[image: image632.wmf]

TD <>
ETSI ES 202 212 Vx.x.x (2003-0x)
ETSI Standard

Speech Processing, Transmission and Quality Aspects (STQ);

Distributed speech recognition;

Extended advanced front-end feature extraction algorithm;

Compression algorithms;

Back-end speech reconstruction algorithm

Reference

DES/STQ-00034

Keywords

performance, speech, transmission

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2003.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

6Intellectual Property Rights

Foreword
6
Introduction
6
1
Scope
7
2
References
8
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
3.2
Symbols
9
3.3
Abbreviations
10
4
System overview
11
5
Feature extraction description
12
5.1
Noise reduction
12
5.1.1
Two stage mel-warped Wiener filter approach
12
5.1.2
Buffering
13
5.1.3
Spectrum estimation
13
5.1.4
Power spectral density mean
14
5.1.5
Wiener filter design
15
5.1.6
VAD for noise estimation (VADNest)
16
5.1.7
Mel filter-bank
18
5.1.8
Gain factorization
19
5.1.9
Mel IDCT
20
5.1.10
Apply filter
21
5.1.11
Offset compensation
22
5.2
Waveform Processing
22
5.3
Cepstrum Calculation
23
5.3.1
Log energy calculation
23
5.3.2
Pre-emphasis (PE)
23
5.3.3
Windowing (W)
23
5.3.4
Fourier transform (FFT) and power spectrum estimation
23
5.3.5
Mel Filtering (MEL-FB)
24
5.3.6
Non-linear transformation (Log)
25
5.3.7
Cepstral coefficients (DCT)
25
5.3.8
Cepstrum calculation output
26
5.4
Blind equalization
26
5.5
Extension to 11 kHz and 16 kHz sampling frequencies
26
5.5.1
FFT-based spectrum estimation
26
5.5.2
Mel Filter-Bank
28
5.5.3
High-frequency band coding and decoding
28
5.5.4
VAD for noise estimation and spectral subtraction in high-frequency bands
29
5.5.5
Merging spectral subtraction bands with decoded bands
30
5.5.6
Log energy calculation for 16 kHz
31
5.6
Pitch and class estimation
32
5.6.1
Spectrum and energy computation
32
5.6.2
Voice Activity Detection for Voicing Classification (VADVC)
33
5.6.3
Low-band noise detection
38
5.6.4
Pre-Processing for pitch and class estimation
38
5.6.5
Pitch estimation
39
5.6.5.1
Dirichlet interpolation
40
5.6.5.2
Non-speech and low-energy frames
42
5.6.5.3
Search ranges specification and processing
42
5.6.5.4
Spectral peaks determination
42
5.6.5.5
F0 Candidates generation
44
5.6.5.6
Computing correlation scores
46
5.6.5.7
Pitch estimate selection
48
5.6.5.8
History information update
50
5.6.5.9
Output pitch value
51
5.6.6
Classification
51
6
Feature compression
52
6.1
Introduction
52
6.2
Compression algorithm description
52
6.2.1
Input
52
6.2.2
Vector quantization
52
6.2.3
Pitch and class quantization
53
6.2.3.1
Class quantization
53
6.2.3.2
Pitch quantization
54
7
Framing, bit-stream formatting and error protection
55
7.1
Introduction
55
7.2
Algorithm description
56
7.2.1
Multiframe format
56
7.2.2
Synchronization sequence
56
7.2.3
Header field
56
7.2.4
Frame packet stream
58
8
Bit-stream decoding and error mitigation
58
8.1
Introduction
58
8.2
Algorithm description
58
8.2.1
Synchronization sequence detection
58
8.2.2
Header decoding
59
8.2.3
Feature decompression
59
8.2.4
Error mitigation
59
8.2.4.1
Detection of frames received with errors
59
8.2.4.2
Substitution of parameter values for frames received with errors
60
8.2.4.3
Modification of parameter values for frames received with errors
60
9
Server feature processing
63
9.1
lnE and c(0) combination
63
9.2
Derivatives calculation
63
9.3
Feature vector selection
63
10
Server side speech reconstruction
64
10.1
Introduction
64
10.2
Algorithm description
64
10.2.1
Speech reconstruction block diagram
64
10.2.2
Pitch Tracking and Smoothing
65
10.2.2.1
First stage - gross pitch error correction
66
10.2.2.2
Second stage - voiced/unvoiced decision and other corrections
68
10.2.2.3
Third stage - smoothing
69
10.2.2.4
Voicing class correction
69
10.2.3
Harmonic Structure Initialization
70
10.2.4
Unvoiced phase synthesis
70
10.2.5
Cepstra de-equalization
70
10.2.6
Transformation of features extracted at 16 kHz
71
10.2.7
Harmonic magnitudes reconstruction
71
10.2.7.1
High order cepstra recovery
71
10.2.7.2
Solving front-end equation
73
10.2.7.3
Cepstra to magnitudes transformation
77
10.2.7.4
Combined magnitudes estimate calculation
79
10.2.7.4.1
Combined magnitude estimate for unvoiced harmonics
79
10.2.7.4.2
Combined magnitude estimate for voiced harmonics
80
10.2.8
All-pole spectral envelope modelling
81
10.2.9
Postfiltering
83
10.2.10
Voiced phase synthesis
84
10.2.11
Line spectrum to time-domain transformation
86
10.2.11.1
Mixed-voiced frames processing
86
10.2.11.2
Filtering very high-frequency harmonics
86
10.2.11.3
Energy normalization
87
10.2.11.4
STFT spectrum synthesis
87
10.2.11.5
Inverse FFT
87
10.2.12
Overlap-Add
88
Annex A (informative):
Voice Activity Detection (VAD)
89
A.1
Introduction
89
A.2
Stage 1 - Detection
89
A.3
Stage 2 - VAD Logic
90
Annex B (informative):
Bibliography
92
History
93

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Speech Processing, Transmission and Quality Aspects (STQ), and is now submitted for the ETSI standards Membership Approval Procedure.

Introduction
The performance of speech recognition systems receiving speech that has been transmitted over mobile channels can be significantly degraded when compared to using an unmodified signal. The degradations are as a result of both the low bit rate speech coding and channel transmission errors. A Distributed Speech Recognition (DSR) system overcomes these problems by eliminating the speech channel and instead using an error protected data channel to send a parameterized representation of the speech, which is suitable for recognition. The processing is distributed between the terminal and the network. The terminal performs the feature parameter extraction, or the front-end of the speech recognition system. These features are transmitted over a data channel to a remote "back-end" recognizer. The end result is that the degradation in performance due to transcoding on the voice channel is removed and channel invariability is achieved.

The present document presents a standard for a front-end to ensure compatibility between the terminal and the remote recognizer. The first ETSI standard DSR front-end ES 201 108 [1] was published in February 2000 and is based on the Mel-Cepstrum representation that has been used extensively in speech recognition systems. This second standard is for an Advanced DSR front-end that provides substantially improved recognition performance in background noise. Evaluation of the performance during the selection of the present document showed an average of 53 % reduction in speech recognition error rates in noise compared to ES 201 108 [1].

For some applications, it may be necessary to reconstruct the speech waveform at the back-end. Examples include:

· Interactive Voice Response (IVR) services based on the DSR of "sensitive" information, such as banking and brokerage transactions. DSR features may be stored for future human verification purposes or to satisfy procedural requirements.

· Human verification of utterances in a speech database collected from a deployed DSR system. This database can then be used to retrain and tune models in order to improve system performance.
· Applications where machine and human recognition are mixed (e.g. human assisted dictation).

In order to enable the reconstruction of speech waveform at the back-end, additional parameters such as fundamental frequency (F0) and voicing class need to be extracted at the front-end, compressed, and transmitted. The availability of tonal parameters (F0 and voicing class) is also useful in enhancing the recognition accuracy of tonal languages, e.g. Mandarin, Cantonese, and Thai.

The present document specifies a proposed standard for an Extended Advanced Front-End (XAFE) that extends the noise‑robust advanced front-end with additional parameters, viz., fundamental frequency F0 and voicing class. It also specifies the back-end speech reconstruction algorithm using the transmitted parameters.

1
Scope

The present document specifies algorithms for extended advanced front-end feature extraction, their transmission, back‑end pitch tracking and smoothing, and back-end speech reconstruction which form part of a system for distributed speech recognition. The specification covers the following components:

a) the algorithm for advanced front-end feature extraction to create Mel-Cepstrum parameters;

b) the algorithm for extraction of additional parameters, viz., fundamental frequency F0 and voicing class;

c) the algorithm to compress these features to provide a lower data transmission rate;

d) the formatting of these features with error protection into a bitstream for transmission;

e) the decoding of the bitstream to generate the advanced front-end features at a receiver together with the associated algorithms for channel error mitigation;

f) the algorithm for pitch tracking and smoothing at the back-end to minimize pitch errors;

g) the algorithm for speech reconstruction at the back-end to synthesize intelligible speech.

NOTE:
The components a), c), d) and e) are already covered by the ES 202 050 [2]. Besides these (four) components, the present document covers the components b), f) and g) to provide back-end speech reconstruction and enhanced tonal language recognition capabilities. If these capabilities are not of interest, the reader is better served by (un-extended) ES 202 050 [2].

The present document does not cover the "back-end" speech recognition algorithms that make use of the received DSR advanced front-end features.

The algorithms are defined in a mathematical form, pseudo-code, or as flow diagrams. Software implementing these algorithms written in the 'C' programming language will be provided with the final published version of the present document. Conformance tests are not specified as part of the standard. The recognition performance of proprietary implementations of the standard can be compared with those obtained using the reference 'C' code on appropriate speech databases.

It is anticipated that the DSR bitstream will be used as a payload in other higher level protocols when deployed in specific systems supporting DSR applications. In particular, for packet data transmission, it is anticipated that the IETF AVT RTP DSR payload definition (see bibliography) will be used to transport DSR features using the frame pair format described in clause 7.

The extended advanced DSR standard is designed for use with discontinuous transmission and to support the transmission of Voice Activity information. Annex A describes a VAD algorithm that is recommended for use in conjunction with the Advanced DSR standard, however it is not part of the present document and manufacturers may choose to use an alternative VAD algorithm.

The Extended Advanced Front-End (XAFE) incorporates tonal information, viz., fundamental frequency F0 and voicing class, as additional parameters. This information can be used for enhancing the recognition accuracy of tonal languages, e.g. Mandarin, Cantonese, and Thai.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI ES 201 108: "Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech recognition; Front-end feature extraction algorithm; Compression algorithms".
[2]
ETSI ES 202 050: "Speech Processing, Transmission and Quality aspects (STQ); Distributed speech recognition; Advanced Front-end feature extraction algorithm; Compression algorithms".
[3]
ETSI EN 300 903: "Digital cellular telecommunications system (Phase 2+); Transmission planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system (GSM 03.50)".
3
Definitions, symbols and abbreviations
3.1
Definitions
For the purposes of the present document, the following terms and definitions apply:

analog-to-digital conversion: electronic process in which a continuously variable (analog) signal is changed, without altering its essential content, into a multi-level (digital) signal

blind equalization: process of compensating the filtering effect that occurs in signal recording

NOTE:
In the present document blind equalization is performed in the cepstral domain.

DC-offset: Direct Current (DC) component of the waveform signal

discrete cosine transform: process of transforming the log filter-bank amplitudes into cepstral coefficients

fast fourier transform: fast algorithm for performing the discrete Fourier transform to compute the spectrum representation of a time-domain signal

feature compression: process of reducing the amount of data to represent the speech features calculated in feature extraction

feature extraction: process of calculating a compact parametric representation of speech signal features which are relevant for speech recognition

NOTE:
The feature extraction process is carried out by the front-end algorithm.

feature vector: set of feature parameters (coefficients) calculated by the front-end algorithm over a segment of speech waveform

framing: process of splitting the continuous stream of signal samples into segments of constant length to facilitate blockwise processing of the signal

frame pair packet: definition is specific to the present document: the combined data from two quantized feature vectors together with 4 bits of CRC

front-end: part of a speech recognition system which performs the process of feature extraction

magnitude spectrum: absolute-valued Fourier transform representation of the input signal

multiframe: grouping of multiple frame vectors into a larger data structure

mel-frequency warping: process of non-linearly modifying the frequency scale of the Fourier transform representation of the spectrum

mel-frequency cepstral coefficients: cepstral coefficients calculated from the mel-frequency warped Fourier transform representation of the log magnitude spectrum

notch filtering: filtering process in which the otherwise flat frequency response of the filter has a sharp notch at a predefined frequency

NOTE:
In the present document, the notch is placed at the zero frequency, to remove the DC component of the signal.

offset compensation: process of removing DC offset from a signal

power spectral density: squared magnitude spectrum of the signal

pre-emphasis: filtering process in which the frequency response of the filter has emphasis at a given frequency range

NOTE:
In the present document, the high-frequency range of the signal spectrum is pre-emphasized.

sampling rate: number of samples of an analog signal that are taken per second to represent it digitally

SNR-dependent Waveform Processing (SWP): processing of signal waveform with objective to emphasize high-SNR waveform portions and de-emphasize low-SNR waveform portions

voice activity detection: process of detecting voice activity in the signal
NOTE:
In the present document one voice activity detector is used for noise estimation and a second one is used for non-speech frame dropping.

wiener filtering: filtering of signal by using Wiener filter (filter designed by using Wiener theory)
NOTE:
In this work, objective of Wiener filtering is to de-noise signal

windowing: process of multiplying a waveform signal segment by a time window of given shape, to emphasize pre‑defined characteristics of the signal

zero-padding: method of appending zero-valued samples to the end of a segment of speech samples for performing a FFT operation

3.2
Symbols
For the purposes of the present document, the following symbols apply:

For feature extraction:

bin
FFT frequency index
c(i)
cepstral coefficients; used with appropriate subscript
E(k)
filter-bank energy; used with appropriate subscript
H(bin) or H(k)
Wiener filter frequency characteristic; used with appropriate subscript
h(n)
Wiener filter impulse response; used with appropriate subscript
k
filter-bank band index
KFB
number of bands in filter-bank
lnE
log-compressed energy feature appended to cepstral coefficients

n
waveform signal time index
N
length, (e.g. frame length, FFT length, ...); used with appropriate subscript
P(bin)
power spectrum; used with appropriate subscript
S(k)
log filter-bank energy; used with appropriate subscript
s(n)
waveform signal; used with appropriate subscript
t
frame time index
TPSD
number of frames used in the PSD Mean technique

w(n)
windowing function in time domain; used with appropriate subscript
W(bin)
frequency window

X(bin)
FFT complex output

For compression:
Idx i, i + 1 (t)
codebook index

N i, i + 1
size of the codebook (compression)

Q i, i + 1
compression codebook

qj i, i + 1
jth codevector in the codebook Q i, i + 1

y(t)
feature vector with 14 components

3.3
Abbreviations
For the purposes of the present document, the following abbreviations apply:

APM
All-Pole spectral envelope Modelling

AVT
Audio/Video Transport

BPL
Break Point Lists

CDE
Cepstra De-Equalization

CLS
CLaSsification

COMB
COMBined magnitudes estimate calculation

CRC
Cyclic Redundancy Code

CTM
Cepstra To Magnitudes transformation

DC
Direct Current

DCT
Discrete Cosine Transform

DSR
Distributed Speech Recognition

FB
Filter-Bank

FFT
Fast Fourier Transform

FIR
Finite Impulse Response

FVS
Feature Vector Selection

HFB
High Frequency Band

HOCR
High Order Cepstra Recovery

HSI
Harmonic Structure Initialization

IDCT
Inverse Discrete Cosine Transform

IETF
Internet Engineering Task Force

IVR
Interactive Voice Response

LBND
Low-Band Noise Detection

LFB
Low Frequency Band

LSB
Least Significant Bit

LSTD
Line Spectrum to Time-Domain transformation

MEL-FB
MEL Filter Bank

MF
Mel-Filtering

MFCC
Mel-Frequency Cepstral Coefficients

MSB
Most Significant Bit

NR
Noise Reduction

OLA
OverLap-Add

PF
PostFiltering

PITCH
PITCH estimation

PP
Pre-Processing

PSD
Power Spectral Density

PTS
Pitch Tracking and Smoothing

QMF
Quadrature-Mirror Filters

RTP
Real Time Protocol

SEC
Spectrum and Energy Computation

SFEQ
Solving Front-EQuation

SNR
Signal to Noise Ratio

SS
Spectral Subtraction

STFT
check

SWP
SNR-dependent Waveform Processing

UPH
Unvoiced PHase

VAD
Voice Activity Detection (used for non-speech frame dropping)

VADNest
Voice Activity Detection (used for Noise estimation)

VADVC
Voice Activity Detection for Voicing Classification

VC
Voicing Class

VPH
Voiced Phase synthesis

VQ
Vector Quantizer

XAFE
eXtended Advanced Front-End

4
System overview

This clause describes the distributed speech recognition front-end algorithm based on mel-cepstral feature extraction technique. The specification covers the computation of feature vectors from speech waveforms sampled at different rates (8 kHz, 11 kHz and 16 kHz).

The feature vectors consist of 13 static cepstral coefficients and a log-energy coefficient.

The feature extraction algorithm defined in this clause forms a generic part of the specification while clauses 4 to 6 define the feature compression and bit-stream formatting algorithms which may be used in specific applications.

The characteristics of the input audio parts of a DSR terminal will have an effect on the resulting recognition performance at the remote server. Developers of DSR speech recognition servers can assume that the DSR terminals will operate within the ranges of characteristics as specified in EN 300 903 [3]. DSR terminal developers should be aware that reduced recognition performance may be obtained if they operate outside the recommended tolerances.

Figure 4.1 shows the block scheme of the proposed front-end and its implementation in both the terminal and server sides. In the terminal part, which is shown in figure 4.1(a), speech features are computed from the input signal in the Feature Extraction part. Then, features are compressed and further processed for channel transmission.

In the Feature Extraction part, noise reduction is performed first. Then, waveform processing is applied to the de-noised signal and cepstral features are calculated. At the end, blind equalization is applied to the cepstral features. The Feature Extraction part also contains an 11 kHz and 16 kHz extension block for handling these two sampling frequencies. Voice Activity Detection (VAD) for the non-speech frame dropping is also implemented in Feature Extraction.

At the server side (see figure 4.1(b)), bit-stream decoding, error mitigation and decompression are applied. Before entering the back-end, an additional server feature processing is performed. All blocks of the proposed front-end are described in detail in the following clauses.

[image: image1.emf]

11 kHz and 16 kHz

Extension

VAD

Noise

Reduction

Pitch &

class

estimation

Waveform

Processing

Cepstrum

Calculation

Blind

Equalization

Feature

Compression

Framing,

Bit

-

Stream

Formatting,

Error Protection

Input

Signal

To

Channel

Terminal

Terminal Front

-

End

Feature Extraction

(a)

Bit

-

Stream Decoding,

Error Mitigation

Feature

Decompression

Server Feature

Processing

Back

-

End

Pitch Tracking

& Smoothing

Speech

Reconstruction

From

Channel

Server

Tonal Features

Output Speech

(b)

Figure 4.1: Block scheme of the proposed extended front-end
(a) shows blocks implemented at the terminal side and
(b) shows blocks implemented at the server side

5
Feature extraction description

5.1
Noise reduction

5.1.1
Two stage mel-warped Wiener filter approach

Noise reduction is based on Wiener filter theory and it is performed in two stages. Figure 5.1 shows the main components of the Noise Reduction block of the proposed front-end. The input signal is first de-noised in the first stage and the output of the first stage then enters the second stage. In the second stage, an additional, dynamic noise reduction is performed, which is dependent on the Signal-to-Noise Ratio (SNR) of the processed signal.

Noise reduction is performed on a frame-by-frame basis. After framing the input signal, the linear spectrum of each frame is estimated in the Spectrum Estimation block. In PSD Mean block (Power Spectral Density), the signal spectrum is smoothed along the time (frame) index. Then, in the WF Design block, frequency domain Wiener filter coefficients are calculated by using both the current frame spectrum estimation and the noise spectrum estimation. The noise spectrum is estimated from noise frames, which are detected by a Voice Activity Detector (VADNest). Linear Wiener filter coefficients are further smoothed along the frequency axis by using a Mel Filter-Bank, resulting in a Mel-warped frequency domain Wiener filter. The impulse response of this Mel-warped Wiener filter is obtained by applying a Mel IDCT (Mel-warped Inverse Discrete Cosine Transform). Finally, the input signal of each stage is filtered in the Apply Filter block. Notice from figure 5.1 that the input signal to the second stage is the output signal from the first stage. At the end of Noise Reduction, the DC offset of the noise-reduced signal is removed in the OFF block.

Additionally, in the second stage, the aggression of noise reduction is controlled by Gain Factorization block.

