3GPP TSG-SA4#29 Meeting
Tdoc S4-030772

24-28 November 2003, Tampere, Finland

Source:
Nokia
, NTT DoCoMo
Title:
FLUTE for MBMS downloading

Document for:
Discussion and decision

Agenda Item:
6.5.4.1

1 Introduction

This document is an introduction to the FLUTE (File Delivery over Unidirectional Transport) protocol [1] defined in the IETF. FLUTE usage is suitable for the transport of MBMS service announcements and media download.

2 Introduction to FLUTE

FLUTE is a transport protocol used to deliver files (e.g., images, video or audio clips) from sender(s) to receiver(s) over unidirectional systems, with specialisations that make it suitable to wireless (lossy) and point-to-multipoint (multicast) systems, such as MBMS.

[image: image1.wmf]FLUTE

ALC

LCT

FEC

CC

Figure 1 - Block structure of FLUTE

As a protocol, FLUTE is fully specified and built on top of the Asynchronous Layered Coding (ALC) protocol instantiation (PI) [2] of the Layered Coding Transport (LCT) building block [3] (see Figure 1). FLUTE, ALC and LCT are all results of the IETF Reliable Multicast Transport (RMT) Working Group (WG). Thus, FLUTE is carried over UDP/IP packets and is independent of the IP version and the underlying links layers used.

LCT is an abstract building block that provides a framework for defining an actual protocol. It has several specified and under-specified fields that are inherited and further specified by a protocol. ALC is a protocol instantiation of LCT.

ALC is under-specified and generally transports binary objects of finite or indeterminate length. FLUTE is a fully-specified protocol and specifically transports files (any kind of discrete binary object), and uses a specially purpose object – the File Description Table (FDT) – to provide a running index of files and their essential reception parameters in-band of a FLUTE session.
FLUTE inherits several features from the protocols it is built on, some of which are described below.

Forward Error Correction (FEC) building blocks can be optionally ‘plugged-in’ to improve robustness and reliability in the downlink. Alternative FEC codes may be used for different networks with different error characteristics. Depending on the different RANs used, the error requirements of applications and experience gained from implementing MBMS systems, the FEC schemes used can be chosen and optimized over time – based on exactly the same FLUTE protocol.

Congestion control building blocks can be optionally ‘plugged-in’ to enable Internet friendly bandwidth use on the Internet, although this feature may not be useful on fully provisioned systems where bandwidth and data rates are well controlled by the system at large – as is true for 3G networks.

2.1 The File Delivery Table

FLUTE and ALC are compatible in a sense that any ALC client is able to receive FLUTE sessions. An ALC client that does not implement FLUTE just sees a set of transport objects delivered under an ALC session. What FLUTE adds here is the capability to understand that a particular transport object (the Transport Object ID 0) provides a File Delivery Table (FDT) that consequently defines which files and with which file properties the remaining Transport Object IDs (file) may be received.

FLUTE enables FDT information to be delivered in one or more FDT Instances. An FDT Instance is an XML description of objects, files and their delivery parameters. Below is an example of what an FDT Instance would look like.

Example FDT Instance:

 <?xml version="1.0" encoding="UTF-8"?>

 <FDT-Payload xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:fl="http://www.example.com/flute"

 xsi:schemaLocation="http://www.example.com/flute fdt-6a.xsd"

 Expires="2890842807">

<File

 Content-Location="www.example.com/menu/tracklist.html"

 TOI="1"

 Content-Type="text/html"/>

<File

 Content-Location="www.example.com/tracks/track1.mp3"

 TOI="2"

 Content-Length="6100"

 Content-Type="audio/mp3"/>

 </FDT-Payload>
In this example two objects are described: an HTML file and an MP3 file.

3 Transport of MBMS download data

In this section a description of the FLUTE transport is given. In particular, it is described how a file is split into FLUTE packets.

[image: image2.wmf]Constructing FLUTE Packets

=

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

1011010100

1010101101

1010101010

0100100101

0000000000

1111111111

0110010110

1100101011

file

transport

object

source

block(s)

00000

00000

encoding

symbol(s)

11111

11111

Header

FLUTE packet

11111

FLUTE/

UDP/

IP

packet

Figure 2
The sender (for example an MBMS server) takes a file, e.g. a video clip or a still image, which is the transport object for FLUTE (see Figure 2). The FLUTE packet size is determined by the encoding symbol length. Both the encoding symbols length and the maximum allowed source block length are configured by the sender. Based on the transport object length, the encoding symbol length and the maximum source block length, FLUTE calculates the source block structure (i.e., the number of source blocks and their length).

