the contrary of the case of array allocated in the static RAM (cf. previous section), we suggest that the array is accounted only in stack memory and is not accounted in ROM.

STMicroelectronics proposes that the initialisation process of array allocated in the stack is formally equivalent to the following C-code fragment:

Word16

func_proc(Word16 a, Word32 b)

{

 [...]

 Word16 autoBuff[4];

 autoBuff[0] = 0x4000; move16();

 autoBuff[1] = 0x1400; move16();

 autoBuff[2] = 0xFC00; move16();

 autoBuff[3] = 0xAFF0; move16();

 [...]

 return 0;

}
Code 1: Unambiguous equivalent C-code for initializing an array
If the previous behaviour is not the intention of the developer, then the reference C-code must be explicitly recast as follow:

Word16

func_proc(Word16 a, Word32 b)

{

 [...]

 Word16 autoBuff[4];

 const Word16 autoBuff_init[4]= {0x4000, 0x1400, 0xFC00, 0xAFF0};

 Word16 idx;

 for (idx=0; idx<4; idx++) {

 autoBuff[idx] = autoBuff[idx]; move16();

 }

 [...]

 return 0;

}
Code 2: Unambiguous C-code initializing an array using ROM
2.4 Summary

The following table sums up the different configurations considered for assessing the complexity and the memory usage when implicitly initializing arrays in the reference C-code.

	C instruction
	Type of memory
	Accounted for

	Word16 swRand[4]={…};
	ROM + static RAM
	4 each

	Word16 autoBuff[4]={…};
	stack
	push 4

Table 1: Memory assessment for initializing arrays
3. Constant value usage

3.1 Motivation

It is very frequent that constant values are directly used in algorithm coded in C. For example, in Annex A the following Word32 constants are used: 0x00400000L and 25798L. In the same example, the following Word16 constant is used: 10037.

3.2 Proposal

STMicroelectronics assumes that C compilers for DSP will inline Word16 values directly in the assembly language code. Therefore, the value 10037 is not included in the data ROM; instead it is included in the program source code.

STMicroelectronics assumes also that 16-bit based DSP will inline Word32 values by splitting them into one 16-bit LSB word and one 16-bit MSB word. Therefore the usage of a Word32 constant value consists in two steps, starting from building the constant value and ending with the operation itself. The values 0x00400000L and 25798L are not included in the data ROM; instead they are included in the program source code.

3.3 Summary

The following table sums up the different configurations considered for assessing the complexity and the memory usage regarding the usage of constant values in the reference C-code.

	C instruction
	Type of memory
	Accounted for

	((Word16)0x(vvvv))
	program
	transparent

	0x(hhhhllll)L
	program
	transparent

Table 2: Memory assessment for constant value usage

4. References

 [1]
AMR permanent document (AMR-9), SMG11

A. Annex: example C-code

This following imaginary sample code (which does nothing in particular) illustrates different cases that shall be taken into account for the memory assessment of the SES codec :

/* initialization counting for 4 words in the ROM */

Word16 swRand[4] = {8, 12, -4, -7};

Word16

func_proc(Word16 a, Word32 b)

{

 Word16 idx, idx2;

 /* constant value counting for 0 words ROM */

 Word32 enerLog = 0x00400000L;

 /* initialization counting for 0 word ROM */

 Word16 autoBuff[4] = {0x4000, 0x1400, 0xFC00, 0xAFF0};

 /* enerLog initialization */

 move32();

 /* autoBuff initialization */

 move16();move16();move16();move16();

 [...]

 /* loop preparation */

 idx2 = 0; move16();

 for (idx=0;idx<4;idx++) {

 [...]

 autoBuff [idx] = swRand[idx2]; move16();

 swRand[idx2] = /* small constant 25798L counting 0 word ROM */

 extract_h(L_shr(L_add(25798L,

 L_mult(swRand[idx2], 10037)),2));

 move16();

 [...]

 }

 [...]

 return 0;

Code 3: Sample instrumented C-code

� Stéphan Tassart

STMicroelectronics,

Email: stephan.tassart@st.com