[image: image632.wmf] EMBED MSDraw.Drawing.8.1
[image: image2.emf]Noise Reduction

2nd Stage

1st Stage

Spectrum

Estimation

PSD

Mean

WF

Design

Mel

Filter-Bank

Mel

IDCT

Apply

Filter

Spectrum

Estimation

PSD

Mean

WF

Design

Mel

Filter-Bank

Mel

IDCT

Apply

Filter

Gain

Factorization

s

in

(n)

s

nr_of

(n)

VADNest

OFF

Figure 5.1: Block scheme of noise reduction

5.1.2
Buffering

The input of the noise reduction block is a 80-sample frame. A 4-frame (frame 0 to frame 3) buffer is used for each stage of the noise reduction. At each new input frame, the 2 buffers are shifted by one frame. The new input frame becomes frame 3 of the first buffer. Then the frame 1 (from position 80 to position 159 in the buffer) of the first buffer is denoised and this denoised frame becomes frame 3 of the second buffer. The frame 1 of the second buffer is denoised and this denoised frame is the output of the noise reduction block. Hence at each stage of the noise reduction block, there is a latency of 2 frames (20 ms). For each stage of the noise reduction block, the spectrum estimation is performed on the window which starts at position 60 and ends at position 259.

5.1.3
Spectrum estimation

Input signal is divided into overlapping frames of Nin samples. 25 ms (Nin = 200) frame length and 10ms (80 samples) frame shift are used. Each frame
[image: image3.wmf](

)

n

s

in

 is windowed by a Hanning window of length Nin,
[image: image4.wmf](

)

n

w

Hann

, like

[image: image5.wmf](

)

(

)

(

)

1

0

,

-

£

£

´

=

in

Hann

in

w

N

n

n

w

n

s

n

s

(5.1)

where:

[image: image6.wmf](

)

(

)

20,5

0,505cos

Hann

in

n

wn

N

p

æ´´+ö

=-´´

ç÷

èø

(5.2)

Then, zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT =256 is the Fast Fourier Transform (FFT) length:

[image: image7.wmf](

)

(

)

î

í

ì

-

£

£

-

£

£

=

1

,

0

1

0

,

FFT

in

in

w

FFT

N

n

N

N

n

n

s

n

s

(5.3)

To get the frequency representation of each frame, the FFT is applied to
[image: image8.wmf](

)

n

s

FFT

 like:

[image: image9.wmf](

)

(

)

{

}

n

s

FFT

bin

X

FFT

=

(5.4)

where bin denotes the FFT frequency index.

The power spectrum of each frame,
[image: image10.wmf](

)

2

0

FFT

N

bin

bin

P

£

£

 is computed by applying the power of 2 function to the FFT bins:

[image: image11.wmf](

)

(

)

2

0

,

2

FFT

N

bin

bin

X

bin

P

£

£

=

(5.5)

The power spectrum
[image: image12.wmf](

)

bin

P

 is smoothed like:

[image: image13.wmf](

)

(

)

(

)

4

0

,

2

1

2

2

FFT

in

N

bin

bin

P

bin

P

bin

P

<

£

+

´

+

´

=

(5.6)

[image: image14.wmf](

)

(

)

2

4

FFT

FFT

in

N

P

N

P

=

By this smoothing operation, the length of the power spectrum is reduced to
[image: image15.wmf]1

4

+

=

FFT

SPEC

N

N

.
5.1.4
Power spectral density mean

This module computes for each power spectrum bin
[image: image16.wmf](

)

bin

P

in

 the mean over the last
[image: image17.wmf]PSD

T

 frames.

[image: image18.wmf]

 + ... +

SPEC

N

(

)

(

)

1

,

-

-

PSD

in

T

t

bin

P

(

)

t

bin

P

in

,

PSD

T

PSD

T

1

Figure 5.2: Mean computation over the last TPSD frames as performed in PSD mean

Power Spectral Density mean (PSD mean) is calculated as:

[image: image19.wmf](

)

(

)

1

0

for

,

,

1

,

1

0

_

-

£

£

-

=

å

-

=

SPEC

T

i

in

PSD

PSD

in

N

bin

i

t

bin

P

T

t

bin

P

PSD

(5.7)

where the chosen value for
[image: image20.wmf]PSD

T

 is 2 and t is frame (time) index. Note that throughout the present document, we use frame index t only if it is necessary for explanation. If the frame index is dropped, current frame is referred.

5.1.5
Wiener filter design

A forgetting factor
[image: image21.wmf]lambdaNSE

 (used in the update of the noise spectrum estimate in first stage of noise reduction) is computed for each frame depending on the frame time index
[image: image22.wmf]t

:

[image: image23.wmf](

)

11

_

iftNBFRAMETHRESHOLDNSE

then

lambdaNSEt

else

lambdaNSELAMBDANSE

<

=-

=

(5.8)

where
[image: image24.wmf]___

NBFRAMETHRESHOLDNSE

 equals 100 and
[image: image25.wmf]_

LAMBDANSE

 equals 0,99.

In first stage the noise spectrum estimate is updated according to the following equation, dependent on the flagVADNest from VADNest:

[image: image26.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

1/21/21/2

_

1/21/2

,,11,,

,,

noisennoiseninPSDn

noisenoisen

PbintmaxlambdaNSEPbintlambdaNSEPbintEPS

PbintPbint

ì

=´-+-´

ï

í

=

ï

î

(5.9)

where
[image: image27.wmf]EPS

 equals
[image: image28.wmf])

0

,

10

exp(

-

,
[image: image29.wmf]t

 represents the current frame index,
[image: image30.wmf]n

t

 represents the index of the last non-speech frame and
[image: image31.wmf](

)

_

,

inPSD

Pbint

 is the output of the PSD Mean module.
[image: image32.wmf](

)

1/2

,1

noise

Pbin

-

 is initialized to
[image: image33.wmf]EPS

.

In the second stage the noise spectrum estimate is updated permanently according to the following equation:

[image: image34.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

EPS

t

bin

P

then

EPS

t

bin

P

if

upDate

t

bin

P

t

bin

P

t

bin

P

t

bin

P

t

bin

P

t

bin

P

t

bin

P

upDate

else

t

bin

P

lambdaNSE

t

bin

P

lambdaNSE

t

bin

P

t

lambdaNSE

then

t

if

noise

noise

noise

noise

noise

PSD

in

noise

PSD

in

PSD

in

PSD

in

noise

noise

=

<

´

-

=

-

´

+

+

´

-

+

´

+

=

´

-

+

-

´

=

-

=

<

,

,

1

,

,

1

,

,

1

,

0

1

1

1

1

,

,

,

1

,

0

9

,

0

,

1

1

,

,

1

1

11

2

1

2

1

_

_

_

_

(5.10)

Then the noiseless signal spectrum is estimated using a "decision-directed" approach:

[image: image35.wmf](

)

(

)

(

)

(

)

(

)

1/21/21/21/2

3_

,,11,,

dendeninPSDnoise

PbintBETAPbintBETATPbintPbint

éù

=´-+-´-

ëû

(5.11)

[image: image36.wmf](

)

1/2

,1

den

Pbin

-

 is initialized to 0,
[image: image37.wmf]BETA

 equals 0,98 and the threshold function
[image: image38.wmf]T

 is given by:

[image: image39.wmf](

)

(

)

(

)

,if ,0

,

0otherwise

zbintzbint

Tzbint

ì

>

éù

=

í

ëû

î

(5.12)

Then the a priori SNR
[image: image40.wmf](,)

bint

h

 is computed as:

[image: image41.wmf](

)

(

)

,

(,)

,

den

noise

Pbint

bint

Pbint

h

=

(5.13)

The filter transfer function
[image: image42.wmf](,)

Hbint

 is obtained according to the following equation:

[image: image43.wmf](,)

(,)

1(,)

bint

Hbint

bint

h

h

=

+

(5.14)

The filter transfer function
[image: image44.wmf](,)

Hbint

 is used to improve the estimation of the noiseless signal spectrum:

[image: image45.wmf](

)

(

)

(

)

1/21/2

2_

,,,

deninPSD

PbintHbintPbint

=

(5.15)

Then an improved a priori SNR
[image: image46.wmf]2

(,)

bint

h

 is obtained:

[image: image47.wmf](

)

(

)

2

2

,

(,)max,

,

den

2TH

noise

Pbint

bint

Pbint

hh

æö

=

ç÷

ç÷

èø

(5.16)

where
[image: image48.wmf]TH

h

 equals 0,079 432 823 (value corresponding to a SNR of -22 dB).

The improved transfer function
[image: image49.wmf]2

(,)

Hbint

 is then obtained according to the following equation:

[image: image50.wmf]2

2

2

(,)

(,)

1(,)

bint

Hbint

bint

h

h

=

+

,
[image: image51.wmf]1

0

-

£

£

SPEC

N

bin

(5.17)

The improved transfer function
[image: image52.wmf]2

(,)

Hbint

 is then used to calculate the noiseless signal spectrum
[image: image53.wmf](

)

1/2

3

,

den

Pbint

 that will be used for the next frame in Equation (5.11):

[image: image54.wmf](

)

(

)

(

)

1/21/2

32

,,,

denin

PbintHbintPbint

=

(5.18)

5.1.6
VAD for noise estimation (VADNest)

A forgetting factor
[image: image55.wmf]lambdaLTE

 (used in the update of the long-term energy) is computed for each frame using the frame time index
[image: image56.wmf]t

:

[image: image57.wmf](

)

11

_

iftNBFRAMETHRESHOLDLTE

then

lambdaLTEt

else

lambdaLTELAMBDALTE

<

=-

=

(5.19)

where
[image: image58.wmf]___

NBFRAMETHRESHOLDLTE

 equals 10 and
[image: image59.wmf]_

LAMBDALTE

 equals 0,97.

Then the logarithmic energy
[image: image60.wmf]frameEn

 of the M (M = 80) last samples of the input signal
[image: image61.wmf](

)

in

sn

 is computed:

[image: image62.wmf](

)

1

2

0

64()

16

0,5ln

ln264

M

in

i

sn

frameEn

-

=

æö

+

ç÷

=+´

ç÷

ç÷

èø

å

(5.20)

Then
[image: image63.wmf]frameEn

 is used in the update of
[image: image64.wmf]meanEn

:

[image: image65.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

_

_

1

1

frameEnmeanEnSNRTHRESHOLDUPDLTE

ifOR

tMINFRAME

then

ifframeEnmeanENORtMINFRAME

then

meanEnmeanEnlambdaLTEframeEnmeanEn

else

meanEnmeanEnlambdaLTEhigherEframeEnmeanE

n

ifmeanEn

æö

-<

ç÷

ç÷

ç÷

ç÷

<

èø

<<

=+-´-

=+-´-

<

(

)

__

ENERGYFLOORthenmeanEnENERGYFLOOR

=

(5.21)

where
[image: image66.wmf]___

SNRTHRESHOLDUPDLTE

 equals 20,
[image: image67.wmf]_

ENERGYFLOOR

 equals 80,
[image: image68.wmf]_

MINFRAME

 equals 10 and
[image: image69.wmf]lambdaLTEhigherE

 equals 0,99.

Then
[image: image70.wmf]frameEn

 and
[image: image71.wmf]meanEn

 are used to decide if the current frame is speech (
[image: image72.wmf]1

Nest

flagVAD

=

) or not (
[image: image73.wmf]0

Nest

flagVAD

=

):

[image: image74.wmf](

)

(

)

(

)

(

)

(

)

4

__

1

1

0

!0

Nest

ift

then

ifframeEnmeanEnSNRTHRESHOLDVAD

then

flagVAD

nbSpeechFramenbSpeechFrame

else

ifnbSpeechFrameMINSPEECHFRAMEHANGOVER

then

hangOverHANGOVER

nbSpeechFrame

ifhangOver

then

hangOverhang

>

->

=

=+

>

=

=

=

=

1

1

0

Nest

Nest

Over

flagVAD

else

flagVAD

-

=

=

(5.22)

where
[image: image75.wmf]__

SNRTHRESHOLDVAD

 equals 15,
[image: image76.wmf]___

MINSPEECHFRAMEHANGOVER

 equals 4 and
[image: image77.wmf]HANGOVER

 equals 15.

[image: image78.wmf]nbSpeechFrame

,
[image: image79.wmf]meanEn

,
[image: image80.wmf]Nest

flagVAD

 and
[image: image81.wmf]hangOver

 are initialized to 0. The frame time index
[image: image82.wmf]t

is initialised to 0 and is incremented each frame by 1 so that it equals 1 for the first frame processed.

5.1.7
Mel filter-bank

The linear-frequency Wiener filter coefficients
[image: image83.wmf](

)

,

1

0

,

2

-

£

£

SPEC

N

bin

bin

H

 (computed by formula (5.17)) are smoothed and transformed to the Mel-frequency scale. Mel-warped Wiener filter coefficients
[image: image84.wmf](

)

k

H

mel

_

2

 are estimated by using triangular-shaped, half-overlapped frequency windows applied on
[image: image85.wmf](

)

bin

H

2

. To obtain the central frequencies of FB bands in terms of FFT bin indices,
[image: image86.wmf](

)

k

bin

centr

, the linear frequency scale flin was transformed to mel scale by using the following formula:

[image: image87.wmf]{

}

(

)

700

1

log

595

2

10

lin

lin

f

f

MEL

+

´

=

(5.23)

Then, the central frequency of the k-th band, fcentr(k), is calculated as:

[image: image88.wmf](

)

(

)

FB

k

f

centr

K

k

k

f

mel

£

£

÷

÷

ø

ö

ç

ç

è

æ

-

´

=

1

for

,

1

10

700

2595

(5.24)

with KFB = 23 and

[image: image89.wmf](

)

{

}

1

2

_

+

´

=

FB

samp

lin

mel

K

f

MEL

k

k

f

(5.25)

where
[image: image90.wmf]000

8

_

=

samp

lin

f

 is the sampling frequency. Additionally, two marginal FB bands with central frequencies fcentr(0) = 0 and
[image: image91.wmf](

)

2

1

_

samp

lin

FB

centr

f

K

f

=

+

 are added to the KFB = 23 Mel FB bands for purposes of following DCT transformation to the time domain; thus, in total we calculate KFB + 2 = 25 Mel-warped Wiener filter coefficients. The FFT bin index corresponding to central frequencies is obtained as:

[image: image92.wmf](

)

(

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

-

´

´

=

1

2

_

SPEC

samp

lin

centr

centr

N

f

k

f

round

k

bin

(5.26)

Frequency windows W(k,i) for
[image: image93.wmf]FB

K

k

£

£

1

 are calculated as:

[image: image94.wmf](

)

(

)

(

)

(

)

(

)

(

)

k

bin

i

k

bin

k

bin

k

bin

k

bin

i

i

k

W

centr

centr

centr

centr

centr

£

£

+

-

-

-

-

-

=

1

1

for

,

1

1

,

(5.27a)

[image: image95.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

1

for

,

1

1

,

+

£

£

+

-

+

-

-

=

k

bin

i

k

bin

k

bin

k

bin

k

bin

i

i

k

W

centr

centr

centr

centr

centr

(5.27b)

and W(k,i) = 0 for other i. For k = 0

[image: image96.wmf](

)

(

)

(

)

(

)

(

)

1

0

1

0

for

,

0

1

1

,

0

-

-

£

£

-

-

=

centr

centr

centr

centr

bin

bin

i

bin

bin

i

i

W

(5.27c)

and W(0,i) = 0 for other i. For k = KFB + 1

[image: image97.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

1

for

,

1

,

1

+

£

£

+

-

+

-

=

+

FB

centr

FB

centr

FB

centr

FB

centr

FB

centr

FB

K

bin

i

K

bin

K

bin

K

bin

K

bin

i

i

K

W

(5.27d)

and W(KFB+1,i)=0 for other i. Mel-warped Wiener filter coefficients
[image: image98.wmf](

)

k

H

mel

_

2

 for
[image: image99.wmf]1

0

+

£

£

FB

K

k

 are computed as:

[image: image100.wmf](

)

(

)

(

)

(

)

å

å

-

=

-

=

´

=

1

0

2

1

0

_

2

,

,

1

SPEC

SPEC

N

i

N

i

mel

i

H

i

k

W

i

k

W

k

H

(5.28)

5.1.8
Gain factorization

In this block, factorization of the Wiener filter Mel-warped coefficients (or gains),
[image: image101.wmf](

)

k

H

mel

_

2

, is performed to control the aggression of noise reduction in the second stage.

In the first stage, de-noised frame signal energy
[image: image102.wmf](

)

t

E

den

, where t is frame index starting with 1, is calculated by using the de-noised power spectrum
[image: image103.wmf](

)

t

bin

P

den

,

3

 computed by (5.18) as:

[image: image104.wmf]nbSpeechFrame

,
[image: image105.wmf]meanEn

,
[image: image106.wmf]Nest

flagVAD

 and
[image: image107.wmf]hangOver

 are initialized to 0.

[image: image108.wmf](

)

(

)

1

1/2

3

0

,

SPEC

N

denden

bin

EtPbint

-

=

=

å

 (5.29)

In the second stage, the noise energy at the current frame index t is estimated by using the noise power spectrum
[image: image109.wmf](

)

t

bin

P

noise

,

 as:

[image: image110.wmf](

)

(

)

1

1/2

0

,

SPEC

N

noisenoise

bin

EtPbint

-

=

=

å

(5.30)

Then, smoothed SNR is evaluated by using three de-noised frame energies (notice there is two frames delay between the first and the second stage) and noise energy like:

[image: image111.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

3

100

log

3

20

0001

,

0

1

2

10

-

=

´

=

>

´

´

´

-

´

-

=

t

SNR

else

Ratio

t

SNR

then

Ratio

if

t

E

t

E

t

E

t

E

t

E

t

E

Ratio

aver

aver

noise

noise

noise

den

den

den

(5.31)

To decide the degree of aggression of the second stage Wiener filter for each frame, the low SNR level is tracked by using the following logic:

[image: image112.wmf](

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

1

1

1

calculate

10

or

10

1

_

_

_

-

=

´

-

+

-

´

=

<

<

-

-

t

SNR

t

SNR

else

t

SNR

t

λ

t

SNR

t

λ

t

SNR

t

λ

t

t

SNR

t

SNR

if

track

low

track

low

aver

SNR

low_track

SNR

low_track

SNR

track

low

aver

(5.32)

with
[image: image113.wmf]track

low

SNR

_

 initialized to zero. The forgetting factor
[image: image114.wmf](

)

t

λ

SNR

 is calculated by the following logic:

[image: image115.wmf]{

}

(

)

(

)

(

)

{

}

(

)

(

)

99

,

0

95

,

0

1

1

10

=

=

<

-

=

<

t

λ

else

t

λ

t

SNR

t

SNR

if

else

t

t

λ

t

if

SNR

SNR

low_track

aver

SNR

(5.33)

The intention of gain factorization is to apply more aggressive noise reduction to purely noisy frames and less aggressive noise reduction to frames also containing speech. At this point, the current SNR estimation,
[image: image116.wmf](

)

t

SNR

aver

 is compared to the low SNR tracked value,
[image: image117.wmf](

)

t

SNR

track

low

_

, and the Wiener filter gain factorization coefficient
[image: image118.wmf](

)

t

GF

a

 is updated. This is done by the following logic:

[image: image119.wmf](

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

{

}

(

)

1

,

0

1

,

0

3

,

0

1

8

,

0

8

,

0

15

,

0

1

5

,

3

100

_

=

<

-

-

=

=

>

+

-

=

+

<

>

t

t

if

t

t

else

t

t

if

t

t

t

SNR

t

SNR

if

then

t

E

if

GF

GF

GF

GF

GF

GF

GF

GF

track

low

aver

den

a

a

a

a

a

a

a

a

(5.34)

with
[image: image120.wmf](

)

8

,

0

0

=

GF

a

.

The second stage Wiener filter gains are multiplied by
[image: image121.wmf](

)

t

GF

a

 like

[image: image122.wmf](

)

(

)

(

)

(

)

(

)

1

0

,

,

1

,

_

2

_

_

2

+

£

£

´

+

-

=

FB

mel

GF

GF

GF

mel

K

k

t

k

H

t

t

t

k

H

a

a

(5.35)

The coefficient
[image: image123.wmf](

)

t

GF

a

 takes values from 0,1 to 0,8, which means that the aggression of the second stage Wiener filter is reduced to 10 % for speech + noise frames and to 80 % for noise frames.

5.1.9
Mel IDCT

The time-domain impulse response of Wiener filter
[image: image124.wmf](

)

n

h

WF

 is computed from the Mel Wiener filter coefficients
[image: image125.wmf](

)

k

H

mel

_

2

 from clause 5.1.6 (in the second stage,
[image: image126.wmf](

)

k

H

GF

mel

_

_

2

 from equation (5.35)) by using Mel-warped inverse DCT:

[image: image127.wmf](

)

(

)

(

)

1

0

,

,

1

0

_

2

+

£

£

´

=

å

+

=

FB

K

k

mel

mel

WF

K

n

n

k

IDCT

k

H

n

h

FB

(5.36)

where
[image: image128.wmf](

)

n

k

IDCT

mel

,

 are Mel-warped inverse DCT basis computed as follows.

