- 13 -

ITU-T Draft Recommendation J.124 (J.mfmweb)

MULTIPLEXING FORMAT FOR MULTIMEDIA WEBCASTING OVER TCP/IP NETWORKS

Summary

This recommendation provides an extended multiplexing format based on Recommendation J.123, which is appropriate for audio and video transmission by download-based protocol over TCP/IP without any session control protocols between server and client, a.k.a. “Progressive Download.” Fragmented structure is newly introduced into this Recommendation. In the fragment structure, media data is divided into media fragments, and a movie header is also divided into movie fragment headers according to the fragmented media data. Each movie fragment header corresponds to each media fragment, and these elements constitute a movie fragment. By adapting the fragment structure to long duration content, a huge header, which causes initial delay of the progressive streaming, can be avoided. In addition, formatted text information is stored in the media data so that these can be interleaved with one another in a file. This format also carries metadata, digital rights management (DRM) information as well as audio, video and text bitstreams.

Examples of use of this Recommendation are given in Appendices I, II and III.

1. Scope

This recommendation defines a multiplexing format appropriate for progressive download, audio and video transmission by download-based protocol over TCP/IP. In contrast to Recommendation J.123, this recommendation supports fragmented structure for long duration content. In addition, formatted text information is stored in the media data so that these can be interleaved with one another in a file. Using this format, Webcasting of long duration content and live programs is realized.

2. References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.
The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2.1. Normative References

[1]
ITU-T Recommendation J.123 (2002), Multiplexing format for Webcasting on TCP/IP network.

[2]
ISO/IEC 14496-12:2003, Information technology – Coding of audio-visual objects –
Part 12: ISO Base Media File Format

[3]
ISO/IEC 14496-14:2003, Information technology – Coding of audio-visual objects –
Part 14: MP4 File Format

[4]
3GPP TS 26.245: Transparent end-to-end Packet-switched Streaming Service (PSS);
Timed text format

2.2. Informative References

[1]
ITU-T Recommendation J.120 (2000), Distribution of sound and television programs over the IP network.
[2]
ISO/IEC 14496-2:2001, Information technology – Coding of audio-visual objects – Part 2: Visual

[3]
ISO/IEC 14496-3:2001, Information technology – Coding of audio-visual objects – Part 2: Audio

[4]
IETF RFC 2068, Hypertext Transfer Protocol - HTTP/1.1
3. Terms and Definitions

3.1. Box: An object-oriented building block defined by a unique type identifier and length [2].

3.2. Chunk: A contiguous set of samples for one track.

3.3. Container Box: A box whose sole purpose is to contain and group a set of related boxes.

3.4. Movie Box: A container box whose sub-boxes define the meta-data for a presentation (‘moov’).

3.5. Media Data Box: A container box which can hold the actual media data for a presentation (‘mdat’).

3.6. Presentation: One or more motion sequences, possibly combined with audio.
3.7. Progressive Download: Streaming by download-based protocol over TCP/IP without any session control protocols. Client can start playing the media before the full file is downloaded.

3.8. Sample: An individual frame of video, or a time-contiguous compressed section of audio.

3.9. Sample Description: A structure which defines and describes the format of some number of samples in a track.

3.10. Sample Table: A packed directory for the timing and physical layout of the samples in a track.

3.11. Track: A collection of related samples, which corresponds to a sequence of images or sampled audio.

3.12. Webcasting: Webcasting is defined in ITU-T Recommendation J.120, Distribution of sound and television programs over the IP network.
4. Abbreviations

DRM
Digital Rights Management

HTTP
Hypertext Transport Protocol

IP
Internet Protocol

MP4
MPEG-4 File Format

SMIL
Synchronized Multimedia Integration Language

TCP
Transmission Control Protocol
UTF-8
Unicode Transformation Format (the 8-bit form)

UTF-16
Unicode Transformation Format (the 16-bit form)

UUID
Universal Unique Identifier
5. Reference Architecture

This recommendation assumes that download-based protocol (e.g. HTTP) should be used for multimedia Webcasting because it does not require any complex server-client protocols.

The reference architecture for multimedia Webcasting on TCP/IP is shown in Figure 1 below.

[image: image1.wmf]Webcasting

Server

 (HTTP Server)

Internet

IP Network

(ISP, CATV)

Mobile IP

Network

STB

Home Network

PDA

PC

Mobile Terminal

Mobile Terminal

Contents Flow

HTTP/TCP/IP

HTTP/TCP/IP

HTTP/TCP/IP

HTTP/TCP/IP

Figure 1: Architecture of multimedia Webcasting on TCP/IP networks

6. Multiplexing Format

6.1. Basic Structure

The format is structurally based on the ISO base media file format defined in [2]. Basic structure of the format is shown in Figure 2, which consists of extension data, contents header and media data.