The sender communicates the transport object length, the encoding symbol length and the maximum source block length to the receiver(s) within the FLUTE transmission. Thus the receiver can also calculate the source block structure in advance of receiving a file.

FLUTE can be configured such that only one source block is used for a file, for instance if the file size is small or this level of complexity is not needed. One example is that for Ethernet links, any file smaller than 1 Kbyte does not need to be transported on more than a single encoding symbol and a single source block (1 Kbyte is below the MTU).

Encoding Symbols are the FLUTE packet payloads. They are taken from the source blocks in fragments according to the encoding symbol length (the figure shows 4 fragments). Then the FLUTE packet is constructed from FLUTE header and encoding symbol payload.

The minimum FLUTE header is 20 bytes long, which is the common length used for media files, e.g. a video clip file. The maximum specified FLUTE header is 44 bytes, which would only be used for some packets carrying FDT data.

Figure 3 illustrates a simple example of multiple file transmission within one FLUTE session. In this scenario the sender first delivers a single FDT describing the four files in the session, and then delivers each of the files in sequence. The receivers choose which of the files in the session they wish to take. It is also valid to multiplex the packets so that multiple files are in mid-transmission at the same time (if the files require more than one packet to complete their delivery).

[image: image3.wmf]Receivers

wanting

content

FDT

content

(files)

file info

Sender

file info

object

0

object

1

object

2

object

3

object

4

One Shot Delivery with a Single FDT Instance

Figure 3
FLUTE may be used by receiver applications to get files from MBMS services, and thus FLUTE provides the equivalent functionality as HTTP for PSS.

4 Description of a FLUTE Session

Below is an example sequence for the lifetime of a FLUTE session [1]:

1. The receiver obtains the description of the file delivery session identified by the pair: (source IP address, Transport Session Identifier). The receiver also obtains the destination IP addresses and respective ports associated with the file delivery session.

2. The receiver joins the channels in order to receive packets associated with the file delivery session. The receiver may schedule this join operation utilising the timing information contained in a possible description of the file delivery session.

3. The receiver receives FLUTE packets associated with the file delivery session. The receiver checks that the packets match the declared Transport Session Identifier. If not, packets are silently discarded.

4. While receiving, the receiver demultiplexes packets based on their Transport Object Identifier (TOI).

5. The receiver reconstructs the object. Multiple objects can be reconstructed concurrently.

6. The object may be an FDT Instance, as identified by a header extension. Note that TOI='0' is exclusively reserved for FDT delivery.

7. The object may be a file, in which case the receiver assigns file with the properties described by the relevant FDT Instance.

8. The receiver behaviour upon identification of packets belonging to unidentified objects is not specified. The receiver may wait a little time in case an FDT instance describing the file in that object is received soon afterwards.

9. Continue reception (step 3) until the file delivery session end time been reached, or all files of interest have been successfully received.

5 Discovery and Description of FLUTE Media

Just like RTP sessions and media, FLUTE sessions and media must be discovered for a receiver to be able to access them. This requirement is generally satisfied in three parts:

· Description of the FLUTE session and media

· Transport of these Descriptions

· Maintenance and update of these Descriptions

The maintenance and update is an issue for the discovery/announcement process and is discussed further in section 6.

Transport of the FLUTE session and media descriptions requires one or more transport protocol(s). HTTP, SAP [6] and FLUTE itself (section 6) are valid IP-based options. Other options, such as MMS, are also feasible. The basic purpose of this transport is to deliver the descriptors from a server to a client reliably enough and in appropriate time to use the descriptors.

There are two fundamental uses for the descriptors: selection and access. The descriptors may enable user selection and/or automatic filtering (e.g., determining whether a file type is supported) for download. During the file delivery session, the user device needs to understand how to access the session (e.g., for FLUTE protocol parameters, security aspects, etc), and these may also be provided by the descriptors.

The FLUTE specification (section 6) defines the required and optional parameters for such FLUTE session and media descriptors.

The required parameters are:

· The sender IP address;

· The number of channels in the session;

· The destination IP address and port number for each channel in the session;

· The Transport Session Identifier (TSI) of the session;

· An indication of whether or not the session carries packets for more than one object.