First, central frequencies of each band are computed for
[image: image129.wmf]FB

K

k

£

£

1

 like:

[image: image130.wmf](

)

(

)

(

)

(

)

å

å

-

=

-

=

-

´

´

´

=

1

0

1

0

1

2

,

,

1

SPEC

SPEC

N

i

SPEC

samp

N

i

centr

N

f

i

i

k

W

i

k

W

k

f

(5.37)

where fsamp = 8 000 is sampling frequency. fcentr(0) = 0 and fcentr(KFB + 1) = fsamp / 2. Then, Mel-warped inverse DCT basis are obtained as

[image: image131.wmf](

)

(

)

(

)

1

0

,

1

0

,

2

cos

,

+

£

£

+

£

£

´

÷

÷

ø

ö

ç

ç

è

æ

´

´

´

=

FB

FB

samp

centr

mel

K

n

K

k

k

df

f

k

f

n

n

k

IDCT

p

(5.38)

where
[image: image132.wmf](

)

k

f

centr

 is central frequency corresponding to the Mel FB index k and
[image: image133.wmf](

)

k

df

 is computed like:

[image: image134.wmf](

)

(

)

(

)

FB

samp

centr

centr

K

k

f

k

f

k

f

k

df

£

£

-

-

+

=

1

,

1

1

(5.39)

[image: image135.wmf](

)

(

)

(

)

(

)

(

)

(

)

samp

FB

centr

FB

centr

FB

samp

centr

centr

f

K

f

K

f

K

df

f

f

f

df

-

+

=

+

-

=

1

1

and

0

1

0

The impulse response of Wiener filter is mirrored as:

[image: image136.wmf](

)

(

)

(

)

(

)

(

)

î

í

ì

+

´

£

£

+

-

+

+

´

+

£

£

=

1

2

2

,

1

1

2

1

0

,

_

FB

FB

FB

WF

FB

WF

mirr

WF

K

n

K

n

K

h

K

n

n

h

n

h

(5.40)

5.1.10
Apply filter

The causal impulse response
[image: image137.wmf]_

(,)

WFcaus

hnt

 is obtained from
[image: image138.wmf]_

(,)

WFmirr

hnt

 according to the following relations:

[image: image139.wmf](

)

__

__

(,)(1,),0,,

(,)(1,),1,,21

WFcausWFmirrFBFB

WFcausWFmirrFBFBFB

hnthnKtnK

hnthnKtnKK

=++=

ì

ï

í

=--=+´+

ï

î

L

L

(5.41)

The causal impulse response
[image: image140.wmf]_

(,)

WFcaus

hnt

 is then truncated giving
[image: image141.wmf]_

(,)

WFtrunc

hnt

:

[image: image142.wmf](

)

(

)

__

(,)112,,0,,1

WFtruncWFcausFB

hnthnKFLtnFL

=++--=-

L

(5.42)

where the filter length
[image: image143.wmf]FL

 equals 17.

The truncated impulse response is weighted by a Hanning window:

[image: image144.wmf](

)

__

20,5

(,)0,50,5cos(,),01

WFwWFtrunc

n

hnthntnFL

FL

p

ìü

´´+

æö

ïï

=-´´££-

íý

ç÷

ïï

èø

îþ

(5.43)

Then the input signal [image: image145.wmf]in

s

 is filtered with the filter impulse response [image: image146.wmf]_

(,)

WFw

hnt

 to produce the noise-reduced signal
[image: image147.wmf]nr

s

:

[image: image148.wmf](

)

(

)

(

)

(

)

(

)

12

_

12

()12,01

FL

nrWFwin

iFL

snhiFLsninM

-

=--

=+-´-££-

å

(5.44)

where the filter length
[image: image149.wmf]FL

 equals 17 and the frame shift interval
[image: image150.wmf]M

 equals 80.

5.1.11
Offset compensation

To remove the DC offset, a notch filtering operation is applied to the noise-reduced signal like:

[image: image151.wmf](

)

(

)

(

)

(

)

(

)

1

0

,

1

1024

1

1

1

_

_

-

£

£

-

´

-

+

-

-

=

M

n

n

s

n

s

n

s

n

s

of

nr

nr

nr

of

nr

(5.45)

where
[image: image152.wmf](

)

1

-

nr

s

 and
[image: image153.wmf](

)

1

_

-

of

nr

s

 correspond to the last samples of the previous frame and equal 0 for the first frame, and
[image: image154.wmf]80

=

M

 is the frame shift interval.

5.2
Waveform Processing

[image: image155.wmf]

Smoothed

Energy Contour

Peak

Picking

Waveform

SNR Weighting

waveform

from NR

waveform

to

 CC

Figure 5.3: Main components of SNR-dependent waveform processing

SNR-dependent Waveform Processing (SWP) is applied to the noise reduced waveform that comes out from the Noise Reduction (NR) block. The noise reduction block outputs 80-sample frames that are stored in a 240-sample buffer (from sample 0 to sample 239). The waveform processing block is applied on the window that starts at sample 1 and ends at sample 200. Figure 5.3 describes the basic components of SWP. In the Smoothed Energy Contour block, the instant energy contour is computed for each input frame by using the Teager operator like:

[image: image156.wmf](

)

(

)

(

)

(

)

1

1

,

1

1

_

_

2

_

-

<

£

+

´

-

-

=

in

of

nr

of

nr

of

nr

Teag

N

n

n

s

n

s

n

s

n

E

(5.46a)

[image: image157.wmf](

)

(

)

(

)

(

)

1

0

0

0

_

_

2

_

of

nr

of

nr

of

nr

Teag

s

s

s

E

´

-

=

(5.46b)

and

[image: image158.wmf](

)

(

)

(

)

(

)

1

2

1

1

_

_

2

_

-

´

-

-

-

=

-

in

of

nr

in

of

nr

in

of

nr

in

Teag

N

s

N

s

N

s

N

E

(5.46c)

The energy contour is smoothed by using a simple FIR filter of length 9 like:

[image: image159.wmf](

)

(

)

å

-

=

+

=

4

4

_

9

1

i

Teag

Smooth

Teag

i

n

E

n

E

(5.47)

At the beginning or ending edge of ETeag(n), the ETeag(0) or ETeag(Nin-1) value is repeated, respectively.

In the Peak Picking block, maxima in the smoothed energy contour related to the fundamental frequency are found. First, the global maximum over the entire energy contour
[image: image160.wmf](

)

1

0

,

_

-

£

£

in

Smooth

Teag

N

n

n

E

, is found. Then, maxima on both left and right sides of the global maximum are identified. Each maximum is expected to be between 25 and 80 samples away from its neighbour.

In the block Waveform SNR Weighting, a weighting function is applied to the input frame. Having the number of maxima
[image: image161.wmf]MAX

N

 of the smoothed energy contour
[image: image162.wmf](

)

n

E

Smooth

Taeg

_

 and their positions
[image: image163.wmf](

)

MAX

MAX

MAX

MAX

N

n

n

pos

<

£

0

,

, a weighting function
[image: image164.wmf](

)

n

w

swp

 of length Nin is constructed, which equals 1,0 for n from intervals:

[image: image165.wmf](

)

[

]

(

)

[

]

(

)

(

)

[

]

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

MAX

N

n

n

pos

n

pos

n

pos

n

pos

<

£

-

+

´

+

-

-

0

,

1

8

,

0

4

,

4

and equals 0 otherwise. At the transitions (from 0,0 to 1,0 or from 1,0 to 0,0), the
[image: image166.wmf](

)

n

w

swp

 function has value 0,5.
Finally, the following weighting is applied to the input noise-reduced frame:

[image: image167.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

0

,

1

8

,

0

2

,

1

_

_

-

£

£

´

-

´

+

´

´

=

in

of

nr

swp

of

nr

swp

swp

N

n

n

s

n

w

n

s

n

w

n

s

(5.48)

5.3
Cepstrum Calculation

This block performs cepstrum calculation. Cepstrum calculation is applied on the signal that comes out from the waveform processing block. Figure 5.4 shows main components of the Cepstrum Calculation block.

[image: image168.wmf]

W

FFT

MEL

-

FB

Log

DCT

s

swp_pe

(

n

)

s

swp_w

(

n

)

P

swp

(

bin

)

E

FB

(

k

)

S

FB

(

k

)

 c

(

i

)

PE

s

swp

(

n

)

Figure 5.4: Main components of the cepstrum calculation block

5.3.1
Log energy calculation

For each frame, a log energy parameter is calculated from the de-noised signal as:

[image: image169.wmf](

)

(

)

î

í

ì

³

=

otherwise

ln

if

ln

THRESH

THRESH

swp

swp

E

E

E

E

lnE

(5.49a)

where ETHRESH = exp(-50) and Eswp is computed as:

[image: image170.wmf](

)

(

)

å

-

=

´

=

1

0

in

N

n

swp

swp

swp

n

s

n

s

E

(5.49b)

5.3.2
Pre-emphasis (PE)

A pre-emphasis filter is applied to the output of the waveform processing block
[image: image171.wmf](

)

n

s

swp

 like:

[image: image172.wmf](

)

(

)

(

)

1

9

,

0

_

-

´

-

=

n

s

n

s

n

s

swp

swp

pe

swp

(5.50)

where
[image: image173.wmf](

)

1

_

-

of

swp

s

 is the last sample from the previous frame and equals 0 for the first frame.

5.3.3
Windowing (W)

A Hamming window of length Nin =200 is applied to the output of the pre-emphasis block:

[image: image174.wmf](

)

(

)

(

)

__

20,5

0,540,46cos, 01

swpwswppein

in

n

snsnnN

N

p

éù

æ´+ö

=-´´££-

êú

ç÷

êú

èø

ëû

(5.51)

5.3.4
Fourier transform (FFT) and power spectrum estimation

Each frame of Nin samples is zero padded to form an extended frame of 256 samples. An FFT of length NFFT = 256 is applied to compute the complex spectrum
[image: image175.wmf](

)

bin

X

swp

 of the de-noised signal:

[image: image176.wmf](

)

(

)

{

}

n

s

FFT

bin

X

w

swp

swp

_

=

(5.52)

Corresponding power spectrum
[image: image177.wmf](

)

bin

P

swp

 is calculated as:

[image: image178.wmf](

)

(

)

2

0

,

2

FFT

swp

swp

N

bin

bin

X

bin

P

£

£

=

(5.53)

5.3.5
Mel Filtering (MEL-FB)

Purpose
The leading idea of the MEL-FB module is to recombine the information contained in the frequency-dependent representation (FFT) by regrouping it in a Mel-band representation.

The FFT-bins are linearly recombined for each Mel-band. The useful frequency band lies between fstart and fsamp / 2. This band is divided into KFB channels equidistant in the Mel frequency domain. Each channel has a triangular-shaped frequency window. Consecutive channels are half-overlapping.

Frequencies and index

In the FFT calculation, index value bin = NFFT corresponds to the frequency fsamp. The formula that accounts for the index calculation of frequencies is then:

[image: image179.wmf]{

}

ï

þ

ï

ý

ü

ï

î

ï

í

ì

´

=

FFT

samp

N

f

f

round

f

index

(5.54)

where
[image: image180.wmf]{

}

×

round

 stands for rounding towards the nearest integer.

Mel-function

The Mel-function is the operator which rescales the frequency domain.

[image: image181.wmf]{

}

(

)

10

ln

 with

,

1

ln

1

log

10

Λ

λ

μ

x

λ

μ

x

Λ

x

Mel

=

÷

÷

ø

ö

ç

ç

è

æ

+

´

=

÷

÷

ø

ö

ç

ç

è

æ

+

´

=

(5.55a)

The inverse Mel-function is:

[image: image182.wmf]{

}

÷

÷

ø

ö

ç

ç

è

æ

-

÷

ø

ö

ç

è

æ

´

=

-

1

exp

1

λ

y

μ

y

Mel

(5.55b)

Central frequencies of the filters
The central frequencies of the filters are calculated from the Mel-function, in order to have an equidistant distribution of the bands in the Mel domain.

[image: image183.wmf]

 0 f

start

 f

centr

(k)

 f

centr

(k+1)

 f

samp

/2

Frequencies

Mel

Figure 5.5: Linear to Mel frequency mapping

[image: image184.wmf](

)

{

}

{

}

{

}

FB

FB

start

samp

start

centr

K

k

K

f

Mel

f

Mel

k

f

Mel

Mel

k

f

£

£

þ

ý

ü

î

í

ì

+

-

´

+

=

-

1

,

1

2

1

(5.56)

In our proposal, parameters are chosen as follows:

[image: image185.wmf]23

127

1

595

2

700

8

64

=

=

=

=

=

=

FB

samp

start

K

λ

,

Λ

,

μ

kHz

f

,

Hz

f

In terms of FFT index, the central frequencies of the filters correspond to:

[image: image186.wmf](

)

(

)

{

}

(

)

FB

FFT

samp

centr

centr

centr

K

k

N

f

k

f

round

k

f

index

k

bin

£

£

ï

þ

ï

ý

ü

ï

î

ï

í

ì

´

=

=

1

,

(5.57)

For the k-th Mel-band, the frequency window is divided into two parts . The former part (i.e. frequencies
[image: image187.wmf](

)

(

)

k

f

f

k

f

centr

centr

<

<

-

1

) accounts for increasing weights, whereas the latter part (i.e. frequencies
[image: image188.wmf](

)

(

)

1

+

<

<

k

f

f

k

f

centr

centr

) accounts for decreasing weights. Each frequency window is applied to the de-noised power spectrum
[image: image189.wmf](

)

bin

P

swp

 computed by (5.53). Frequency window weights for each band are calculated depending on the position of each frequency bin with respect to the corresponding band central frequency like:

if the bin i is from
[image: image190.wmf](

)

(

)

k

bin

i

k

bin

centr

centr

£

£

-

1

, then:

[image: image191.wmf](

)

(

)

(

)

(

)

FB

centr

centr

centr

left

K

k

k

bin

k

bin

k

bin

i

k

i

W

£

£

+

-

-

+

-

-

=

1

for

,

1

1

1

1

,

(5.58)

if the bin i is from
[image: image192.wmf](

)

(

)

1

+

£

<

k

bin

i

k

bin

centr

centr

, then:

[image: image193.wmf](

)

(

)

(

)

(

)

FB

centr

centr

centr

right

K

k

k

bin

k

bin

k

bin

i

k

i

W

£

£

+

-

+

-

-

=

1

for

,

1

1

1

,

(5.59)

For other situations, weights equal zero.

Output of MEL-FB
The output of each Mel filter is the weighted sum of the de-noised power spectrum values
[image: image194.wmf](

)

bin

P

swp

 from equation (5.53) in each band. Triangular, half-overlapped windowing is used as follows:

[image: image195.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

FB

k

bin

k

bin

i

swp

right

k

bin

k

bin

i

swp

left

FB

K

k

i

P

k

i

W

i

P

k

i

W

k

E

centr

centr

centr

centr

£

£

´

+

´

=

å

å

+

+

=

-

=

1

for

,

,

,

1

1

1

(5.60)

5.3.6
Non-linear transformation (Log)

The output of Mel filtering is subjected to a logarithm function (natural logarithm).

[image: image196.wmf](

)

(

)

(

)

FB

FB

FB

K

k

k

E

k

S

£

£

=

1

for

,

ln

(5.61)

A flooring is applied in such a way that the log filter bank outputs cannot be smaller than -10.

5.3.7
Cepstral coefficients (DCT)

13 cepstral coefficients are calculated from the output of the Non-linear transformation block by applying a DCT.

[image: image197.wmf](

)

(

)

(

)

12

0

,

5

,

0

cos

1

£

£

÷

÷

ø

ö

ç

ç

è

æ

-

´

´

´

=

å

=

i

k

K

i

k

S

i

c

FB

K

k

FB

FB

p

(5.62)

Notice that in the case of 16 kHz input signal, number of FB bands KFB is increased by 3 (see clause 5.5 for more details).

5.3.8
Cepstrum calculation output

The final feature vector consists in 14 coefficients: the log‑energy coefficient lnE and the 13 cepstral coefficients c(0) to c(12).

The
[image: image198.wmf](

)

0

c

 coefficient is often redundant when the log‑energy coefficient is used. However, the feature extraction algorithm is defined here for both energy and
[image: image199.wmf](

)

0

c

. Depending on the application, either the coefficient
[image: image200.wmf](

)

0

c

, or the log‑energy coefficient, or a combination of
[image: image201.wmf](

)

0

c

 and
[image: image202.wmf]lnE

may be used.

5.4
Blind equalization

12 cepstral coefficients (
[image: image203.wmf](

)

1

c

,…,
[image: image204.wmf](

)

12

c

) are equalized according to the following LMS algorithm:

[image: image205.wmf](

)

(

)

1,0,ln21164,

weightingParMinMaxE

=-

(5.63)

[image: image206.wmf]0,0087890625,

stepSizeweightingPar

=´

(5.64)

[image: image207.wmf](

)

(

)

(

)

,112

eq

cicibiasii

=-££

(5.65)

[image: image208.wmf](

)

(

)

(

)

(

)

,112

eq

biasistepSizeciRefCepii

+=´-££

(5.66)

where lnE is the log energy of the current frame as computed by (5.49a) and the values of
[image: image209.wmf](

)

biasi

 and
[image: image210.wmf](

)

RefCepi

 at the initialization stage are the following:

[image: image211.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

0,0,112,

16,618909,20,198269,30,740308

40,055132,50,227086,60,144280,

70,112451,80,146940,90,327466,

100,134571,1

biasii

RefCepRefCepRefCep

RefCepRefCepRefCep

RefCepRefCepRefCep

RefCepRefCep

=££

=-==-

==-=

=-=-=-

=

(

)

(

)

10,027884,120,114905,

RefCep

==-

(5.67)

The reference cepstrum corresponds to the cepstrum of a flat spectrum.

5.5
Extension to 11 kHz and 16 kHz sampling frequencies

For the 11 kHz sampling frequency, we perform downsampling from 11 kHz to 8 kHz and all front-end processing is the same as in the case of the 8 kHz sampling frequency.

For the 16 kHz sampling frequency, we extended the 8 kHz front-end as shown on figure 5.6. In this approach, the 8 kHz feature extraction part processes the signal from the Low-Frequency Band (LFB, 0 kHz to 4 kHz) and it is re‑used without significant changes. The signal from the High Frequency Band (HFB, 4 kHz to 8 kHz) is processed separately and the high-frequency information is added to the low-frequency information just before transforming the log FB energies to cepstral coefficients. Additionally, the whole-band log energy parameter lnE is also computed by using both the low-frequency and high-frequency information.

5.5.1
FFT-based spectrum estimation

As it can be observed from figure 5.6, the input signal,
[image: image212.wmf](

)

n

s

in

16

_

, is first filtered by a couple of Quadrature-Mirror Filters (QMF),
[image: image213.wmf](

)

n

h

QMF

LFB

_

 and
[image: image214.wmf](

)

n

h

QMF

HFB

_

, to get both the LFB and HFB signal portions:

[image: image215.wmf](

)

(

)

(

)

n

h

n

s

n

s

QMF

LFB

in

LFB

_

16

_

´

=

,
[image: image216.wmf](

)

(

)

(

)

n

h

n

s

n

s

QMF

HFB

in

HFB

_

16

_

´

=

(5.68)

[image: image217.emf]QMF

HP

DEC by

2 and SI

QMF

LP

FFT

based SE

Mel FB

DEC by 2

Noise

Reduction

Waveform

Processing

Cepstrum

Calculation

*

MFCC

features

16 kHz

signal

8 kHz Feature Extraction

8kHz SE

HP

Coding

HP

Decoding

code

Merging SS and

Decoded Bands

decoded bands

SS bands

FB energies

VADNestH

and SS

Blind

Equalization

8kHz SE

* Cepstrum Calculation block is slightly modified for 16 kHz

Figure 5.6: Extension of 8 kHz front-end for 16 kHz sampling frequency

The LFB QMF is a Finite Impulse Response (FIR) filter of length 118 from the ITU-T standard software tools library for downsampling. The HFB QMF is an FIR filter obtained from the LFB QMF by multiplying each sample of its impulse response by (-1)n, where n is sample index. Both LFB and HFB signals are decimated by factor 2 by choosing only every second sample from the corresponding filtered signal. Additionally, the HFB signal is frequency-inverted (spectrum inversion, SI on figure 5.6) by multiplying the HFB signal sequence by the sequence (-1)n, where n is the sample index. The LFB signal enters the Noise Reduction part of Feature Extraction and it is processed up to the cepstral coefficient computation in the same way as in the case of 8 kHz sampling frequency.