[image: image2.emf]

‘ftyp’ Box

‘uuid’ Box (private data: DRM)

‘moov’ Box (movie information)

‘mdat’ Box (media data)

moof Box (movie information)

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

V

A

T

1st fragment

Chunk: consists of several frames

V: Video track

A: Audio track

T: Timed text track

One file or one sequence

2nd fragment

‘mdat’ Box (media data)

Figure 2: Basic structure of a file format

6.2. Object Structure

The file is structured as a sequence of objects called “Box”; some of these objects may contain other objects. The sequence of objects in the file shall contain exactly one presentation meta-data wrapper (the Movie Box ‘moov’). It should be close to the beginning of the file. The other objects found at this level may be File Type Box ‘ftyp’, ‘uuid’ Box, Movie Fragments ‘moof’, and Media Data Boxes ‘mdat’.
All boxes defined in this recommendation are listed in Table 1, which are marked by a grey shade.

Table 1: Box types and structure
	ftyp
	
	file type and compatibility

	uuid
	
	uuid Box for DRM (see 8.)

	moov
	
	container for all the information

	
	mvhd
	
	movie header, overall declarations

	
	trak
	
	container for an individual track or stream

	
	
	tkhd
	
	track header, overall information about the track

	
	
	tref
	
	track reference container

	
	
	edts
	
	edit list container

	
	
	
	elst
	
	an edit list

	
	
	mdia
	
	container for the media information in a track

	
	
	
	mdhd
	
	media header, overall information about the media

	
	
	
	hdlr
	
	handler, declares the media (handler) type

	
	
	
	minf
	
	media information container

	
	
	
	
	vmhd
	
	video media header, overall information

	
	
	
	
	smhd
	
	sound media header, overall information

	
	
	
	
	hmhd
	
	hint media header, overall information

	
	
	
	
	nmhd
	
	Null media header, overall information

	
	
	
	
	dinf
	
	data information box, container

	
	
	
	
	
	dref
	data reference box, declares source(s) of media data in track

	
	
	
	
	stbl
	
	sample table box, container for the time/space map

	
	
	
	
	
	stsd
	sample descriptions (codec types, initialization etc.)

	
	
	
	
	
	stts
	(decoding) time-to-sample

	
	
	
	
	
	ctts
	(composition) time to sample

	
	
	
	
	
	stsc
	sample-to-chunk, partial data-offset information

	
	
	
	
	
	stsz
	sample sizes (framing)

	
	
	
	
	
	stz2
	compact sample sizes (framing)

	
	
	
	
	
	stco
	chunk offset, partial data-offset information

	
	
	
	
	
	co64
	64-bit chunk offset

	
	
	
	
	
	stss
	sync sample table (random access points)

	
	
	
	
	
	stsh
	shadow sync sample table

	
	
	
	
	
	padb
	sample padding bits

	
	
	
	
	
	stdp
	sample degradation priority

	
	mvex
	
	movie extends box

	
	
	mehd
	
	movie extends header box

	
	
	trex
	
	track extends defaults

	moof
	
	movie fragment

	
	mfhd
	
	movie fragment header

	
	traf
	
	track fragment

	
	
	tfhd
	
	track fragment header

	
	
	trun
	
	track fragment run

	mfra
	
	movie fragment random access (optional)

	
	tfra
	
	track fragment random access

	
	mfro
	
	movie fragment random access offset

	mdat
	
	media data container

	free
	
	free space

	skip
	
	free space

	
	udta
	
	user-data

	
	
	cprt
	
	copyright etc.

6.3. Box Order

This recommendation defines Box order as follows. Only the top-level Boxes are indicated.

6.3.1. Non-fragmented Structure

As shown in Figure 3, the Boxes are transmitted or stored from left to right order. Exactly one File Type Box (‘ftyp’), exactly one DRM UUID Box (‘uuid’), exactly one Movie Box (‘moov’) and exactly one Media Data Box (‘mdat’) shall exist in the format. Other boxes not defined in this recommendation may occur, and decoders shall skip and ignore any unrecognized Box.

	ftyp
	DRM(uuid)
	moov
	mdat

Figure 3: Non-fragmented structure

6.3.2. Fragmented Structure

Fragmented structure should be used for long duration content. The first fragment is the same as that of non-fragmented structure as shown in Figure 4.

	ftyp
	DRM(uuid)
	moov
	mdat

Figure 4: The first fragment

For the second and subsequent fragments, each fragment shall consist of exactly one Movie Fragment Box (‘moof’) and exactly one Media Data Box (‘mdat’). The fragments shall be in sequence order.

	moof
	mdat

	moof
	mdat

Figure 5: The second fragment and subsequent fragments

6.4. Track Structure

This recommendation defines the following track structure.