Optionally, the following parameters may be associated with the session (Note, the list is not exhaustive):

· The start time and end time of the session;

· FEC Encoding ID and FEC Instance ID;

· Compression format, if optional compression is used;

· The FEC Object Transmission Information;

· Some information that tells receiver, in the first place, that the session contains files that are of interest.

These parameters may be provided by any of several description syntaxes. Since both SDP [5] and XML-based syntaxes are extensible it is straightforward to define these descriptor based on current solutions. However, FLUTE session and media descriptor lines have not yet been standardized. Below is an example of SDP definition of FLUTE for reference.
SDP description describing FLUTE session:

 v=0

 o=user123 2890844526 2890842807 IN IP6 2201:056D::112E:144A:1E24

 s=File delivery session example

 i=More information

 t=2873397496 2873404696

 a=source-filter: incl IN IP6 * 2001:210:1:2:240:96FF:FE25:8EC9

 a=flute-tsi:3

 a=flute-ch:2

 m=application 12345 FLUTE 0

 c=IN IP6 FF1E:03AD::7F2E:172A:1E24/1

 m=application 12346 FLUTE 0

 c=IN IP6 FF1E:03AD::7F2E:172A:1E30/1
6 FLUTE Transport of Service Announcements

FLUTE is a good candidate for unidirectional multicast service announcement.

As mentioned above, FLUTE can be used for the transport of session descriptors, or any other file-based metadata. Generally ‘session and media’ descriptions can be referred to as metadata so as to include several related technologies such as SDP (Session Description Protocol), SMIL (Synchronized Multimedia Integration Language), etc. This metadata arrives (near to) continuously in some configurations, but is invariably provided as one or more files containing the descriptors (e.g., a text file with XML or SDP syntax).

FLUTE can be used to ‘download’ files containing metadata. As discussed above, FLUTE brings important functionalities to the transport that be plugged-in or configured for the intended deployment. These are also important for service announcements and include: massive scalability, reliability/robustness, congestion control, segmentation of payload, and independence of payload format. FLUTE compares well against SAP as each of these features are either partially or completely missing from the older SAP protocol which has been an Experimental RFC used on the Interned (MBONE) since the year 2000.

Several other features of SAP are problematic such as: the bandwidth limiting algorithm neither scales nor enables priority announcements; and SAP depends heavily on the Any Source Multicast (ASM) model so that initial access to the announcement channel must use a different method for Source Specific Multicast (SSM) and many modes of sender initialled denial of service attack are well known. SAP also provides a message identifier and maintenance data (e.g. expiry time), which are useful for service announcements. However, they are SAP specific and, due to the constraints of SAP, are best only used with SDP files sufficiently below the link MTU size.

An example of metadata transport with FLUTE is shown in Figure 4.

[image: image4.wmf]FLUTE

header

One Possible Header and Payload Layout using FLUTE

for Service Announcements

SDP file

Metadata

Envelope

Figure 4
The metadata envelope enables the identification, versioning, update and temporal validity (start and expiry) of metadata regardless of whether the payload metadata is SDP, XML-based, or whatever. The envelope can be either transported directly ahead of the payload metadata (as a transport protocol header, or text-based wrapper) or as a linked object (e.g. like FLUTE’s FDT or as a FLUTE file immediately preceding the payload metadata file in time and transport object identifier number). This is outside the scope of FLUTE but inside the scope of using FLUTE as an announcement protocol. Below is an example of a metadata envelope defined as an XML-wrapper to payload metadata.

Example Metadata Envelope in XML Syntax:

 <?xml version="1.0" encoding="UTF-8"?>

 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified">

 <xs:element name="imgTransferEnvelope">

 <xs:complexType>

 <xs:choice>

 <xs:element name="asciiPayload">

 <xs:complexType>

 <xs:attribute name="type"

 type="xs:string"

 use="required"/>

 <xs:string/>

 </xs:complexType>

 </xs:element>

 <xs:element name="xmlPayload">

 <xs:complexType>

 <xs:sequence>

 <xs:any maxOccurs="unbounded"

 processContents="skip"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 <xs:attribute name="metadataID"

 type="xs:anyURI"

 use="required"/>

 <xs:attribute name="version"

 type="xs:positiveInteger"

 use="required"/>

 <xs:attribute name="minorVersion"

 type="xs:positiveInteger"

 use="optional"/>

 <xs:attribute name="validFrom"

 type="xs:dateTime"

 use="optional"/>

 <xs:attribute name="validUntil"

 type="xs:dateTime"

 use="required"/>

 <xs:anyAttribute processContents="skip"/>

 </xs:complexType>

 </xs:element>

 </xs:schema>

Another important feature of a service announcement protocol is the channelisation of the service announcements. This enables certain announcements (e.g. high priority, with low data requirements or more urgent) to be delivered over a different announcement channel to other announcements. Several channels could be used.