By downsampling and spectral-inversion, the HFB signal is shifted to the frequency range 0 kHz to 4 kHz. This shifted HFB signal
[image: image218.wmf](

)

n

s

HFB

SI

_

 is further processed on frame-by-frame basis, where the frame length and frame shift are synchronized with the LFB processing and are the same as in the case of 8 kHz input signal (i.e. 25ms/10ms). Each frame of length Nin = 200 is windowed by a Hamming window:

[image: image219.wmf](

)

(

)

(

)

1

0

,

_

_

-

£

£

´

=

in

Hamm

HFB

SI

HFB

W

N

n

n

w

n

s

n

s

(5.69)

and zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT = 256 is the FFT length:

[image: image220.wmf](

)

(

)

î

í

ì

-

£

£

-

£

£

=

1

,

0

1

0

,

_

_

_

FFT

in

in

HFB

W

FFT

HFB

W

N

n

N

N

n

n

s

n

s

(5.70)

A smoothed HFB power spectrum,
[image: image221.wmf](

)

bin

P

HFB

Smooth

_

, is estimated by using an FFT followed by power of 2 like:

[image: image222.wmf](

)

(

)

{

}

n

s

FFT

bin

X

FFT

HFB

W

HFB

_

_

=

(5.71)

[image: image223.wmf](

)

(

)

2

0

,

2

FFT

HFB

HFB

N

bin

bin

X

bin

P

£

£

=

(5.72)

[image: image224.wmf](

)

(

)

(

)

4

0

,

2

1

2

2

_

FFT

HFB

HFB

HFB

Smooth

N

bin

bin

P

bin

P

bin

P

<

£

+

´

+

´

=

(5.73)

[image: image225.wmf](

)

(

)

2

4

_

FFT

HFB

FFT

HFB

Smooth

N

P

N

P

=

By the smoothing operation, the length of the power spectrum is reduced to
[image: image226.wmf]1

4

+

=

FFT

SPEC

N

N

5.5.2
Mel Filter-Bank

The entire high-frequency band is divided into KHFB = 3 Filter-Bank (FB) bands, which are equidistantly distributed in the Mel-frequency domain. Energies within the FB bands,
[image: image227.wmf](

)

k

E

HFB

, are estimated by using triangular-shaped, half‑overlapped frequency windows applied on the HFB power spectrum. To obtain the central frequencies of FB bands in terms of FFT bin indices,
[image: image228.wmf](

)

k

bin

centr

, we used the following relationship between the linear and mel frequency scales:

[image: image229.wmf]{

}

(

)

700

1

log

595

2

10

lin

lin

mel

f

f

MEL

f

+

´

=

=

(5.74)

Then, the central frequency of the k-th band, fcentr(k), is calculated as:

[image: image230.wmf](

)

(

)

HFB

k

f

centr

K

k

k

f

mel

£

£

÷

÷

ø

ö

ç

ç

è

æ

-

´

=

1

,

1

10

700

595

2

(5.75)

with:

[image: image231.wmf](

)

{

}

{

}

{

}

1

2

_

_

_

+

-

´

+

=

HFB

start

lin

samp

lin

start

lin

mel

K

f

MEL

f

MEL

k

f

MEL

k

f

(5.76)

where
[image: image232.wmf]80

_

=

start

lin

f

 is the starting frequency and
[image: image233.wmf]000

8

_

=

samp

lin

f

 is the sampling frequency. The corresponding FFT bin index is obtained as:

[image: image234.wmf](

)

(

)

÷

÷

ø

ö

ç

ç

è

æ

-

´

´

=

)

1

(

2

_

SPEC

samp

lin

centr

centr

N

f

k

f

round

k

bin

(5.77)

Having the central frequencies,
[image: image235.wmf](

)

k

bin

centr

, the energy within the k-th FB band,
[image: image236.wmf](

)

k

E

HFB

, is computed as:

[image: image237.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

_

11

1

_

1

1

1

 1

1

centr

centr

centr

centr

bink

centr

HFBSmoothHFB

ibink

centrcentr

bink

centr

SmoothHFB

ibink

centrcentr

ibink

EkPi

binkbink

ibink

Pi

binkbink

=-+

+

=+

--

=´+

--

æö

-

+-´

ç÷

ç÷

+-

èø

å

å

(5.78)

where
[image: image238.wmf]HFB

K

k

£

£

1

,
[image: image239.wmf](

)

0

centr

bin

 and
[image: image240.wmf](

)

1

+

HFB

centr

K

bin

 are the FFT indices corresponding to the starting frequency
[image: image241.wmf]start

lin

f

_

, and half of the sampling frequency
[image: image242.wmf]2

_

samp

lin

f

.
5.5.3
High-frequency band coding and decoding

Before coding, the natural logarithm is applied to the HFB mel FB energies
[image: image243.wmf](

)

k

E

HFB

 as:

[image: image244.wmf](

)

(

)

(

)

HFB

HFB

HFB

K

k

k

E

k

S

£

£

=

1

,

ln

(5.79)

with a flooring avoiding values of SHFB(k) lower than -10. The HFB log FB energies,
[image: image245.wmf](

)

k

S

HFB

, are coded and decoded by using three auxiliary bands computed from 2 kHz to 4 kHz frequency interval of LFB power spectrum. For coding, the auxiliary bands are calculated before applying both Noise Reduction (NR) and waveform processing (SWP) to the LFB signal. For decoding, the auxiliary bands are calculated after applying both NR and SWP to the LFB signal. Auxiliary bands are approximately logarithmically spaced in the given frequency interval.

The three auxiliary log FB energies for coding are computed from the input signal power spectrum
[image: image246.wmf](

)

bin

P

in

,
[image: image247.wmf]SPEC

N

bin

<

£

0

, calculated in the first stage of Noise Reduction block (see equation (5.6) in clause 5.1.2) as:

[image: image248.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

38

33

_

ln

1

bin

in

aux

LFB

bin

P

S

,
[image: image249.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

48

39

_

ln

2

bin

in

aux

LFB

bin

P

S

 and
(5.80)

[image: image250.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

64

49

_

ln

3

bin

in

aux

LFB

bin

P

S

with flooring that avoids values of
[image: image251.wmf](

)

k

S

aux

LFB

_

 lower than -10. Then, coding is performed as:

[image: image252.wmf](

)

(

)

(

)

HFB

HFB

aux

LFB

K

l

k

l

S

k

S

l

k

Code

£

£

-

=

,

1

,

,

_

(5.81)

The three auxiliary bands for decoding are computed from the de-noised power spectrum
[image: image253.wmf](

)

bin

P

swp

,
[image: image254.wmf]2

0

FFT

N

bin

£

£

, calculated in the Cepstrum Calculation block (see clause 5.3.5) as:

[image: image255.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

76

66

_

_

2

1

ln

1

bin

swp

aux

LFB

swp

bin

P

S

,
[image: image256.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

96

77

_

_

2

1

ln

2

bin

swp

aux

LFB

swp

bin

P

S

, and
(5.82)

[image: image257.wmf](

)

(

)

÷

ø

ö

ç

è

æ

=

å

=

128

97

_

_

2

1

ln

3

bin

swp

aux

LFB

swp

bin

P

S

with flooring that avoids values of
[image: image258.wmf](

)

k

S

aux

LFB

swp

_

_

 lower than -10. The decoded HFB bands,
[image: image259.wmf](

)

k

S

HFB

code

_

, are obtained by using the code
[image: image260.wmf](

)

l

k

Code

,

 and the three de-noised auxiliary LFB log FB energies
[image: image261.wmf](

)

k

S

aux

LFB

swp

_

_

 like:

[image: image262.wmf](

)

(

)

(

)

(

)

(

)

HFB

K

l

aux

LFB

swp

code

HFB

code

K

k

k

l

Code

l

S

l

w

k

S

HFB

£

£

-

=

å

=

1

,

,

1

_

_

_

(5.83)

where
[image: image263.wmf](

)

l

w

code

 is a frequency-dependent weighting with:

[image: image264.wmf](

)

1

1

=

å

=

HFB

K

l

code

l

w

(5.84)

In the current implementation, frequency weights are
[image: image265.wmf](

)

(

)

(

)

7

,

0

3

,

2

,

0

2

,

1

,

0

1

=

=

=

code

code

code

w

w

w

5.5.4
VAD for noise estimation and spectral subtraction in high-frequency bands

A simple, energy-based Voice Activity Detector for Noise estimation (VADNestH) is designed for noise estimation in the HFB signal. A forgetting factor for a) updating the noise estimation and b) tracking the low log energy level is computed for each frame t according to the logic:

[image: image266.wmf]{

}

(

)

(

)

99

,

0

1

1

100

=

-

=

<

t

λ

else

t

t

λ

t

if

NSE

NSE

(5.85)

The low log energy level is tracked by using the following logic:

[image: image267.wmf](

)

(

)

(

)

[

]

[

]

{

}

{

}

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

t

E

t

E

t

E

else

t

E

t

E

t

E

t

E

t

E

if

else

t

E

t

λ

t

E

t

λ

t

E

t

if

t

t

E

t

E

if

track

low

track

low

track

low

track

low

track

low

NSE

track

low

NSE

track

low

track

low

log

_

log_

_

log_

log

_

log_

_

log_

_

log_

log

log

_

log_

_

log_

_

log_

log

995

,

0

1

1

995

,

0

98

,

0

1

1

98

,

0

1

1

1

10

10

or

2

,

1

1

´

-

+

-

´

=

´

-

+

-

´

=

-

<

´

-

+

-

´

=

<

<

<

-

-

(5.86)

where
[image: image268.wmf]track

low

E

_

log_

 is initialized to 0 and the log energy
[image: image269.wmf](

)

t

E

log

 is computed like:

[image: image270.wmf](

)

(

)

å

=

=

HFB

K

k

HFB

k

t

E

t

E

1

,

(5.87a)

[image: image271.wmf](

)

(

)

(

)

(

)

(

)

(

)

î

í

ì

£

>

=

001

,

0

for

001

,

0

ln

001

,

0

for

ln

log

t

E

t

E

t

E

t

E

(5.87b)

VADNestH flag
[image: image272.wmf](

)

t

flagVAD

NestH

 is updated by using the current frame log energy
[image: image273.wmf](

)

t

E

log

 and the low log energy level
[image: image274.wmf](

)

t

E

track

low

_

log_

 as follows:

[image: image275.wmf](

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

{

}

(

)

(

)

(

)

{

}

(

)

(

)

(

)

(

)

0

1

1

1

0

!

0

5

4

1

1

1

1

2

,

2

_

log_

log

=

=

-

=

+

=

=

=

>

-

+

-

=

=

>

-

t

flagVAD

else

t

flagVAD

t

hangOver

t

hangOver

t

hangOver

if

t

ame

nbSpeechFr

t

hangOver

t

ame

nbSpeechFr

if

else

t

ame

nbSpeechFr

t

ame

nbSpeechFr

t

flagVAD

t

E

t

E

if

NestH

NestH

NestH

track

low

(5.88)

VADNestH flag is used for estimating the HFB noise spectrum in terms of FB energies like:

[image: image276.wmf](

)

{

}

(

)

(

)

(

)

(

)

(

)

(

)

,

K

k

,

k,t

N

t

λ

k,t

E

t

λ

k,t

N

t

flagVAD

if

HFB

HFB

NSE

HFB

NSE

HFB

NestH

£

£

-

´

-

+

´

=

=

1

1

ˆ

1

ˆ

0

(5.89)

where t is the frame index and the noise FB energy vector is initialized to a zero vector.

Spectral subtraction is performed like:

[image: image277.wmf](

)

(

)

(

)

(

)

{

}

HFB

HFB

HFB

HFB

HFB

SS

K

k

k

E

k

N

k

E

k

E

£

£

´

´

-

=

1

,

,

ˆ

max

_

b

a

(5.90)

where = 1,5 and = 0,1 were set empirically.

5.5.5
Merging spectral subtraction bands with decoded bands

In the Cepstrum Calculation block, log FB energies from both LFB and HFB are joined and cepstral coefficients representing the entire frequency band are calculated. It is obvious that the noise reduction performed on the LFB signal is more complex than the Spectral Subtraction (SS) algorithm applied on HFB FB bands, and thus FB energies resulting from these two processes are not entirely compatible. To reduce the differences between the FB energies from the HFB and LFB, the SS HFB log FB energies are used in combination with the HFB log FB energies resulting from the coding scheme described in clause 5.5.3.

First, rough pre-emphasis correction and log non-linearity are applied on HFB energies resulting from spectral subtraction like:

[image: image278.wmf](

)

(

)

(

)

(

)

FB

HFB

SS

pre

HFB

SS

K

k

k

E

a

k

S

£

£

´

+

=

1

1

ln

_

_

(5.91)

where
[image: image279.wmf]9

,

0

=

pre

a

 is pre-emphasis constant. The HFB log FB energies
[image: image280.wmf](

)

k

S

HFB

 are then obtained by combining both
[image: image281.wmf](

)

k

S

HFB

SS

_

 and
[image: image282.wmf](

)

k

S

HFB

code

_

, like:

[image: image283.wmf](

)

(

)

(

)

(

)

HFB

SS_HFB

merge

code_HFB

merge

HFB

K

k

,

k

S

λ

k

S

λ

k

S

£

£

´

-

+

´

=

1

1

(5.92)

where
[image: image284.wmf]7

,

0

=

merge

λ

 is an empirically set constant.

For each frame, a cepstrum is calculated from a vector of log FB energies that is formed by appending the three HFB log FB energies to the LFB log FB energies. Before joining the LFB and HFB log FB energies, the transition between the last LFB band
[image: image285.wmf](

)

FB

FB

K

S

 (computed as in clause 5.3.7) and the first HFB
[image: image286.wmf](

)

1

HFB

S

 is smoothed by modifying the two transition log energies like:

[image: image287.wmf](

)

(

)

aver

FB

FB

FB

FB

S

K

S

K

S

´

+

´

=

¢

4

,

0

6

,

0

(5.93a)

and

[image: image288.wmf](

)

(

)

aver

HFB

HFB

S

S

S

´

+

´

=

¢

4

,

0

1

6

,

0

1

(5.93b)

where

[image: image289.wmf](

)

(

)

2

1

HFB

FB

FB

aver

S

K

S

S

+

=

(5.93c)

Finally, the log FB energy vector for cepstrum calculation
[image: image290.wmf](

)

HFB

FB

cep

K

K

k

k

S

+

£

£

1

,

, is formed like:

[image: image291.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

{

}

3

,

2

,

1

,

,

1

,...,

2

,

1

HFB

HFB

HFB

FB

FB

FB

FB

FB

FB

cep

S

S

S

K

S

K

S

S

S

k

S

¢

¢

-

=

(5.94)

5.5.6
Log energy calculation for 16 kHz

Log energy parameter is computed by using information from both the LFB and HFB. We used the HFB log FB energies,
[image: image292.wmf](

)

k

S

HFB

, to modify the log energy parameter. First, we computed the HFB energy
[image: image293.wmf]HFB

E

 by using pre‑emphasis corrected, de-noised HFB log FB energies like:

[image: image294.wmf](

)

(

)

å

=

-

=

HFB

K

k

HFB

HFB

corr

preem

k

S

E

1

_

exp

(5.95)

where:

[image: image295.wmf](

)

pre

a

corr

preem

+

=

1

ln

_

(5.96)

and apre = 0,9 is the pre-emphasis constant. Then, the energy parameter is computed as the natural logarithm of the sum of the de-noised LFB energy
[image: image296.wmf]swp

E

 and the de-noised HFB energy
[image: image297.wmf]HFB

E

:

[image: image298.wmf](

)

HFB

swp

E

E

lnE

+

=

ln

(5.97)

5.6
Pitch and class estimation

As indicated in figure 4.1, estimation of pitch and voicing class parameters is embedded inside the noise reduction block (clause 5.1). A block diagram for pitch and class estimation is shown in figure 5.7. The "spectrum estimation" block at the top-left corner of figure 5.7 represents the block with the same name in figure 5.1. The input to this block, viz., sin(n), and one of the outputs from this block, viz., X(bin) (Eq. 5.4), form the inputs to the estimation of the Pitch (P) and Voicing Class (VC) parameters.

[image: image299.emf]

SEC

VADVC

PITCH

CLS

PP

LBND

Spectrum

Estimation

s

in

(n)

MF

P

VC

Reset of the Noise Reduction blocks

CLS
CLaSsification

LBND
Low-Band Noise Detection

MF
Mel-Filtering

PITCH
PITCH estimation

PP
Pre-Processing for pitch and class estimation

SEC
Spectrum and Energy Computation

VADVC
Voice Activity Detection for Voicing Classification

Figure 5.7: Block scheme for pitch and class estimation

5.6.1
Spectrum and energy computation

The input to the SEC block is X(bin), bin = 0, 1,…, NFFT -1, where X(bin) represents the complex short-time Fourier Transform of sin(n). As a first step, X(0) is set to 0 to remove any DC offset. Then, the following quantities are computed: power spectrum pbin, pre-emphasized power spectrum pbinpe, frame energy E, logarithm of frame energy logE, and average spectral value sw(1).

The power spectrum is computed as

[image: image300.wmf]2

2

))

(

Im(

))

(

Re(

k

X

k

X

pbin

k

+

=

The pre-emphasized power spectrum is computed as:

[image: image301.wmf](

)

2

2

,

)

128

/

sin(

)

128

/

cos(

97

,

0

1

p

p

k

k

pbin

pbin

k

k

pe

+

´

-

´

=

The frame energy is computed as:

[image: image302.wmf]2

1

0

1

0

2

)

(

1

)

(

÷

ø

ö

ç

è

æ

-

=

å

å

-

=

-

=

N

n

in

N

n

in

n

s

N

n

s

E

The log-energy is computed as logE = log(E). A floor is used in the energy calculation, which makes sure that the result for logE is not less than -50. The floor value for E (lower limit for the argument of ln) is approximately 2e-22.

The average spectral value is computed as:

[image: image303.wmf]å

-

=

=

1

0

)

(

1

)

1

(

FFT

N

k

FFT

w

k

X

N

s

The power spectrum pbin is fed into the MF block, mel-filtered as described in clause 5.3.5, and the mel-filter outputs fbanki, i = 1, …, 23 are fed into the VADVC block. The pre-emphasized power spectrum pbinpe is fed into the LBND block. The frame energy E is fed into the LBND block and the CLS block. The short-time Fourier transform X(bin), the power spectrum pbin, the log-energy logE, and the average spectral value Sw(1) are fed into the PITCH block. Furthermore, the input speech signal Sin(n) is fed into the PP block and the CLS block.

5.6.2
Voice Activity Detection for Voicing Classification (VADVC)

The input to the Voice Activity Detection (VAD) block is the mel-filter output fbanki, i = 1, …, 23. The outputs of the VAD block are the vad_flag and hangover_flag. The vad_flag, if TRUE, indicates that the current frame is a speech frame. The hangover_flag, if TRUE, indicates that the current frame is likely to be a speech frame because it follows a speech segment. The operation of the VAD block is described below with reference to figure 5.8.

In the following, we denote the mel-filter output for the mth frame and ith channel by F(m,i), and when the specific channel is not important, the mel-filter output for the mth frame by F(m). Using these values as input, the channel energy estimator provides a smoothed estimate of the channel energies as follows:

[image: image304.wmf]{

}

))

,

(

))(

(

1

(

)

,

1

(

)

(

,

max

)

,

(

min

i

m

F

m

i

m

E

m

E

i

m

E

i

ch

ch

ch

ch

l

a

-

+

-

a

=

; i = 1, 2, …, 23
(5.98)

where Ech(m,i) is the smoothed channel energy estimate for the mth frame and the ith channel, Emin is the minimum allowable channel energy, {i, i = 1, 2, …, 23} are the correction factors to compensate for the effect of the pre‑emphasis filter and the varying widths of the triangular weighting windows used in mel-filtering, and ch(m) is the channel energy smoothing factor defined as:

[image: image305.wmf]î

í

ì

>

=

=

1

;

45

,

0

1

;

00

,

0

)

(

m

m

m

ch

a

(5.99)

The minimum channel energy Emin is 5 000 for 8 kHz, 6 400 for 11 kHz, and 10 000 for 16 kHz sampling frequency respectively. he value of the correction factor i is given by the ith value in the 23-element table: {0,3333, 0,3333, 0,2857, 0,2857, 0,2857, 0,2500, 0,2500, 0,2222, 0,2000, 0,2000, 0,2000, 0,1818, 0,1667, 0,1538, 0,1429, 0,1429, 0,1333, 0,1176, 0,1111, 0,1111, 0,1000, 0,0909, 0,0870}.

From the channel energy estimate, the peak-to-average ratio for the current frame m, denoted by P2A(m) is estimated at the peak-to-average ratio estimator as follows:

[image: image306.wmf]÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

=

å

=

=

23

1

23

5

10

)

,

(

)

23

/

1

(

)

)

,

(

max(

log

10

)

(

2

i

ch

i

ch

i

m

E

i

m

E

m

A

P

(5.100)

Similar to the channel energy estimate, the channel noise energy estimate (defined below) is initialized as follows:

if ((m (INIT_FRAMES) OR (fupdate_flag == TRUE))

{

if (P2A(m) < PEAK_TO_AVE_THLD)

{

[image: image307.wmf];

23

1

,

_

2

);

,

(

3

,

0

)

,

1

(

7

,

0

;

23

1

,

1

);

,

(

)

,

(

£

£

£

£

+

-

£

£

=

î

í

ì

=

i

FRAMES

INIT

m

i

m

E

i

m

E

i

m

i

m

E

i

m

E

ch

n

ch

n

}

else

{

[image: image308.wmf];

23

1

;

)

,

(

min

£

£

=

i

E

i

m

E

n

}

}
(5.101)

where En(m,i) is the smoothed noise energy estimate for the mth frame and the ith channel, INIT_FRAMES is the number of initial frames which are assumed to be noise-only frames, and fupdate_flag is the forced update flag defined later. The value of INIT_FRAMES = 10, and that of PEAK_TO_AVE_THLD = 10.0. Initially, fupdate_flag is set to FALSE.