· One video track

· One audio track

· One video track and one audio track

· One video track and one text track

· One audio track and one text track

· One video track, one audio track and one text track

The maximum number of tracks shall be one for video, one for audio and one for text. Moreover, at least one video or one audio track shall exist.

The maximum number of sample entries shall be one per track for video and audio, but unrestricted for text.
6.5. Media Data Structure

If the media data contains multiple tracks, it shall be interleaved inside the format as chunks.

· The interleaving order shall correspond to the track storing order.

· Chunks corresponding to the track shall be in time order.

· One second interleaving length is recommended, and it shall be less than five seconds.

6.6. Other Descriptions

This recommendation applies the following descriptions to ISO Base Media File Format.

· The fields in the objects are stored with the most significant byte first, commonly known as network byte order or big-endian format.
· There shall be no references to external media outside the format, i.e. a data shall be self-contained.

· Hint tracks are a mechanism that a server implementation may choose to use in preparation for the streaming of media content. However, it should be noted that the usage of hint tracks is an internal implementation matter for the server, and it falls outside the scope of this recommendation.

· All index numbers used in the format start with the value one rather than zero, in particular “first-chunk” in Sample to Chunk Box, “sample-number” in Sync Sample Box and “shadowed-sample-number,” “sync-sample-number” in Shadow Sync Sample Box.

· For the storage of ISO/IEC MPEG-4 media specific information, this recommendation refers to MP4 file format [3], which is also based on the ISO base media file format. However, tracks relative to MPEG-4 system architectural elements (e.g. BIFS, OD) are optional in this recommendation and shall be ignored. The inclusion of MPEG-4 media does not imply the usage of MPEG-4 systems architecture. The decoder is not required to implement any of the specific MPEG-4 system architectural elements.

7. Box Definitions

7.1. File Type Box
7.1.1. Definition

Box Type:
‘ftyp’
Container:
File

Mandatory:
Yes

Quantity:
Exactly one
A media-file structured to this part of this specification may be compatible with more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the file. This means that the utility of the file name extension and mime type are somewhat reduced.

This box must be placed as early as possible in the file (e.g. after any obligatory signature, but before any significant variable-size boxes such as the UUID Box, Movie Box or Media Data Box). It identifies which specification is the ‘best use’ of the file, and a minor version of that specification; and also a set of other specifications to which the file complies. Readers implementing this format should attempt to read files which are marked as compatible with any of the specifications which the reader implements. Any incompatible change in a specification should therefore register a new ‘brand’ identifier to identify files conformant to the new specification.

The type ‘sg92’ is defined in this section of this recommendation, as identifying files which conform to the format in this recommendation. More specific identifiers can be used to identify precise versions of specifications providing more detail.

Files would normally be externally identified (e.g. with a file extension or mime type) that identifies the ‘best use’ (major brand), or the brand that the author believes will provide the greatest compatibility.
7.1.2. Syntax
aligned(8) class FileTypeBox

extends Box(‘ftyp’) {

unsigned int(32)
major-brand;

unsigned int(32)
minor-version;

unsigned int(32)
compatible-brands[];
// to end of the box

}

7.1.3. Semantics

This box identifies the specifications to which this file complies.

Each brand is a printable four character code that identifies a precise specification. Only one brand is defined here: ‘sg92’, identifies files structurally conformant to this media-independent part of this specification.

major-brand – is a brand identifier

minor-version – is an informative integer for the minor version of the major brand

compatible-brands – is a list, to the end of the box, of brands
7.2. Other Boxes

Definitions of all other boxes are found in the reference [2].

8. Digital Rights Management (DRM) Box

DRM information is formatted in ‘uuid’ Box. Functions for DRM are described as follows:

· Copy prohibition

· Expiration date

· Validation period after downloading

· Number of times play

Rights management information controls play and/or re-transmission of the downloaded file. It is contained in ‘uuid’ Box of this format.
8.1. Syntax

aligned(8) class CopyGuardBox extends FullBox (‘uuid’, version = 0, flags){

bit(32)

copy-guard;

unsigned int(32)
limit-date;

unsigned int(32)
limit-period;

unsigned int(32)
limit-count;

}
8.2. Semantics

	Field
	Type
	Description
	Parameters

	type
	uint32
	Type of Box
	‘uuid’ is set

	usertype
	uint8[16]
	ID
	“cpgd”-A88C-11d4-8197-09027087703

	version
	uint8
	Version
	0 is set

	flags
	bit24
	Management flags
	0: No limitation
1: Limitation by expiration date
2: Limitation by validated period
4: Limitation by playing number of times