Channelisation is an optional feature and would not be required for all FLUTE deployments. However, the same protocol, FLUTE, can be used in both cases where only a single channel, and where multiple announcement channels are needed to reduce the likelihood of needing to support different transport protocols for different configurations.

One additional aspect of service announcements is the need for the initial announcement channel discovery. SAP achieves this by using a well known (IANA registered) group (destination IP) address. However this seriously limits scalability and inter-domain feasibility. There are several other methods also generally available to other download capable protocols: manual or hard-coded configuration by user/operator, automatic script from email/MMS/SMS, query from a web page (over HTTP) or other Internet resource, cached from the previous announcement session, etc. (Note, a well known IANA registered address is a special cases of hard-coded configuration).

Once the receiver knows how to access the initial announcement channel either: all the announcements can be provided on this single channel; or, the metadata in this channel can describe the other relevant announcement channel(s) and the receiver can join to that (those), possibly leaving the initial channel if it is not used for initial announcement anymore.

7 FEC Plug-in Option

As already mentioned in section 2, FEC building blocks can be optionally ‘plugged-in’ to improve robustness and reliability in the downlink. Alternative FEC codes may be used for different networks with different error characteristics. The default for FLUTE is to use no error correction coding.

Any FEC scheme can be used with FLUTE. This means that the range of usable FEC schemes is not restricted to ones defined in IETF RMT WG. [4] specifies the generic structure of FEC Building Blocks.
8 Point-to-point Repair Capability

FLUTE provides several data identifiers, which can be used to uniquely identify an individual file, source block and/or encoding symbol. This information allows a receiver to establish a point-to-point connection for the request and reception of the missing blocks. FLUTE does not require this functionality but it does enable it.

9 IETF Status

It is an important aspect of IETF standardisation advancement to prove specification with independent interoperable implementations. This is critical when advancing from Proposed Standard to Draft Standard. There are already 3 FLUTE implementations, 2 of which are open source.

FLUTE is currently on the second round of Working Group Last Call, ending 2nd December 2003. The LCT and ALC are currently published as Experimental RFCs (same status SAP has). It is the intent of RMT to re-submit these specifications as IETF Proposed Standard. The authors expect the document to go to the IESG in December 2003 and be published as an RFC within 3GPP Release 6 time frame.

10 Conclusions

FLUTE is an excellent candidate transport protocol for both download and service announcement for MBMS.

FLUTE is based on technologies developed over several years in the Internet and has had substantial peer review from members of the RMT WG with substantial experience in this area. It would be very difficult to design an alternative within 12 months with the level of stability and maturity, or with the right amount of features specifically for download and service announcement, as found in FLUTE.

SAP is the only standardised IP-based alternative for session announcements. However, it has deficiencies for delivering session announcements as well as the other kinds of metadata desirable for MBMS announcement.

Thus, FLUTE seems to be the best choice for an MBMS service announcement transport protocol, and an MBMS download protocol. It is proposed to consider this technology for inclusion in the Release 6 MBMS protocols and codecs specification.

11 References

[1] FLUTE – File Delivery over Unidirectional Transport, IETF Internet Draft, Work in progress, http://www.ietf.org/internet-drafts/draft-ietf-rmt-flute-06.txt.

[2] Asynchronous Layer Coding (ALC) Protocol Instantiation, IETF RFC 3450.

[3] Layered Coding Transport (LCT) Building Block, IETF RFC 3451.

[4] Forward Error Correction (FEC) Building Block, IETF RFC 3452.

[5] SDP: Session Description Protocol, IETF RFC 2327.

[6] Session Announcement Protocol, IETF RFC 2974.

� Contact:

Igor D.D. Curcio, Rod Walsh, Nokia Corporation, 33721 Tampere, Finland, Email: {� HYPERLINK "mailto:igor.curcio, rod.walsh}@nokia.com" ��igor.curcio, rod.walsh}@nokia.com�, Tel. +358 71 800 8000.

_1130673405.vsd

_1130678049.vsd

_1130763319.vsd

_1130670536.vsd