[image: image309.emf]P2A(m)

To 205, 206,

and 208

To 208

To 208

UPDATE_FLAG

FUPDATE_FLAG

q

(m)

E

ch

(m)

E

n

(m)

NOISE

ENERGY

SMOOTHER

NOISE

ENERGY

ESTIMATE

STORAGE

SPECTRAL

DEVIATION

ESTIMATOR

UPDATE

DECISION

DETERMINER

VOICE METRIC

CALCULATOR

VOICE

ACTIVITY

DETERMINER

CHANNEL

ENERGY

ESTIMATOR

F(m)

E

ch

(m)

E

n

(m)

CHANNEL SNR

ESTIMATOR

SIGNAL SNR

ESTIMATOR

PEAK TO

AVERAGE

RATIO

ESTIMATOR

201

205

202

203

204

206

207

208

209

210

SNR

q

(m)

E

n

(m+1)

E

(m)

V(m)

vad_flag

hangover_flag

Figure 5.8: Block diagram of the voice activity detection (VADVC) algorithm

The channel energy estimate Ech(m) and the channel noise energy estimate En(m) are used to estimate the quantized channel signal-to-noise ratio (SNR) indices at the channel SNR estimator as:

[image: image310.wmf]23

1

));

)

375

,

0

)

,

(

)

,

(

log

10

(

round

,

89

min(

,

0

max(

)

,

(

10

£

£

÷

÷

ø

ö

ç

ç

è

æ

=

i

i

m

E

i

m

E

i

m

n

ch

q

s

(5.102)

where the values {q(m, i), i = 1, 2, …, 23}are constrained to be between 0 and 89 both inclusive.

From the channel SNR estimate q(m) for the current frame, the voice metric V(m) for the current frame is computed at the voice metric calculator as the sum:

[image: image311.wmf]å

=

=

23

1

))

(

(

)

(

i

q

i

v

m

V

s

(5.103)

where v(k) is the kth value of the 90-element voice metric table v defined as: v = {1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,
5,5,5,6,6,7,7,7,8,8,9,9,10,10,11,12,12,13,13,14,15,15,16,17,17,18,19,20,20,21,22,23,24,24,25,26,27,28,28,29,30,31,32,33,34,35,36,37,37,38,39,40,41,42,43,44,45,46,47,48,49,50,50,50,50,50,50,50,50,50,50}.

The channel energy estimate Ech(m) is also used as input to the spectral deviation estimator, which estimates the spectral deviation E(m) for the current frame as follows. First, the log energy spectrum is estimated as:

[image: image312.wmf]))

,

(

(

log

10

)

,

(

10

i

m

E

i

m

E

ch

dB

=

; i = 1, 2, …, 23
(5.104)

Next, the spectral deviation E(m) is estimated as the sum of the absolute difference between the current log energy spectrum and an average long-term log energy spectrum denoted by
[image: image313.wmf]dB

E

(m), that is:

[image: image314.wmf]å

=

-

=

D

23

1

)

,

(

)

,

(

)

(

i

dB

dB

E

i

m

E

i

m

E

m

(5.105)

The average long-term log energy spectrum is initialized as follows:

if ((m (INIT_FRAMES) OR (fupdate_flag == TRUE))

[image: image315.wmf]23

1

);

,

(

)

,

(

£

£

=

i

i

m

E

i

m

E

dB

dB

(5.106)

The average long-term log energy spectrum is updated as follows:

[image: image316.wmf]î

í

ì

£

+

>

+

=

+

)

(

_

)

(

);

,

(

3

,

0

)

,

(

7

,

0

)

(

_

)

(

);

,

(

1

,

0

)

,

(

9

,

0

)

,

1

(

m

THLD

SIG

m

V

i

m

E

i

m

E

m

THLD

SIG

m

V

i

m

E

i

m

E

i

m

E

dB

dB

dB

dB

dB

(5.107)

where the parameter SIG_THLD(m) depends on the quantized signal SNR described next. The initial value of SIG_THLD is 217.

The speech signal SNR is estimated at the signal SNR estimator as follows. First, the total noise energy of the current frame Etn(m) is computed as the sum of the channel noise energies, that is:

[image: image317.wmf]å

=

=

23

1

)

,

(

)

(

i

n

tn

i

m

E

m

E

(5.108)

Next, the instantaneous total signal energy Ets,inst(m) is computed as follows:

if (V(m) > SIG_THLD(m))

[image: image318.wmf]å

=

=

23

1

,

))

,

(

),

,

(

max(

)

(

i

n

ch

inst

ts

i

m

E

i

m

E

m

E

;

else

[image: image319.wmf]);

(

)

(

,

m

E

m

E

tn

inst

ts

=

end
(5.109)

Initialization of Ets,inst(m) is performed as follows:

if ((m (INIT_FRAMES) OR (fupdate_flag == TRUE))

Ets,inst(m) = INIT_SIG_ENRG;
(5.110)

where the value of INIT_SIG_ENRG = 1,0E+09 for 8 kHz, 1,67E+09 for 11 kHz, and 3,0E+09 for 16 kHz respectively.

Once the total instantaneous signal energy and the total noise energy are computed, the instantaneous signal-to-noise ratio of the current frame denoted by SNRinst(m) is computed as:

SNRinst = max(0,0, 10 log10(Ets,inst(m) / Etn(m)))
(5.111)

From the instantaneous SNR, the smoothed SNR is estimated as:

if ((m (INIT_FRAMES) OR (fupdate_flag == TRUE))

SNR(m) = SNRinst(m);

else

{

if (V(m) > SIG_THLD(m))

{

SNR(m) = (SNR(m-1) + (1-() SNRinst(m);

(= min((+0.003, HI_BETA);

}

else

(= max((-0.003, LO_BETA);

}
(5.112)

The lower and upper limits of the smoothing factor (are respectively LO_BETA = 0,950 and HI_BETA = 0,998. Initially, the value of (is set at LO_BETA. The signal SNR is then quantized to 20 different values as:

SNRq(m) = max(0,min(round(SNR(m)/1,5),19)).
(5.113)

The quantized signal SNR is used to determine different threshold values. For example, the signal threshold for the next frame SIG_THLD(m+1) is determined using SNRq(m) as an index into the 20-element table {36, 43, 52, 62, 73, 86, 101, 117, 134, 153, 173, 194, 217, 242, 268, 295, 295, 295, 295, 295}.

At this point, the voice metric V(m), the spectral deviation E(m), the peak-to-average ratio P2A(m), and the quantized signal SNR SNRq(m) are input to an update decision determiner. The logic shown below in pseudo-code demonstrates how the noise estimate update decision is made and also how a forced update decision is made (a forced update mechanism allows the voice activity detector to recover from wrong classification of background noise as speech whenever there is a sudden increase in background noise level).

First, the update threshold for the current frame UPDATE_THLD(m) is determined using SNRq(m) as an index into a 20‑element table given by {31, 32, 33, 34, 35, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38}. The update decision determination process begins by clearing the update flag (update_flag) and the forced update flag (fupdate_flag). These flags are set if certain conditions are satisfied as illustrated by the pseudo-code below. The initial value of update_cnt is set to 0.

update_flag = FALSE;

fupdate_flag = FALSE;

if ((m > INIT_FRAMES) AND (V(m) < UPDATE_THLD(m)) AND

(P2A(m) < PEAK_TO_AVE_THLD)

{

update_flag = TRUE;

update_cnt = 0;

}

else

{

if ((P2A(m) < PEAK_TO_AVE_THLD) AND (E(m) < DEV_THLD))

{

update_cnt = update_cnt + 1;

if (update_cnt (UPDATE_CNT_THLD)

{

update_flag = TRUE;

fupdate_flag = TRUE;

}

}

}
(5.114)

In order to avoid long term "creeping" of the update counter (update_cnt) setting the forced update flag (fupdate_flag) falsely in the above pseudo-code, an hysteresis logic is implemented as shown below. Initial values of last_update_cnt and hyster_cnt are set to 0.

if (update_cnt == last_update_cnt)

hyster_cnt = hyster_cnt + 1;

else

{

hyster_cnt = 0;

last_update_cnt = update_cnt;

}

if (hyster_cnt > HYSTER_CNT_THLD)

update_cnt = 0;
(5.115)

The values of different constants used above are as follows: DEV_THLD = 70, UPDATE_CNT_THLD = 500, and HYSTER_CNT_THLD = 9. Whenever the above referenced update flag is set for a given frame, the channel noise estimate for the next frame is updated in the noise energy smoother as follows:

[image: image320.wmf]))

,

(

1

,

0

)

,

(

9

,

0

)

,

1

(

i

m

E

i

m

E

i

m

E

ch

n

n

+

=

+

; i = 1, 2, …, 23
(5.116)

The updated channel noise estimate is stored in noise energy estimate storage for all future frames until the next update occurs. The output of the noise energy estimate storage En(m) is used as an input to the channel SNR estimator as described earlier.

Next, we describe the operation of the voice activity determiner, which uses the voice metric V(m) and the quantized signal SNR value SNRq(m) as inputs. For the first INIT_FRAMES frames, the outputs of the voice activity determiner, viz., vad_flag and hangover_flag are set to FALSE since these frames are assumed to be noise-only frames. For the following frames, the voice activity determiner operates by testing if the voice metric exceeds the voice metric threshold Vth. If the output of this test is TRUE, then the current frame is declared "voice-active". Otherwise, the hangover count variable (hangover_count) is tested to find out if it is greater than or equal to zero. If the output of this test is TRUE, then also the current frame is declared "voice-active". If the outputs of both tests are FALSE, then the current frame is declared "voice-inactive". The "hangover" mechanism is generally used to cover slowly decaying speech that might otherwise be classified as noise, and to bridge over small gaps or pauses in speech. It is activated if the number of consecutive "voice-active" frames (counted by the burst_count variable) is at least equal to Bcnt, the burst count threshold. To activate the mechanism, the number of hangover frames is set to Hcnt, the hangover count threshold. The pseudo-code for the voice activity determiner is shown below. To begin with, the voice metric threshold Vth, the hangover count threshold Hcnt, and the burst count threshold Bcnt are initialized to 56, 28 and 6 respectively. Furthermore, the variables hangover_count and burst_count are both initialized to 0.
if (V(m) > Vth(m))

{

vad_local = TRUE;

burst_count = burst_count + 1;

if (burst_count >= Bcnt(m))

hangover_count = Hcnt(m);

}

else

{

vad_local = FALSE:

burst_count = 0;

}

if ((vad_local == TRUE) OR (hangover_count > 0))

vad_flag = TRUE;

else

vad_flag = FALSE;

if ((vad_local == FALSE) && (hangover_count > 0))

{

hangover_flag = TRUE;

hangover_count = hangover_count - 1;

}

else

hangover_flag = FALSE;
(5.117)

As a final step, the quantized SNR value is used to determine the voice metric threshold Vth, the hangover count threshold Hcnt, and the burst count threshold Bcnt for the next frame as:

Vth(m+1) = Vtable[SNRq(m)], Hcnt(m+1) = Htable[SNRq(m)], Bcnt(m+1) = Btable[SNRq(m)],
(5.118)

where SNRq(m) is used as an index into the respective tables. These tables are defined by: Vtable = {32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 57, 58, 58, 58, 58}, Htable = {54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16}, and Btable = {2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6}.

5.6.3
Low-band noise detection

In the scope of clause 5.6.3, the following symbolic notations for some constants are used if not stated differently in the text:

FFTL = 256 - FFT dimension;

fs = 8 - sampling rate of the input speech data in kHz.
The input to the low-band noise detection (LBND) block are the pre-emphasized power spectrum pbinpe,k, k=0,…,FFTL/2, from the SEC block, the vad_flag and the frame energy E. The output of the LBND block is lbn_flag indicating (if TRUE) that the current frame contains background noise in the low frequency band.

The LBND code maintains an internal state variable LH_Ratio which is initialized to 1,9. The operation of the LBND block is described by the following pseudo code wherein the cut_idx parameter is defined as:

[image: image321.wmf](

)

(

)

s

f

FFTL

floor

idx

cut

´

´

=

000

1

380

_

(5.119)

if (vad_flag == FALSE)

{

if (2E/FFTL < 500)

cur_ratio = 0;

else

{

low_max =
[image: image322.wmf]k

pe

idx

cut

k

pbin

,

_

1

max

£

£

;

high_max =
[image: image323.wmf]k

pe

FFTL

k

idx

cut

pbin

,

2

/

_

max

£

<

;

if (high_max == 0)

cur_ratio = 10;

else

cur_ratio = low_max / high_max

}

LH_Ratio =
[image: image324.wmf];

_

01

,

0

_

99

,

0

ratio

cur

Ratio

LH

´

+

´

}

if (LH_Ratio > 1,9)

lbn_flag = TRUE;

else

lbn_flag = FALSE;
(5.120)

5.6.4
Pre-Processing for pitch and class estimation

The input to the Pre-Processing (PP) block is the input signal
[image: image325.wmf]in

s

 and the lbn_flag from the Low-Band Noise Detection (LBND) block. The outputs of the PP block are the low-pass filtered, downsampled speech signal
[image: image326.wmf]lpds

s

which is fed into the Pitch estimation block (PITCH) and the high-pass filtered upper-band signal
[image: image327.wmf]ub

s

which is fed into the Classification block (CLS). The low-pass and high-pass filtering are performed using pole-zero filters with the generic form shown below:

[image: image328.wmf])

(

...

)

2

(

)

1

(

)

(

...

)

1

(

)

(

)

(

2

1

1

0

M

n

y

a

n

y

a

n

y

a

M

n

x

b

n

x

b

n

x

b

n

y

M

M

-

-

-

-

-

-

-

-

+

+

-

+

=

(5.121)

where
[image: image329.wmf]x

 is the input,
[image: image330.wmf]y

 is the output, M is order of the filter,
[image: image331.wmf]M

b

b

b

,...,

,

1

0

are the coefficients of the numerator polynomial defining the zeros, and
[image: image332.wmf]M

a

a

a

,...,

,

,

1

2

1

 are the coefficients of the denominator polynomial defining the poles. The filter coefficients used are shown in table 5.1. The low-pass filtered speech is first decimated by a factor DSMP, where DSMP is 4. The latest (2 × MAX_PITCH / DSMP) samples referred to as the low-pass filtered extended downsampled frame is fed into the PITCH block. The value of the MAX_PITCH parameter is 160.

Table 5.1: Filter coefficients used in the pre-processing block

	Filter details
	Filter Coefficients

	low-pass filter numerator coefficients

filter order - 7

lbn_flag = FALSE
	0,0003405377

0,0018389033

0,0038821292

0,0037459142

0,0010216130

-0,0010216130

-0,0008853979

-0,0002043226

	low-pass filter denominator coefficients;

filter order - 7

lbn_flag = FALSE
	1,00000000

-4,47943480

8,88015848

-10,05821568

6,99836861

-2,98181953

0,71850318

-0,07538083

	low-pass filter numerator coefficients

filter order - 6

lbn_flag = TRUE
	0,00034054

0,00204323

0,00510806

0,00681075

0,00510806

0,00204323

0,00034054

	low-pass filter denominator coefficients

filter order - 6

lbn_flag = TRUE
	1,00000000

-3,57943480

5,65866717

-4,96541523

2,52949491

-0,70527411

0,08375648

	high-pass filter numerator coefficients

filter order - 6
	0,14773250

-0,88639500

2,21598750

-2,95464999

2,21598749

-0,88639500

0,14773250

	high-pass filter denominator coefficients

filter order - 6
	1,00000000

-2,37972104

2,91040657

-2,05513144

0,87792390

-0,20986545

0,02183157

5.6.5
Pitch estimation

In the scope of clause 5.6.5, the following symbolic notations for some constants and variables are used if not stated differently in the text:

FFTL = 256 - FFT dimension;

N = 200 - frame size;

fs = 8 - sampling rate of the input speech data in kHz;

stft(n) = X(n) - Shorth Time Fourier Transform (STFT) spectrum given by (5.4);

pbin(n) = pbinn - power spectrum computed in the SEC block.
A flowchart of the pitch estimation process is shown on figure 5.9. Pitch frequency (F0) candidates are generated sequentially in high, middle and low frequency intervals (search ranges). The candidates generated for a search range are added to the candidates generated earlier and an attempt is made to determine a pitch estimate among the candidates. If the pitch estimate is not determined, the next search range is processed. Otherwise certain internal variables, which represent the pitch estimation history information are updated. At output, the pitch estimate is converted from the frequency to time representation or is set to 0 indicating an unvoiced frame.
5.6.5.1
Dirichlet interpolation

Frequency resolution of the discrete complex spectrum in the diapason [0 kHz, 4 kHz] is doubled by the interpolation of the STFT (5.4) by Dirichlet kernel. The interpolated STFT is calculated as follows:

[image: image333.wmf]kHz

N

n

k

n

stft

k

n

stft

k

D

n

istft

k

n

stft

k

n

stft

k

D

n

istft

n

stft

n

istft

LDK

k

LDK

k

4

,...,

1

,

0

)]}

1

(

Re[

)]

(

{Re[

)

(

)]

1

2

(

Im[

)]}

1

(

Im[

)]

(

{Im[

)

(

)

1

(

s

)]

1

2

(

Re[

)

(

)

2

(

1

0

1

0

w

=

+

+

-

-

´

=

+

+

+

-

-

´

-

=

+

=

å

å

-

=

-

=

(5.122)

where:

(N4kHz-1) is the index of the FFT point representing 4kHz frequency;

[image: image334.wmf]÷

ø

ö

ç

è

æ

+

´

=

)

5

,

0

(

1

)

(

k

FFTL

tg

FFTL

k

D

p

;
(5.123)

LDK= 8
In (5.122), an stft(i) value corresponding to a negative value of i<0 is replaced by the complex conjugate stft×(-i) associated with -i.

The number of istft samples computed and used further is FFTIL = 2 × N4 kHz - 1. The istf vector is used for the processing of the current and the next frames.

[image: image335.emf]

High F0 band

candidates generation

Correlation scores

calculation

Pitch estimate selection

Found pitch?

Middle F0 band

candidates generation

Correlation scores

calculation

Pitch estimate selection

Found pitch?

Low F0 band

candidates generation

YES NO

YES NO

Low-pass filtered downsampled speech STFT

Correlation scores

calculation

Pitch estimate selection

History info update

Pitch convertion &

output

Figure 5.9: Pitch estimation flowchart
5.6.5.2
Non-speech and low-energy frames

If the frame either has been classified by the VADVC block as a non-speech frame or its log-energy value is less than a predefined threshold log E < 13,6 then the pitch frequency F0 estimate is set to 0 and the final step of history information update is performed as described further.

5.6.5.3
Search ranges specification and processing

The entire search diapason for pitch frequency is defined as SR = [52 Hz, 420 Hz]. If a variable StableTrackF0 (which is described below) has a non-zero value then SR is narrowed as follows:

SR = SR ([0,666 × StableTrackF0, 2,2 × StableTrackF0].
Three slightly overlapping search ranges are specified:

SR1 = SR ([52 Hz, 120 Hz];
SR2 = SR ([100 Hz, 210 Hz];
SR3 = SR ([200 Hz, 420 Hz].

The processing stages described in clauses 5.6.5.3 to 5.6.5.7 are performed consequently for the three search ranges in the order SR3, SR2, SR1. If there are differences specific to a certain search range they are explained in the relevant clause. It might happen that some of the search ranges are empty. No processing is performed for an empty search range.

5.6.5.4
Spectral peaks determination

This stage is performed only twice: first time for the SR3 and SR2 ranges, and a second time for SR1.

When the processing is being performed for SR3/SR2 search interval, power spectrum with doubled frequency resolution is computed as follows:

[image: image336.wmf]î

í

ì

+

=

n

odd

for

n

istft

n

istft

n

even

for

pbin

n

ps

n

,

)]

(

Im[

)]

(

Re[

,

)

(

2

2

2

/

(5.124)

When the processing is being performed for SR1 search interval, an STFT corresponding to a double frame is approximated as follows:

[image: image337.wmf])

(

)

exp(

)

(

)

(

2

n

istft

FFTIL

M

n

j

n

istft

n

istft

prev

´

´

´

´

-

+

=

p

(5.125)

where istftprev is the Dirichlet interpolated STFT of the previous frame. Then power spectrum is computed as:

[image: image338.wmf]2

2

2

2

)]

(

Im[

)]

(

Re[

)

(

n

istft

n

istft

n

ps

+

=

(5.126)

In (5.124) to (5.126), n = 0, 1, …, FFTIL - 1 corresponding to the frequency interval [0, 4kHz].