Unless the case of No limitation, the following "never copy" flag shall be set to '1'

	copy-guard
	uint32
	Copy prohibition
	0: copy permitted

otherwise: copy prohibited

	limit-date
	uint32
	Expiration date
	Specify the expiration date in seconds from 1904/1/1 0:00GMT

	limit-period
	uint32
	Validated period
	Specify the validated period in days after the file is downloaded

	limit-count
	uint32
	Playing number

of times
	'1' means that the file can be played only once

9. Timed Text Format
This section makes reference of [4] “3GPP TS 26.245: Transparent end-to-end Packet-switched Streaming Service (PSS); Timed text format.”
Appendix I – Application Example: Typical VOD Transmission

A file transmission request to the server without any specific information starts the VOD transmission. The request syntax is, for example, as follows:

http://server.com/content.mp4
or

http://server.com/transfer.cgi?file=content.mp4
In this example, the requested file is “content.mp4”. The latter uses the CGI program “transfer.cgi” for data transmission control for future extension. Note that the command syntax may be proprietary defined between server and client, which is outside the scope of this recommendation.

When the server receives the request, it starts the file transmission. After the client receives the movie header (“moov”), it can start demultiplexing and decoding the bitstream and storing the decoded data in the buffer. With some initial buffering delay, the client starts playing the media.

While playing the media, the next movie fragment header (“moof”) is transmitted to the client. When the client receives the ‘moof’ header, it starts demultiplexing and decoding the bitstream of the next fragment. Thus, continuous playing of the media as streaming is achieved with this format.

[image: image3]
Appendix II – Application Example: Random Access Operation

A file transmission request to the server with time information starts the random access transmission. The request syntax is, for example, as follows:

http://server.com/transfer.cgi?file=content.mp4&begin=30s
In this example, the requested file is “content.mp4” and the requested position is 30 seconds from the beginning. Note that the command syntax may be proprietary defined between server and client, which is outside the scope of this recommendation.

When the server receives the request, it starts the file transmission from the specified position. Since the client can start playing only with the movie header “moov,” the file must be reorganized by the server in advance of transmission. In addition, the top of each fragment can become the start time.

The “moof” header of the specified position is converted to the “moov” header, and the following “moof” headers are reorganized with fixing the offset pointers. Thus, the new stream is constructed, which is transmitted to the client.

[image: image4]
Appendix III – Application Example: Live Video Transmission

This multiplexing format can be applied to a live video transmission. A file transmission request to the server with the live encoder information starts the random access transmission. The request syntax is, for example, as follows:

http://server.com/transfer.cgi?file=live:source1
In this example, live video transmission named “source1” is requested. Note that the command syntax between server and client and the protocol between live encoder and transmission server may be proprietary defined, which are outside the scope of this recommendation.

When the server receives the request, it selects the live bitstream specified from the client. It is assumed that the fragment data is transferred to the server from the live encoder irrespective of a request from the client.

In this case, the latest fragment, which should have started sending, has the “moof” header not the “moov” header. As with random access, header conversion from “moof” to “moov” of the latest fragment on receiving the request and offset modification of trailing “moof” are performed.

[image: image5]

Server

IP Network

Request

http://server.com/transfer.cgi?file=content.mp4

Data Stream

Client

Client

Server

IP Network

Request

http://server.com/transfer.cgi?file=content.mp4&begin=30s

Data Stream

Client

Client

Server

IP Network

Client

Request

http://server.com/transfer.cgi?file=live:source1

Data Stream

moof

moof

mdat

mdat

mdat

moov

moof

mdat

mdat

30s

convert

fix the offsets

...mdat...

Live Encoder

Client

	Contact:
	Satoshi Miyaji

KDDI Corporation

Japan
	Tel:
+81 49 278 7409

Fax:
+81 49 278 7439

Email:
sa-miyaji@kddi.com

Attention: Some or all of the material attached to this liaison statement may be subject to ITU copyright. In such a case this will be indicated in the individual document. Such a copyright does not prevent the use of the material for its intended purpose, but it prevents the reproduction of all or part of it in a publication without the authorization of ITU.
J.124

January 2004

J.124

January 2004

[image: image6.emf]

[image: image7.emf][image: image8.emf]123456

789101112

A

B

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

E

t

h

e

r

n

e

t

A

12x

6x

8x

2x

9x

3x

10x

4x

11x

5x

7x

1x

C

[image: image9.emf]

[image: image10.emf]

[image: image11.png][image: image12.emf]

[image: image13.wmf][image: image14.emf][image: image15.emf][image: image16.emf][image: image17.png][image: image18.png]_1107277149.unknown

_1108895255.doc

‘ftyp’ Box

‘uuid’ Box (private data: DRM)

‘moov’ Box (movie information)

‘mdat’ Box (media data)

A

V

V

T

T

moof Box (movie information)

T

A

V

T

A

V

T

A

V

T

A

V

T

A

A

V

T

A

V

T

A

V

T

A

V

T

A

V

T

A

V

1st fragment

Chunk: consists of several frames

V: Video track

A: Audio track

T: Timed text track

One file or one sequence

2nd fragment

‘mdat’ Box (media data)