Smoothing by 3-tap symmetric filter is applied to the power spectrum:

[image: image339.wmf])

1

(

)

1

(

),

0

(

)

0

(

2

,...,

1

)],

1

(

)

1

(

[

1875

,

0

)

(

625

,

0

)

(

-

=

-

=

-

=

+

+

-

´

+

´

=

FFTIL

ps

FFTIL

sps

ps

sps

FFTIL

n

n

ps

n

ps

n

ps

n

sps

(5.127)

The values of the smoothed power spectrum sps(n) are analysed within the range n([N0+2, FFTIL-3] and all local maxima are determined. N0 is set to
[image: image340.wmf])

000

1

(

2

300

s

f

FFTL

´

´

 if low band noise has been detected at that frame. Otherwise N0 = 0. That is, if low band noise is present then the spectral components residing at frequencies lower than 300 Hz are not analysed. A value sps(n) is considered as a local maximum if the following condition is TRUE

[image: image341.wmf])

2

(

)

1

(

)

2

(

)

1

(

[

)

1

(

)

(

)

1

(

)

(

+

³

+

Ú

-

³

-

Ù

+

>

Ù

-

>

n

sps

n

sps

n

sps

n

sps

n

sps

n

sps

n

sps

n

sps

Let {(Ak, nk), k = 1,…,Npeaks} be a list of all the local maxima (representing spectral peaks) sorted in ascending order of their frequencies where Ak = sps(nk).

Scaling down of high frequency peaks

The entire range [0, FFTIL] of the frequency index is divided into three equal sub-intervals, and the maximal values Amax1, Amax2 and Amax3 of Ak is found in the low, middle and high sub-intervals correspondingly. The value Amaxj (j = 2,3) is evaluated against a threshold
[image: image342.wmf]2

1

max

j

j

A

THR

r

´

=

. If Amaxj > THRj then all the Ak associated with j-th interval are multiplied by factor THRj/Amaxj . The following parameter values are used
[image: image343.wmf]45

,

0

,

65

,

0

3

2

=

=

r

r

.
If the number of the peaks (the local maxima) exceeds 30 then the peaks with amplitudes less than
[image: image344.wmf]k

A

max

001

,

0

2

´

 are discarded from the peaks list. If the number of remaining peaks is still exceeds 30 then all the high frequency peaks starting from the peak #31 are discarded. The total number Npeaks of the peaks is updated as needed.

The peaks are sorted in descending order of their amplitudes. If the number of peaks is greater than 20 then only 20 first peaks are selected for further processed, and the number Npeaks is set to 20.

Location and amplitude of each peak is refined by fitting parabola through the corresponding local maximum and the two neighbouring samples of the power spectrum sps.

[image: image345.wmf])

1

(

)

1

(

),

1

(

2

)

1

(

),

(

25

,

0

)

1

(

5

,

0

-

-

+

=

+

+

-

-

=

-

´

´

+

+

=

´

-

=

k

k

k

k

k

k

k

k

k

k

k

n

sps

n

sps

b

and

n

sps

A

n

sps

a

where

n

loc

b

n

sps

refA

a

b

n

loc

(5.128)

Then the peak locations lock are converted to Hz units and the square roots are taken from the peak amplitudes:

[image: image346.wmf]k

k

s

k

k

refA

PA

FFTL

f

loc

PF

=

´

´

´

=

)

2

/(

000

1

(5.129)

The sequence {PAk, PFk, k=1,…,Npeaks} represents magnitude spectrum peaks.

Scaling down of high frequency peaks procedure is applied to this peaks sequence as described above except for that this time
[image: image347.wmf]j

r

is used for the threshold THRj computation instead of
[image: image348.wmf]2

j

r

.

If Npeaks > 7 the final attempt to reduce the number of peaks is done as follows. If a number N1 exists so that
[image: image349.wmf]å

å

=

=

´

£

1

1

1

95

,

0

N

k

Npeaks

k

k

k

PA

PA

then only N1 starting peaks are taken. Otherwise the peaks are scanned from the end of the list towards the beginning and all the peaks with amplitudes less than
[image: image350.wmf]7

406

,

0

PA

´

are put out. The number Npeaks of peaks is updated.

The peak amplitudes are normalized:

[image: image351.wmf]å

=

=

Npeaks

i

i

k

k

PA

PA

NPA

1

(5.130)

5.6.5.5
F0 Candidates generation

Pitch candidates are selected among the local maxima of a piecewise constant utility function U(F0):

[image: image352.wmf]512

100

2

,

512

65

1

)

(

)

1

(

5

,

0

2

,

0

2

1

,

5

,

0

1

,

1

)

(

)

0

(

)

0

(

=

=

=

+

ï

î

ï

í

ì

<

<

£

<

£

=

´

=

å

D

D

r

I

r

I

r

D

D

r

D

D

r

r

I

where

F

PF

I

NPA

F

U

i

i

i

(5.131)

Lower F0min and upper F0max limits for F0 are defined as the left and the right edges respectively of the processed search range SRi, i = 1, 2, 3.

First, a partial utility function is built including only contributions of a few highest peaks. The partial utility function is represented by a list of break points. Then all local maxima locations of the partial utility function are determined. Finally, the values of the whole utility function at the local maxima are computed.

Building partial utility function

NPprelim peaks are selected from the top of the peaks list. NPprelim = min(Npeaks, 7). A counter variable is initialized BPCount = 0. For each peak (NPAk, PFk), k=1,…,NPprelim, a list BPLk of the utility function break points is collected as described below.

The maximal and minimal dividers of the peak frequency are calculated:

[image: image353.wmf]÷

ø

ö

ç

è

æ

+

=

ú

û

ù

ê

ë

é

-

=

2

min

0

)

1

max

0

,

0

max(

max

min

D

F

PF

floor

N

D

F

PF

ceil

N

k

k

(5.132)

The counter BPCount is updated BPCount = BPCount + Nmax - Nmin +1 and compared against a predefined threshold BPLimit:

[image: image354.wmf]ï

î

ï

í

ì

=

3

20

2

30

1

60

SR

for

SR

for

SR

for

BPLimit

(5.133)

If the counter value exceeds the threshold then the entire peaks processing is terminated, and no more break point lists are built. Otherwise the processing of the k-th peak continues. Index n scans the range [Nmin, Nmax] in the reverse order n = Nmax, Nmax-1, …, Nmin each time generating four new breakpoints in the list, each break point is given by its frequency value BPF and amplitude value BPA:

[image: image355.wmf]k

n

k

n

k

n

k

n

k

n

k

n

k

n

k

n

PA

BPA

D

n

PF

BPF

PA

BPA

D

n

PF

BPF

PA

BPA

D

n

PF

BPF

PA

BPA

D

n

PF

BPF

´

-

=

-

=

´

-

=

-

=

´

=

+

=

´

=

+

=

+

-

+

-

+

-

+

-

+

-

+

-

+

-

+

-

5

,

0

)

2

(

5

,

0

)

1

(

5

,

0

)

1

(

5

,

0

)

2

(

4

)

1

(

4

4

)

1

(

4

3

)

1

(

4

3

)

1

(

4

2

)

1

(

4

2

)

1

(

4

1

)

1

(

4

1

)

1

(

4

(5.134)

Note that the break points in the list are ordered in the increasing order of the frequency.

If the list is not empty and
[image: image356.wmf]min

0

1

F

BPF

<

then the beginning of the list is modified as follows. The first k = max(1, m ‑ 2) elements are discarded where
[image: image357.wmf]min}

0

{

:

min

F

BPF

i

m

i

>

=

. The new head of the list (former element #m-1) is set to:
[image: image358.wmf]å

+

=

=

=

1

1

min,

0

k

j

j

BPA

BPA

F

BPF

.

If the list is not empty and there are elements (at the tail) with
[image: image359.wmf]max

0

F

BPF

³

, that elements are deleted from the list.

Finally, if
[image: image360.wmf]2

max

0

D

PF

F

k

>

then one or two elements are appended at the end of the list depending on certain conditions as described below. Two frequency values are calculated:
[image: image361.wmf]2

1

D

PF

F

k

=

and
[image: image362.wmf]1

2

D

PF

F

k

=

.

if (
[image: image363.wmf]min

0

2

F

F

<

)
 One element is appended:
[image: image364.wmf]k

PF

BPA

F

BPF

=

=

min,

0

else if (
[image: image365.wmf]max

0

2

min

0

1

F

F

F

F

£

<

<

)
 Two elements are appended:
[image: image366.wmf]k

PF

BPA

F

BPF

5

,

0

min,

0

=

=

 and
[image: image367.wmf]k

PF

BPA

F

BPF

5

,

0

,

2

=

=

else if (
[image: image368.wmf]max

0

2

min

0

1

F

F

F

F

>

Ù

<

)
 One element is appended:
[image: image369.wmf]k

PF

BPA

F

BPF

5

,

0

min,

0

=

=

else if (
[image: image370.wmf]max

0

2

min

0

1

F

F

F

F

£

Ù

³

)
 Two elements are appended:
[image: image371.wmf]k

PF

BPA

F

BPF

5

,

0

,

1

=

=

 and
[image: image372.wmf]k

PF

BPA

F

BPF

5

,

0

,

2

=

=

else if (
[image: image373.wmf]max

0

2

min

0

1

F

F

F

F

>

Ù

³

)
 One element is appended:
[image: image374.wmf]k

PF

BPA

F

BPF

5

,

0

,

1

=

=

All the Break Point Lists {BPLk} are merged together into one array Upartial={(BPFn, BPAn)} preserving the frequency ascending order, and the amplitudes of the break points are modified as:

[image: image375.wmf]...

,

3

,

2

,

1

=

+

=

-

n

BPA

BPA

BPA

n

n

n

If the last break point frequency is less than F0max then a new terminating element (BPF = F0max, BPA = 0) is appended to the array. Further we will refer to the number of elements in the Upartial array as NBP.

Preliminary candidates determination

NCprelim break points are determined which are the highest in amplitude local maxima among the elements of the Upartial array, where NCprelim = min(4,NBP). These break points being sorted in the descended order of amplitude form a list of preliminary candidates. If a variable StableTrackF0 (which is described in clause 5.6.5.8) has a non-zero value then an additional break point BPad is sought which is the highest in amplitude local maximum among the Upartial array elements having frequency in the range [StableTrackF0/1,22, StableTrackF0 × 1,22]. If such the break point is found then the amplitude associated with it is increased by 0,06 and compared against the amplitudes of the preliminary candidates list members. If the modified amplitude is greater than the amplitude of at least one of the preliminary candidates then BPad is inserted into the preliminary candidate list so that the list elements order is preserved, and the last list member is put out. Finally, the frequency value for each candidate is modified as:

[image: image376.wmf])

(

5

,

0

1

+

+

´

=

n

n

n

BF

BF

BF

If n < NBP where n is the index of the break point in the Upartial array.

Candidate amplitudes refinement

For each preliminary candidate the amplitude value is recomputed in accordance to formula (5.131) wherein F0 is substituted by the frequency value associated with that candidate and the summation is performed over all the Npeaks spectral peaks.

Final candidates determination

NC (final) candidates are selected from the preliminary candidates, NC = min(2,Nprelim). For the selection purpose a compare function is defined for a pair (F1,A1) and (F2,A2) of candidates given by their frequencies Fi and amplitudes Ai. Let F1 < F2. The first candidate is declared to be better than the second one if the following condition is satisfied:

[image: image377.wmf])

2

1

17

,

1

2

1

(

06

,

0

2

1

F

F

A

A

A

A

>

´

Ù

>

Ú

+

>

(5.135)

otherwise the second candidate is considered as the best between the two.

NC best candidates are determined, sorted in descending order of their quality, and form a final candidates list. If the pitch estimate PrevF0 obtained at the previous frame has non-zero value then the preliminary candidates are determined having frequency values within the interval [PrevF0/1,22, PrevF0 × 1,22]. If such preliminary candidates exist then one of them having the maximal amplitude is declared as an additional candidate. The amplitude a of the additional candidate is increased by 0,06 (b = a + 0,06), and compared against the amplitudes of the final candidates list members. If a member exists with amplitude less than b then the last member of the final candidates list is replaced by the additional candidate.

Below the amplitudes associated with the candidates are referred to as Spectral Scores (SS).

5.6.5.6
Computing correlation scores

Correlation score is computed for each pitch candidate. The input for correlation score calculation stage comprises the low-pass filtered extended downsampled frame (clause 5.6.4) and the candidate pitch frequency F0. Here we designate the low-pass filtered extended downsampled frame by u(n) and assume that the origin n = 0 is associated with the sample #NDS counting from the end of the vector u, so that the preceding to it samples have negative index values. NDS is the length of downsampled frame NDS = 200/DSMP where DSMP is the downsampling factor (clause 5.6.4).

Candidate pitch frequency is converted to a time-domain lag:

[image: image378.wmf]DSMP

F

´

=

0

000

8

t

(5.136)

An integer lag is calculated by rounding the lag value to the upper integer number
[image: image379.wmf])

(

t

t

ceil

i

=

.
Analysis window length is calculated:

[image: image380.wmf]÷

ø

ö

ç

è

æ

=

DSMP

floor

LW

75

(5.137)

Offset and length parameters calculation
Offset O and length Len parameters are calculated to be used by further processing, besides two following cases are treated differently.

Case 1:

[image: image381.wmf]LW

i

£

t

[image: image382.wmf])

(

max

arg

0

t

E

i

LW

NDS

t

i

O

t

t

-

-

£

£

+

=

,
where:

[image: image383.wmf]å

-

+

+

=

=

1

2

)

(

)

(

t

i

LW

t

t

n

n

u

t

E

[image: image384.wmf]t

i

LW

Len

+

=

Case 2:

[image: image385.wmf]LW

i

>

t

Two vectors are extracted from the signal u:

u1={u(t0), u(t0 + 1), …, u(t0 + i(- 1)} and u2={ u(t0 - i(), u(t0 + 1 - i(), …, u(t0 - 1)},

where:

[image: image386.wmf]î

í

ì

-

<

=

otherwise

i

NDS

NDS

i

if

NDS

t

,

2

/

,

2

/

0

t

t

An auxiliary offset ofs is determined as:

[image: image387.wmf])

(

max

arg

1

0

t

E

i

t

ofs

-

£

£

=

t

where:

[image: image388.wmf]),

)

mod

0

(

)

mod

0

(

(

)

(

2

1

0

2

t

t

t

i

n

i

t

n

u

n

i

t

n

u

t

E

LW

n

-

+

+

+

+

+

=

å

-

=

[image: image389.wmf]î

í

ì

-

<

=

otherwise

i

NDS

NDS

i

if

NDS

t

,

2

/

,

2

/

0

t

t

If ofs+LW
[image: image390.wmf]t

i

£

then O = t0 + ofs and Len = LW.
Otherwise two sets of the offset and length parameters are prepared:

{O1 = t0 + ofs, Len1 = i(- ofs} and (O2 = t0, Len2 = LW - Len1}.

Correlator

Input parameters for this block are O, Len and i(
Three vectors are extracted from u:

X = {u(O), u(O + 1), …, u(O + Len - 1)}T

Y = {u(O - i(), u(O - i(+ 1), …, u(O - i(+ Len - 1)}T
Z = {u(O - i(+ 1), u(O - i(+ 2), …, u(O - i(+ Len)}T
For each vector the sum of the coordinates is computed: (X, (Y and (Z. The following inner products are computed also: XTX, YTY, ZTZ, XTY, XTZ and YTZ.

Where there are two sets of the offset and length parameters (O1, Len1) and (O2, Len2), the correlator block is applied twice, one time for each set, and the corresponding output values (the sums and the inner products) are summed.

DC removal

The inner products computed by the correlator are modified as follows:

XTX = XTX - ((X)2/LW
YTY = YTY - ((Y)2/LW
ZTZ = ZTZ - ((Z)2/LW
XTY = XTY - (X×(Y/LW
XTZ = XTZ - (X×(Z/LW
YTZ = YTZ - (Y×(Z/LW

Interpolation

Correlation score CS is computed by the following interpolation formula:

[image: image391.wmf](

)

Y

Y

Y

X

X

X

Z

Z

Z

Y

Z

X

CS

T

T

T

T

T

T

´

+

´

+

´

´

´

+

´

=

2

2

2

a

ab

b

a

b

(5.138)
where:

[image: image392.wmf]a

b

t

t

a

-

=

-

=

1

,

i

.

Finally, CS value is truncated if it falls outside the interval [0, 1].

CS = max(CS,0),

CS = min(CS,1).

5.6.5.7
Pitch estimate selection

Input to this stage is the set of pitch candidates. Each candidate (F0k, SSk, CSk) is represented by the corresponding pitch frequency F0k, spectral score (the utility function value) SSk and correlation score CSk. The block outputs a pitch estimate (F0, SS, CS) which either is selected among the candidates or indicates that that the frame represents unvoiced speech in which case F0 is set to 0.

Pitch estimate selection block might be entered several (at most 3) times during the processing of one frame. It is entered after pitch candidates generation is performed for each pitch search interval SRi. Each time the list of pitch candidates which is fed into the block is updated appropriately to include all the pitch candidates detected so far. Thus the list passed into this block after the processing of SR3 search range includes the candidates found within this range, typically two candidates. If one of the candidates is selected as the pitch estimate then the pitch estimation process terminates and the control flows to the history information update block (described in clause 5.6.5.8). Otherwise the candidates generated within the SR2 range are combined with the ones found within SR3 and the combined list (typically containing four candidates) is fed into pitch estimate selection block. If no pitch estimate is selected at this time the block is entered again after SR1 range is processed. At this time the candidate list contains the candidates generated in all the three ranges (typically 6 candidates). A variable EPT which is fed to the block along with the candidates list indicates whether the list contains candidates generated for all the three search ranges (EPT = 1) or not (EPT = 0).

The selection process is shown on the flow-chart of figure 5.10.
The candidates are sorted at step 100 in descending order of their F0 values. Then at step 110 the candidates are scanned sequentially until a candidate of class 1 is found, or all the candidates are tested. A candidate is defined to be of class 1 if the CS and SS values associated with the candidate satisfy the following condition:

(CS (C1 AND SS (S1) OR (SS (S11 AND SS + CS (C S1)
(Class 1 condition)

where:

C1 = 0,79, S1 = 0,78, S11 = 0,68 and CS1 = 1,6.

At step 130 the flow branches. If a class 1 candidate is found it is selected to be a preferred candidate, and the control is passed to step 140 performing a Find Best in Vicinity procedure described by the following. Those candidates among the ones following in the list the preferred candidate are checked to determine those ones which are close in terms of F0 to the preferred candidate. Two values F01 and F02 are defined to be close to each other if:

(F01 < 1,2 × F02 AND F02 < 1,2 × F01)
(Closeness condition).

A plurality of better candidates is determined among the close candidates. A better candidate must have a higher SS and a higher CS values than those of the preferred candidate respectively. If at least one better candidate exists then the best candidate is determined among the better candidates. The best candidate is characterized by that there is no other better candidate, which has a higher SS and a higher CS values than those of the best candidate respectively. The best candidate is selected to be a preferred candidate instead of the former one. If no better candidate is found the preferred candidate remains the same.

At step 150 the candidates following the preferred candidate are scanned one by one until either a candidate of class 1 is found whose scores SScandidate and CScandidate satisfy following condition:

SScandidate + CScandidate (SSpreferred + CSpreferred + 0,18

or all the candidates are scanned. If a candidate is found which meets the above condition it is selected to be the preferred candidate and Find Best in Vicinity procedure is applied. Otherwise the control is passed directly to step 180, where the EPT variable value is tested. If EPT indicates that all the pitch search ranges have been processed the pitch estimate is set to the preferred candidate. Otherwise the following condition is tested:

SSpreferred (0,95 AND CSpreferred (0,95

If the condition is satisfied the pitch estimate is set to the preferred candidate, otherwise the pitch frequency F0 is set to 0 indicating that no pitch is detected.
Returning to the conditional branching step 130, if no class 1 candidate is found then at step 120 it is checked if the StableTrackF0 variable has non-zero value in which case the control is passed to step 210, otherwise step 270 is performed.

At step 210 a reference fundamental frequency value F0ref is set to StableTrackF0. Then at step 220 the candidates are scanned sequentially until either a candidate of a class 2 is found or all the candidates are tested. A candidate is defined to be of class 2 if the frequency and the score values associated with it satisfy the condition:

(CS > C2 AND SS > S2) AND (1/1,22 < |F0/F0ref | < 1,22
(Class 2 condition)

where C2 = 0,7, S2 = 0,7. If no class 2 candidate is found then the pitch estimate is set to 0 at step 240. Otherwise, the class 2 candidate is chosen to be the preferred candidate and Find Best in Vicinity procedure is applied at step 250. Then at step 260 the pitch estimate is set to the preferred candidate.

Returning to the conditional branching step 120, if StableTrackF0 = 0 then control is passed to step 270 where a Continuous Pitch Condition:

PrevF0 > 0 AND StablePitchCount > 1

is tested (StablePitchCount variable is described below in clause 5.9.8) If the condition is satisfied then at step 280 the frequency reference value F0ref is set to PrevF0 and the class 2 candidate search is performed at step 290. If a class 2 candidate is found (test step 300) then it is selected as the preferred candidate, Find Best In Vicinity procedure is applied at step 310, and the pitch estimate is set to the preferred candidate at step 320. Otherwise, the processing proceeds with step 330 likewise it happens if Continuous Pitch Condition test of step 270 fails.

At step 330 the candidates are scanned sequentially until a candidate of class 3 is found or all the candidates are tested. A candidate is defined to be of class 3 if the scores associated with it satisfy the condition:

(CS (C3 OR SS (S3)
(Class 3 condition)

where, C3 = 0,85, S3 = 0,82. If no class 3 candidate is found then the pitch frequency is set to 0. Otherwise, the class 3 candidate is selected as the preferred candidate, and Find Best in Vicinity procedure is applied at step 360. Then at step 370 the pitch estimate is set to the preferred candidate.

[image: image393.emf]

Sort F0

Find Class 1

candidate

Found

?

Find best

In Vicinity

Find better

Class 1

candidate

Stable

Track?

Set reference to

stable pitch

Found?

Find best

In Vicinity

Set

pitch

Find Class 2

candidate

Found?

Find best

in vicinity

Set UV

pitch

Set

pitch

Continuous

Pitch?

Set reference to

previous pitch

Find Class 2

candidate

Found?

Find best

in vicinity

Set

pitch

Find Class 3

candidate

Found?

Find best

in vicinity

Set UV

pitch

Set

pitch

EPT=0?

Very high

scores

Set UV

pitch

Set

pitch

YES

NO

YES

NO

NO

NO

NO

NO

NO

YES

YES

YES

NO

YES

YES

YES

YES

NO

100

110

130

120

140

150

160

170

180

190

400

410

420

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

Figure 5.10: Pitch estimate selection
5.6.5.8
History information update

The pitch estimator maintains following variables holding information on the estimation process history: PrevF0, StableTrackF0, StablePitchCount and DistFromStableTrack.

The variables are initialized as follows:

PrevF0 = 0, StablePitchCount = 0, DistFromStableTrack = 1 000, StableTrackF0 = 0.

The variables are updated at each frame after pitch estimation processing is completed and the pitch frequency estimate F0 is set. The update process is described by the following pseudo code section.

if (F0 > 0 AND PrevF0 > 0 AND 1/1.22 < |F0/PrevF0| < 1.22)

StablePitchCount = StablePitchCount + 1;
else

StablePitchCount = 0;
if (StablePitchCount (6)
{

DistFromStableTrack = 0;

StableTrackF0 = F0;
}
else if (DistFromStableTrack
[image: image394.wmf]2

£

)
{

if (StableTrackF0 > 0 AND 1/1.22 < |F0/StableTrackF0| < 1.22)

{

DistFromStableTrack = 0;

StableTrackF0 = F0;

}

else

DistFromStableTrack = DistFromStableTrack + 1;
}
else {

StableTrackF0 = 0;

DistFromStableTrack = DistFromStableTrack + 1;
}
PrevF0 = F0;

5.6.5.9
Output pitch value

The pitch frequency estimate F0 is converted to an output pitch value P representing pitch period duration measured in sampling intervals.

[image: image395.wmf]î

í

ì

=

=

otherwise

F

F

if

P

0

/

000

8

0

0

0

(5.139)

5.6.6
Classification

The inputs to the classification block are the vad_flag and hangover_flag from the VAD block, the frame energy E from the SEC block, the input signal
[image: image396.wmf]in

s

, the upper-band signal
[image: image397.wmf]ub

s

from the PP block, and the pitch period estimate P from the PITCH block. The output of the classification block is the voicing class VC, which is one of the output parameters of the front-end.

The voicing class VC is estimated from the different inputs to the classification block as follows. From the upper-band signal
[image: image398.wmf]ub

s

and the frame energy E, the upper-band energy fraction EFub is computed as:

[image: image399.wmf]E

i

s

EF

N

i

ub

ub

å

=

=

1

2

)

(

(5.140)

From the offset-free input signal
[image: image400.wmf]of

s

, the zero-crossing measure ZCM is computed as follows.

[image: image401.wmf]å

=

-

-

-

=

N

i

of

of

i

s

i

s

N

ZCM

2

|

)]

1

(

sgn[

)]

(

sgn[

|

)

1

(

2

1

(5.141)

where:

[image: image402.wmf]î

í

ì

<

-

³

+

=

0

)

(

,

1

0

)

(

,

1

)]

(

sgn[

i

s

i

s

i

s

of

of

of

(5.142)

The logic used by the classification block is illustrated by the pseudo-code below.

if (vad_flag == FALSE)

VC = "non-speech";

else if (P == 0)

VC = "unvoiced";

else if ((hangover_flag == TRUE) || (EFub EF_UB_THLD) || (ZCM >= ZCM_THLD))

VC = "mixed-voiced";

else

VC = "fully-voiced";

end

The upper-band energy fraction threshold EF_UB_THLD is 0.0018 and the zero-crossing measure threshold ZCM_THLD is 0,4375.

6
Feature compression

6.1
Introduction

This clause describes the distributed speech recognition front-end feature vector compression algorithm. The algorithm makes use of the parameters from the front-end feature extraction algorithm of clause 5. Its purpose is to reduce the number of bits needed to represent each front-end feature vector.

6.2
Compression algorithm description

6.2.1
Input

The compression algorithm is designed to take the feature parameters for each short-time analysis frame of speech data as they are available and as specified in clause 5.4.

Fourteen of the sixteen parameters are compressed using a Vector Quantizer (VQ). The input parameters for the VQ are the first twelve static Mel cepstral coefficients:

[image: image403.wmf](

)

(

)

(

)

(

)

[

]

T

eq

eq

eq

t

c

t

c

t

c

t

,

12

,...,

,

2

,

,

1

=

eq

c

(6.1)

where t denotes the frame index, plus the zeroth cepstral coefficient c(0) and a log energy term lnE(t) as defined in clause 5.3.2. The final input to the compression algorithm is the VAD flag. These parameters are formatted as:

[image: image404.wmf](

)

(

)

(

)

(

)

(

)

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

t

E

ln

t

c

t

VAD

t

t

y

,

0

eq

c

(6.2)

The remaining two parameters, viz., pitch period and class, are compressed jointly using absolute and differential scalar quantization techniques.

6.2.2
Vector quantization

The feature vector y(t) is directly quantized with a split vector quantizer. The 14 coefficients (c(1) to c(12), c(0) and lnE) are grouped into pairs, and each pair is quantized using its own VQ codebook. The resulting set of index values is then used to represent the speech frame. Coefficient pairings (by front-end parameter) are shown in table 6.1, along with the codebook size used for each pair. The VAD flag is transmitted as a single bit. c(1) to c(10) are quantized with 6 bits per pair, while c(11) and c(12) are quantized with 5 bits. The closest VQ centroid is found using a weighted Euclidean distance to determine the index:

[image: image405.wmf]q

t

y

t

y

d

i

i

j

i

i

i

i

j

1

,

1

1

,

)

(

)

(

+

+

+

-

ú

û

ù

ê

ë

é

=

(6.3)

[image: image406.wmf](

)

(

)

(

)

(

)

{

}

{

}

12

...

4

,

2

,

0

,

1

0

argmin

1

,

1

,

1

,

1

,

1

,

=

-

£

£

=

+

+

+

+

+

i

d

W

d

N

j

t

idx

i

i

j

i

i

i

i

j

i

i

i

i

(6.4)

where
[image: image407.wmf]1

,

+

i

i

j

q

 denotes the jth codevector in the codebook
[image: image408.wmf]1

,

+

i

i

Q

,
[image: image409.wmf]1

,

+

i

i

N

 is the size of the codebook,
[image: image410.wmf]W

i

i

1

,

+

 is the (possibly identity) weight matrix to be applied for the codebook
[image: image411.wmf]1

,

+

i

i

Q

, and
[image: image412.wmf](

)

t

idx

i

i

1

,

+

 denotes the codebook index chosen to represent the vector
[image: image413.wmf](

)

(

)

[

]

T

i

i

t

y

t

y

1

,

+

. The indices are then retained for transmission to the back-end.

Table 6.1: Split vector quantization feature pairings

	
	Size
	Weight Matrix
	
	

	Codebook
	(NI,I + 1)
	(WI,I + 1)
	Element 1
	Element 2

	Q0,1
	64
	I
	c(1)
	c(2)

	Q2,3
	64
	I
	c(3)
	c(4)

	Q4,5
	64
	I
	c(5)
	c(6)

	Q6,7
	64
	I
	c(7)
	c(8)

	Q8,9
	64
	I
	c(9)
	c(10)

	Q10,11
	32
	I
	c(11)
	c(12)

	Q12,13
	256
	Non-identity
	c(0)
	lnE

Two sets of VQ codebooks are defined; one is used for speech sampled at 8 kHz or 11 kHz while the other for speech sampled at 16 kHz. The numeric values of these codebooks and weights are specified as part of the software implementing the standard. The weights used (to one decimal place of numeric accuracy) are:

8 kHz or 11 kHz sampling rate

[image: image414.wmf]ú

û

ù

ê

ë

é

=

1

,

15

0

0

7

,

498

10

13

,

12

W

16 kHz sampling rate

[image: image415.wmf]ú

û

ù

ê

ë

é

=

8

,

21

0

0

2

,

617

10

13

,

12

W

6.2.3
Pitch and class quantization

The pitch period of a frame can range from 19 samples to 140 samples (both inclusive) at 8 kHz sampling rate. The voicing class of a frame can be one of the following four: non-speech, unvoiced speech, mixed-voiced speech, and (fully) voiced speech. The class information of a frame is represented jointly using the pitch and class indices. The pitch information of alternate frames is quantized absolutely using 7 bits or differentially using 5 bits.

6.2.3.1
Class quantization

When the voicing class of a frame is non-speech or unvoiced speech, the pitch index of the corresponding frame is chosen to be zero, i.e. all-zero codeword either 5 bits or 7 bits long. For non-speech, the 1-bit class index is chosen as 0, and for unvoiced speech, the class index is chosen as 1. For such frames, the pitch period is indeterminate.

When the voicing class of a frame is mixed-voiced speech or (fully) voiced speech, the pitch index of the corresponding frame is chosen to be some index other than zero, either 5 bits or 7 bits long. For mixed-voiced speech, the 1-bit class index is chosen as 0, and for (fully) voiced speech, the class index is chosen as 1. For such frames, the pitch index specifies the pitch period as discussed under clause 5.2.3.2.

Thus the pitch and class indices of a frame jointly determine the voicing class of the frame as illustrated in table 6.2.

Table 6.2: Class quantization

	Voicing Class (VC)
	Pitch index (Pidx)
	Class index (Cidx)

	Non-speech
	0
	0

	Unvoiced-speech
	0
	1

	Mixed-voiced speech
	> 0
	0

	Fully-voiced speech
	> 0
	1

6.2.3.2
Pitch quantization

The pitch period of an even-numbered frame (with the starting frame numbered zero), or equivalently, the first frame of each frame pair is quantized absolutely using 7 bits. Out of the 128 indices ranging from 0 to 127, the index 0 is reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 5.2.3.1. The remaining 127 indices are assigned in increasing order to 127 quantization levels that span the range from 19 to 140 uniformly in the log-domain. Given the pitch period of the frame, the quantization level that is closest to the pitch period in the Euclidean sense and the corresponding index are chosen:

[image: image416.wmf]2

)

)

(

(

127

1

min

arg

)

(

j

q

m

P

j

m

Pidx

-

£

£

=

(6.5)

where P(m) is the pitch period of the mth frame (m even),
[image: image417.wmf]j

q

 is the jth quantization level, and Pidx(m) is the pitch quantization index for the mth frame.

The pitch period of an odd-numbered frame (with the starting frame numbered zero), or equivalently, the second frame of each frame pair is quantized differentially using 5 bits. Out of the 32 indices ranging from 0 to 31, the index 0 is reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 6.2.3.1. The remaining 31 indices are assigned in increasing order to 31 quantization levels, which are chosen depending on which of the three preceding quantized pitch periods serves as the reference (for differential quantization) and what its value is. The choice of the reference pitch period and the 31 quantization levels for different situations are illustrated in table 6.3. With reference to the table, a quantized pitch period value with a non-zero index may be reliable or unreliable to serve as a reference. An absolutely quantized pitch period value is always considered reliable. A differentially quantized pitch period value is considered reliable only if the reference value used for its quantization is the quantized pitch period value of the preceding frame. In table 6.3, the different quantization levels are specified as a factor that multiplies the chosen reference value. If any quantization level falls outside the pitch range of 19 to 140, then it is limited to the appropriate boundary value.

Table 6.3: Choice of reference and quantization levels for differential quantization

	Pitch indices of preceding 3 frames
	Choice of reference pitch period and 31 quantization levels for (m+1)th frame

	Pidx(m-2)
	Pidx(m-1)
	Pidx(m)
	

	0
	0

OR

 > 0 but unreliable
	0
	No suitable reference is available. Use 5-bit absolute quantization.

The 31 quantization levels are chosen to span the range from 19 to 140 uniformly in the log-domain.

	Do not care
	Don't care
	> 0
	The quantized pitch period value of the mth frame is chosen as the reference.

Out of the 31 quantization levels, 27 are chosen to cover the range from (0,8163 × reference) to (1,2250 × reference) uniformly in the log-domain. The other 4 levels depend on the reference value as follows:

19 reference 30 - (2,00, 3,00, 4,00, 5,00) × reference

30 < reference 60 - (1,50, 2,00, 2,50, 3,00) × reference

60 < reference 95 - (0,50, 0,67, 1,50, 2,00) × reference

95 < reference 140 - (0,25, 0,33, 0,50, 0,67) × reference

	Do not care
	> 0

Reliable
	0
	The quantized pitch period value of the (m-1)th frame is chosen as the reference.

The choice of quantization levels is the same as shown in the row below.

	> 0
	0

OR

> 0 but unreliable
	0
	The quantized pitch period value of the (m-2)th frame is chosen as the reference.

Out of the 31 quantization levels, 25 are chosen to cover the range from (0,7781 × reference) to (1,2852 × reference) uniformly in the log-domain. The other 6 levels depend on the reference value as follows:

19 reference 30 - (1,50, 2,00, 2,50, 3,00, 4,00, 5,00) × reference

30 < reference 60 - (0,67, 1,50, 2,00, 2,50, 3,00, 4,00) × reference

60 < reference 95 - (0,33, 0,50, 0,67, 1,50, 1,75, 2,00) × reference

95 < reference (140 - (0,20, 0,25, 0,33, 0,50, 0,67, 1,50) × reference

The 31 indices used for differential quantization are assigned in increasing order to the 31 quantization levels. Given the pitch period of the frame, the quantization level that is closest to the pitch period in the Euclidean sense and the corresponding index are chosen:

[image: image418.wmf]2

)

)

1

(

(

31

1

min

arg

)

1

(

j

q

m

P

j

m

Pidx

-

+

£

£

=

+

(6.6)

where P(m+1) is the pitch period of the (m+1)th frame (m even),
[image: image419.wmf]j

q

 is the jth quantization level, and Pidx(m+1) is the pitch quantization index for the (m+1)th frame.

7
Framing, bit-stream formatting and error protection

7.1
Introduction

This clause describes the format of the bitstream used to transmit the compressed feature vectors. The frame structure used and the error protection that is applied to the bitstream is defined.
 The basic unit for transmission consists of a pair of speech frames and associated error protection bits with the format defined in clause 7.2.4. This frame pair unit can be used either for circuit data systems or packet data systems such as the IETF Real-Time Protocols (RTP). For circuit data transmission a multiframe format is defined consisting of 12 frame pairs in each multiframe and is described in clauses 7.2.1 to 7.2.3. The formats for DSR transmission using RTP are defined in the IETF Audio Video Transport, Internet-Draft (see bibliography) where the number of frame pairs sent per payload is flexible and can be designed for a particular application.

7.2
Algorithm description

7.2.1
Multiframe format

In order to reduce the transmission overhead, each multiframe message packages speech features from multiple short‑time analysis frames. A multiframe, as shown in table 7.1, consists of a synchronization sequence, a header field, and a stream of frame packets.

Table 7.1: Multiframe format

	Sync Sequence
	Header Field
	Frame Packet Stream

	<- 2 octets ->
	<- 4 octets ->
	<- 162 octets ->

	<- 168 octets ->

In order to improve the error robustness of the protocol, the multiframe has a fixed length (168 octets). A multiframe represents 240 ms of speech, resulting in a data rate of 5 600 bits/s.

In the specification that follows, octets are transmitted in ascending numerical order; inside an octet, bit 1 is the first bit to be transmitted. When a field is contained within a single octet, the lowest-numbered bit of the field represents the lowest-order value (or the least significant bit). When a field spans more than one octet, the lowest-numbered bit in the first octet represents the lowest-order value (LSB), and the highest-numbered bit in the last octet represents the highest‑order value (MSB). An exception to this field mapping convention is made for the cyclic redundancy code (CRC) fields. For these fields, the lowest numbered bit of the octet is the highest-order term of the polynomial representing the field. In simple stream formatting diagrams (e.g. table 7.1) fields are transmitted left to right.

7.2.2
Synchronization sequence

Each multiframe begins with the 16-bit synchronization sequence 0 (87B2 (sent LSB first, as shown in table 7.2).

The inverse synchronization sequence 0 (784D can be used for synchronous channels requiring rate adaptation. Each multiframe may be preceded or followed by one or more inverse synchronization sequences. The inverse synchronization is not required if a multiframe is immediately followed by the synchronization sequence for the next multiframe.

Table 7.2: Multiframe synchronization sequence

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	1
	0
	0
	0
	0
	1
	1
	1
	1

	
	1
	0
	1
	1
	0
	0
	1
	0
	2

7.2.3
Header field

Following the synchronization sequence, a header field is transmitted. Due to the critical nature of the data in this field, it is represented in a (31, 16) extended systematic codeword. This code will support 16-bits of data and has an error correction capability for up to three bit errors, an error detection capability for up to seven bit errors, or a combination of both error detection and correction.

Ordering of the message data and parity bits is shown in table 7.3, and definition of the fields appears in table 7.4. The 4 bit multiframe counter gives each multiframe a modulo-16 index. The counter value for the first multiframe is "0001". The multiframe counter is incremented by one for each successive multiframe until the final multiframe. The final multiframe is indicated by zeros in the frame packet stream (see clause 7.2.4).

Note:
The remaining nine bits which are currently undefined are left for future expansion. A fixed length field has been chosen for the header in order to improve error robustness and mitigation capability.

Table 7.3: Header field format

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	Ext
	MframeCnt
	feType
	SampRate
	1

	
	EXP8
	EXP7
	EXP6
	EXP5
	EXP4
	EXP3
	EXP2
	EXP1
	2

	
	P8
	P7
	P6
	P5
	P4
	P3
	P2
	P1
	3

	
	P16
	P15
	P14
	P13
	P12
	P11
	P10
	P9
	4

Table 7.4: Header field definitions

	Field
	No. Bits
	Meaning
	Code
	Indicator

	SampRate
	2
	sampling rate
	00
	8 kHz

	
	
	
	01
	11 kHz

	
	
	
	10
	undefined

	
	
	
	11
	16 kHz

	FeType
	1
	Front-end specification
	0
	standard

	
	
	
	1
	noise robust

	MframeCnt
	4
	multiframe counter
	xxxx
	Modulo-16 number

	Ext
	1
	Extended front-end
	0
	Not extended (4 800 bps)

	
	
	
	1
	Extended (5 600 bps)

	EXP1 - EXP8
	8
	Expansion bits (TBD)
	0
	(zero pad)

	P1 - P16
	16
	Cyclic code parity bits
	(see below)

The generator polynomial used is:

[image: image420.wmf](

)

15

14

12

8

1

1

X

X

X

X

X

g

+

+

+

+

=

(7.1)

The proposed (31, 16) code is extended, with the addition of an (even) overall parity check bit, to 32 bits. The parity bits of the codeword are generated using the calculation:

[image: image421.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

´

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

8

7

6

5

4

3

2

1

4

3

2

1

2

1

1

1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

1

1

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

0

0

0

1

0

0

0

0

1

1

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

1

1

0

1

0

0

0

1

0

0

1

0

0

0

0

0

0

1

1

0

1

0

0

0

1

0

1

0

0

0

0

0

0

0

1

1

0

1

0

0

0

1

0

1

1

0

1

0

0

0

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

0

1

0

0

0

0

0

1

1

0

1

0

0

0

1

1

1

0

1

1

1

1

0

1

1

1

0

0

0

0

0

1

1

1

0

1

0

1

1

0

1

1

1

0

0

0

0

0

1

1

1

0

1

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

EXP

EXP

EXP

EXP

EXP

EXP

EXP

EXP

Ext

MFrameCnt

MFrameCnt

MFrameCnt

MFrameCnt

feType

SampRate

SampRate

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

P

T

(7.2)

where T denotes the matrix transpose.

7.2.4
Frame packet stream

Each 10 ms frame from the front-end is represented by the codebook indices specified in clause 6.2.2, the pitch index and class index specified in clause 6.2.3, and the VAD flag. The indices and the VAD flag for a pair of frames are formatted according to table 7.5.

Note:
The exact alignment with octet boundaries will vary from frame pair to frame pair.

Table 7.5: Frame information for mth and (m+1)th frames

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	Idx2,3(m)
	Idx0,1(m)
	1

	
	Idx4,5(m)
	Idx2,3(m) (cont)
	2

	
	Idx6,7(m)
	Idx4,5(m) (cont)
	3

	
	Idx10,11(m)
	VAD(m)
	Idx8,9(m)
	4

	
	Idx 12,13(m)
	Idx 10,11(m) (cont)
	5

	
	Idx0,1(m+1)
	Idx 12,13(m) (cont)
	6

	
	Idx2,3(m+1)
	Idx0,1(m+1) (cont)
	7

	
	Idx6,7(m+1)
	Idx4,5(m+1)
	8

	
	Idx8,9(m+1)
	Idx6,7(m+1) (cont)
	9

	
	Idx10,11(m+1)
	VAD(m+1)
	Idx8,9(m+1) (cont)
	10

	
	Idx 12,13(m)
	11

	
	Pidx(m)
	CRC(m,m+1)
	12

	
	Pidx(m+1)
	Pidx(m) (cont)
	13

	
	
	PC-CRC(m,m+1)
	Cidx(m+1)
	Cidx(m)
	14

The codebook indices for each frame take up 44 bits. After two frames worth of codebook indices, or 88 bits, a 4-bit CRC (
[image: image422.wmf]X

X

X

g

4

1

)

(

+

+

=

) calculated on these 88 bits immediately follows it. The pitch indices of the first frame (7 bits) and the second frame (5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth 1 bit each next follow. Finally, a 2-bit CRC (denoted by PC-CRC) calculated on the pitch and class bits (total: 14 bits) of the frame pair using the binary polynomial g(X) = 1 + X + X2 is included. The total number of bits in frame pair packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108, or 13,5 octets. Twelve of these frame pair packets are combined to fill the 162 octet (1 296 bit) feature stream. When the feature stream is combined with the overhead of the synchronization sequence and the header, the resulting format requires a data rate of 5 600 bits/s.

All trailing frames within a final multiframe that contain no valid speech data will be set to all zeros.

8
Bit-stream decoding and error mitigation

8.1
Introduction

This clause describes the algorithms used to decode the received bitstream to regenerate the speech feature vectors. It also covers the error mitigation algorithms that are used to minimize the consequences of transmission errors on the performance of a speech recognizer and/or a speech reconstructor.

8.2
Algorithm description

8.2.1
Synchronization sequence detection

The method used to achieve synchronization is not specified in the present document. The detection of the start of a multiframe may be done by the correlation of the incoming bit stream with the synchronization flag. The output of the correlator may be compared with a correlation threshold (the value of which is not specified in this definition). Whenever the output is equal to or greater than the threshold, the receiver should decide that a flag has been detected. For increased reliability in the presence of errors the header field may also be used to assist the synchronization method.

8.2.2
Header decoding

The decoder used for the header field is not specified in the present document. When the channel can be guaranteed to be error-free, the systematic codeword structure allows for simple extraction of the message bits from the codeword. In the presence of errors, the code may be used to provide either error correction, error detection, or a combination of both moderate error correction capability and error detection capability.

In the presence of errors, the decoding of the frame packet stream in a multiframe is not started until at least two headers have been received in agreement with each other. Multiframes are buffered for decoding until this has occurred. The header block in each received multiframe has its cyclic error correction code decoded and the "common information carrying bits" are extracted. With the header defined in the present document the "common information carrying bits" consist of SampRate, FeType, Ext, and EXP1 - EXP8 (expansion bits).

NOTE:
The use of EXP1 - EXP8 depends on the type of information they may carry in the future. Only those bits which do not change between each multiframe are used in the check of agreement described above.

Once the common information carrying bits have been determined then these are used for all the multiframes in a contiguous sequence of multiframes.

8.2.3
Feature decompression

Codebook, pitch, and class indices and the VAD flag are extracted from the frame packet stream, with optional checking of CRC and PC-CRC. (Back‑end handling of frames failing the CRC and PC-CRC check is specified in clause 8.2.4.) Using the codebook indices received, estimates of the front-end features are extracted with a VQ codebook lookup:

[image: image423.wmf](

)

(

)

(

)

{

}

12

...

4

,

2

,

0

ˆ

ˆ

1

,

1

1

,

=

=

ú

û

ù

ê

ë

é

+

+

+

i

q

t

y

t

y

i

i

m

idx

i

i

i

i

(8.1)

From the pitch and class indices, the voicing class feature is extracted as specified in table 6.2. For non-speech and unvoiced frames, the pitch period is indeterminate. For a mixed-voiced or (fully) voiced frame, the pitch period is estimated from the pitch index as follows. For a frame with absolute pitch quantization (m even), the pitch index directly specifies the quantized pitch period. For a frame with differential pitch quantization (m odd), the pitch index specifies the factor by which the reference has to be multiplied. The reference, which can be the quantized pitch period value of any one of the preceding three frames, is obtained using the rules of table 6.3. If no suitable reference is available (Row 1 of table 6.3), then the pitch index directly specifies the quantized pitch period.

8.2.4
Error mitigation

8.2.4.1
Detection of frames received with errors

When transmitted over an error prone channel then the received bitstream may contain errors. Two methods are used to determine if a frame pair packet has been received with errors:

· CRC and PC-CRC: The CRC recomputed from the codebook indices of the received frame pair packet data does not match the received CRC for the frame pair, or, the PC-CRC recomputed from the pitch and class indices of the received frame pair packet data does not match the received PC-CRC for the frame pair, or both.

· Data consistency: A heuristic algorithm to determine whether or not the decoded parameters for each of the two speech vectors in a frame pair packet are consistent. The details of this algorithm are described below.

The parameters corresponding to each index, idxi, i + 1, of the two frames within a frame packet pair are compared to determine if either of the indices are likely to have been received with errors:

[image: image424.wmf](

)

(

)

(

)

(

)

(

)

(

)

î

í

ì

>

-

+

>

-

+

=

+

+

+

otherwise

T

t

y

t

y

OR

T

t

y

t

y

ag

badindexfl

i

i

i

i

i

i

i

0

1

1

if

1

1

1

1

 i = {0,2....12}
(8.2)

The thresholds Ti have been determined based on measurements of error free speech. A voting algorithm is applied to determine if the whole frame pair packet is to be treated as if it had been received with transmission errors. The frame pair packet is classified as received with error if:

[image: image425.wmf]å

=

³

12

,...

2

,

0

2

i

i

ag

badindexfl

(8.3)

The data consistency check for erroneous data is only applied when frame pair packets failing the CRC test are detected. It is applied to the frame pair packet received before the one failing the CRC test and successively to frames after one failing the CRC test until one is found that passes the data consistency test. The details of this algorithm are shown in the flow charts of figures 8.1 and 8.2.

8.2.4.2
Substitution of parameter values for frames received with errors

The parameters from the last speech vector received without errors before a sequence of one or more "bad" frame pair packets and those from the first good speech vector received without errors afterwards are used to determine replacement vectors to substitute for those received with errors. If there are B consecutive bad frame pairs (corresponding to 2B speech vectors) then the first B speech vectors are replaced by a copy of the last good speech vector before the error and the last B speech vectors are replaced by a copy of the first good speech vector received after the error. It should be noted that the speech vector includes the 12 static cepstral coefficients, the zeroth cepstral coefficient, the log energy term and the VAD flag, and all are therefore replaced together. In the presence of errors, the decoding of the frame packet stream in a multiframe is not started until at least two headers have been received in agreement with each other. Multiframes are buffered for decoding.

8.2.4.3
Modification of parameter values for frames received with errors

The logE, pitch, and class parameters of frames received with errors are modified as follows after the substitution step described in clause 8.2.4.2. This modification step affects only back-end speech reconstruction - it does not affect speech recognition.

First, a 3-point median filter is applied to the logE parameter. The median value of the logE parameters of the preceding, current, and succeeding frames replaces the logE parameter of the current frame. The median filter is switched on only after the first frame error has been detected. In other words, there is no median filtering for an error‑free channel.

Second, the logE, pitch, and class parameters of frames received with errors are modified according to the runlength of errors. Let the runlength of errors be 2B frames. If 2B is less than or equal to 4, no parameter modification is done. In this case, because of the substitution step in clause 8.2.4.2, the first B frames receive their parameters from the good frame on the left (before the error) and the next B frames receive their parameters from the good frame on the right (after the error).

For a runlength greater than 4 but less than or equal to 24, the parameter modification is done as follows. The parameters of the first two frames and last two frames are not modified. From the 3rd frame to the Bth frame, the logE parameter is decreased linearly from left to right by 2 per frame. The value of the logE parameter is however not allowed to go below 4,7. If these frames are (fully) voiced, then they are modified to mixed-voiced frames. The pitch parameters are not changed. From the (2B-2)th frame to (B+1)th frame (both inclusive), the logE parameter is decreased linearly from right to left by 2 per frame with a floor value of 4,7. Fully voiced frames are modified to mixed-voiced frames and the pitch parameters are not modified.

If the runlength of errors is greater than 24, then the first 12 and the last 12 frames are handled exactly as above. The remaining (2B-12) frames in the middle are modified as follows. The logE parameter is set to 4,7, the class parameter is set to "unvoiced", and the pitch parameter is indeterminate.

[image: image426.wmf]

Start

CurrentFrame = get next frame

Buffering Data

Mode

CRC of Current

Frame

;

Threshold of

Previous Frame

CRC of

Current

Frame

On

Off

Buffering Data Mode = On

BufferIdx = 0

Buffer[BufferIdx] = CurrentFrame

BufferIdx++

Error

PreviousFr

ame = CurrentFrame

OK

Buffering Data Mode = Off

Buffer[BufferIdx++] = PreviousFrame

Buffer[BufferIdx++] = CurrentFrame

Buffering Data Mode = On

Both In Erro

r

UnBuffer data from 0 to BufferIdx

-

1

End

Output Previous Frame

LastGoodFrame = Previo

usFrame

Previousframe = CurrentFrame

Otherwise

Figure 8.1: Error mitigation initialization flow chart

[image: image427.wmf]

Start

Processing of initial

frames to get a reliable

one in the

PreviousFrame.

CRC of

Current

Frame

Threshold

of Previous

Frame

LastGoodFrame =

PreviousFrame

Output

PreviousFrame

PreviousFrame =

CurrentFrame

LastGoodFrame =

PreviousFrame

Output

PreviousFrame

Buffer[0] = Current

BufferIdx = 1

Buffer[0] =

PreviousFrame

BufferIdx = 1

Error

OK

OK

Error

Off

Buffering Data Mode = On

CRC of

Current

Frame

Buffer[

BufferIdx] = Current Frame

BufferIdx++

On

Buffer[

BufferIdx] = Current Frame

BufferIdx++

Threshold of

Current

Frame

Error

OK

Perform Error Correction from

0 to Buffe

rIdx

-

1

BufferIdx = 0

Buffering Data Mode = Off

Error

OK

Previous Frame =

Current Frame

LastGoodFrame =

Current Frame

Buffering Data Mode = Off

Buffer[

BufferIdx] = Current

BufferIdx++

Buffering

Data Mode

CurrentFrame =

GetNextFrame

Figure 8.2: Main error mitigation flow chart

9
Server feature processing

[image: image428.wmf]lnE

and
[image: image429.wmf](

)

0

c

combination, derivatives calculation and feature vector selection (FVS) processing are performed at the server side.
[image: image430.wmf](

)

0

c

,
[image: image431.wmf](

)

1

c

, …,
[image: image432.wmf](

)

12

c

,
[image: image433.wmf]lnE

 are received in the back-end.
[image: image434.wmf](

)

0

c

 is combined with
[image: image435.wmf]lnE

 then the first and second order derivatives of
[image: image436.wmf](

)

1

c

, …,
[image: image437.wmf](

)

12

c

,
[image: image438.wmf](

)

&0

lnEc

 are calculated resulting in a 39 dimensional feature vector. A feature vector selection procedure is then performed according to the VAD information transmitted.

9.1
lnE and c(0) combination

[image: image439.wmf](

)

0

c

 and
[image: image440.wmf]lnE

are combined in the following way:

[image: image441.wmf](

)

(

)

&00,60230,4

lnEcclnE

=´+´

(9.1)

9.2
Derivatives calculation

First and second derivatives are computed on a 9-frame window. Velocity and acceleration components are computed according the following formulas:

[image: image442.wmf](

)

,1,0(,4)0,75(,3)0,50(,2)0,25(,1)

0,25(,1)0,50(,2)0,75(,3)1,0(,4),

112

velitcitcitcitcit

citcitcitcit

i

=-´--´--´--´-

++++++++

££

´´´´

(9.2)

[image: image443.wmf](,)1,0(,4)0,25(,3)0,285714(,2)

0,607143(,1)0,714286(,)0,607143(,1)

0,285714(,2)0,25(,3)1,0(,4),

112

accitcitcitcit

citcitcit

citcitcit

i

=´-+´--´-

-´--´-´+

-´++´++´+

££

(9.3)

where
[image: image444.wmf]t

 is the frame time index.

The same formulae are applied to obtain
[image: image445.wmf](

)

&0

lnEc

 velocity and acceleration components.

9.3
Feature vector selection

A FVS algorithm is used to select the feature vectors that are sent to the recognizer. All the feature vectors are computed and the feature vectors that are sent to the back-end recognizer are those corresponding to speech frames, as detected by a VAD module (described in annex A).

10
Server side speech reconstruction

10.1
Introduction

This clause describes the server side speech reconstruction algorithm. Speech is reconstructed from feature vectors that have been decoded from the received bit stream and error-mitigated. Each feature vector consists of the following 16 parameters - 13 Mel-Frequency Cepstral Coefficients (MFCC) C0 through C12, the log-energy parameter logE, the pitch period value P, and the voicing class VC. The reconstructed speech is in digitized form and is provided at a sampling rate of 8 kHz regardless of the sampling rate of the input speech from which the feature vectors have been extracted.

The specification also covers a pitch tracking and smoothing algorithm, which is applied to the pitch (and class) parameters before they are used for speech reconstruction.

In clause 10, the following symbolic notations are used for some constants if not stated differently in the text:
N = 200 - frame length in samples;
M = 80 - frame shift in samples;
fs = 8 - sampling rate of synthesized speech signal in kHz;
FFTL = 256 - FFT dimension.

10.2
Algorithm description

The reconstruction algorithm synthesizes one frame of speech signal from each MFCC vector and the corresponding logE, pitch and voicing class parameters. Frame synthesis is based on a harmonic model representation. The model parameters, viz., harmonic frequencies, magnitudes, and phases, are estimated for each frame and a complex spectrum (STFT) of the frame is computed. The complex spectrum is then transformed to time-domain representation and overlap-added with part of the speech signal already synthesized.

10.2.1
Speech reconstruction block diagram

Speech reconstruction block diagram is shown in figure 10.1.

[image: image446.emf]

PTS

HSI

HOC

R

SFE

Q

CTM

COM

B

APM

PF

VPH

LSTD

OLA

MFCC, logE

pitch

voicing

class

 speech

UP

H

CDE T16kHz

APM
All-Pole spectral envelope Modelling

CDE
Cepstra De-Equalization

COMB
Combined magnitudes estimate calculation

CTM
Cepstra To Magnitudes transformation

HOCR
High Order Cepstra Recovery

HSI
Harmonic Structure Initialization

LSTD
Line Spectrum to Time-Domain transformation

OLA
Overlap-add

PF
PostFiltering

PTS
Pitch Tracking and Smoothing

SFEQ
Solving Front-End eQuation

T16kHz
feature Transformation at 16kHz

UPH
Unvoiced Phase synthesis

VPH
Voiced Phase synthesis

Figure 10.1: Speech reconstruction block diagram

10.2.2
Pitch Tracking and Smoothing

The input to the Pitch Tracking and Smoothing block (PTS) is a set of successive pitch period values P[n], log energy values logE[n] and voicing class values VC[n]. (Zero pitch period indicates either an unvoiced frame or non-speech frame.) The outputs are the corrected values pfixed [n] of pitch period and vcfixed [n] of voicing class.

Pitch processing is done in three stages. Then the voicing class value correction is performed.

The three stages of pitch processing require three working buffers to hold the pitch values of successive frames and possibly the log-energy of the frames (for the first stage only). Each stage introduces further delay (look-ahead) in the output pitch value. The buffer length L (an integer number of frames) is the sum of the number of look-ahead frames (the delay) D, the number of backward frames (the history) H, plus one, which is the current output frame at that stage (i.e. L=D+H+1). Each stage produces a new output value, which is pushed at the top (at the end) of the next stage buffer. All other values in the buffer are pushed one frame backwards, with the oldest value discarded. This configuration is described in figure 10.2.

[image: image447.wmf]0

Stage 1:

Stage 2:

Stage 3:

most recent

Input

Output

Oldest

D1

H1

D2

H2

D3

H3

1

H1

Figure 10.2: Buffers of the three-stage pitch tracking and smoothing algorithm

The total look-ahead (in frames) required for the correction of current pitch value, and therefore the delay introduced by the PTS block is: D = D1 + D2 + D3. The delay and history values used are:

First stage:
D1 = 8, H1 = 10 (therefore L1 = 19);
Second stage:
D2 = H2 = 1 (therefore L2 = 3);
Third stage:
D3 = H3 = 2 (therefore L3 = 5).

And the total delay is 11 frames.

All the three stage buffers are initialized by zero values. Each coordinate of the energy buffer used at the first stage is initialized by -50.

In the description of the three-stage pitch tracking algorithm the terms "voiced frame" and "unvoiced frame" are redefined. A frame is referred to as voiced frame if it is either of "fully voiced" or of "mixed-voiced" class. A frame is referred to as unvoiced if it is of "unvoiced" or "non-speech" class.

10.2.2.1
First stage - gross pitch error correction

Let p[n], n=0,1,...,L1-1 be the pitch period values of the first stage buffer, such that p[L1-1] is the most recent value (the new input pitch), and p[0] is the oldest value. A pitch value of zero indicates an unvoiced frame. Similarly, there is a buffer of the same length holding the energy values.

The output pitch of the first stage has a delay of D1 frames compared to the most recent frame in the buffer. The processed frame has D1 frames look-ahead and H1 backwards frames. A new pitch value Pout associated with the location n=H1 in the buffer has to be calculated and pushed to the second stage pitch tracking.

If the frame is unvoiced (i.e. p[H1]==0) then Pout=0 as well.

If the frame is voiced, but there are unvoiced frame at both sides (i.e. p[H1]!=0, p[H1-1]==p[H1+1]==0), then Pout=0.
If the frame is voiced, and is a member of a voiced segment of only two frames, then the similarity between the pitch values of the two voiced frames is examined as described below. If they are similar, then no change is made to the pitch value, i.e. Pout=p[H1]. Otherwise, the frame is reclassified as unvoiced, Pout=0.

In the remaining cases, the output pitch value Pout will be assigned the value p[H1], or it may be assigned an integer multiplication or integer divide of p[H1]. To do this, first the voiced segment in which the frame H1 is located in is identified. This voiced segment can extend D1 frames ahead and H1 frames backwards at the most. It will be shorter if there are unvoiced frames in the buffer. Then, a reference pitch value is extracted using the information from the neighbouring frames in the voiced segment. Finally, the output pitch value of the first stage is identified.

Similarity measure
Two (positive) pitch periods P1 and P2 are declared as similar if for a given similarity factor
[image: image448.wmf]1

r

>

the following is true:

[image: image449.wmf]r

r

/

1

2

1

P

P

P

³

³

´

A similarity factor of 1,28 is used to check the similarity of two pitch periods of successive frames (i.e. 10 ms apart). A factor of 1,4 is used for pitch periods that are two frames apart (20 ms).

Relevant frames identification.

The voiced segment in which the current frame (in position H1) is located and its pitch and energy values are copied to a temporary buffer. The pitch values of this segment are notified by q[n], n = 0, 1, …, N - 1 and the corresponding log‑energy values as e[n], n = 0, 1, …, N - 1. Here N is the number of frames in the voiced segment. (Note that
[image: image450.wmf]1

2

L

N

£

<

). Figure 10.3 describes the indexing of the voiced segment. "U" represents an unvoiced frame, and "V" a voiced frame. Location K in the voiced segment now represents the current examined frame (p[H1], for which a first stage output pitch value must be calculated):

[image: image451.wmf]most recent

Oldest

D1

H1

v

v

v

u

v

v

u

voiced segment

0

v

1

N-1

K

Figure 10.3: Location of a voiced segment within the first stage buffer

The purpose of the following process is to identify the set of frames that have similar pitch values, and their total energy is the greatest. To do that, the N pitch values are sorted according to ascending pitch values. The sorted pitch values are then divided into groups. A group contains one or more consecutive sorted pitch periods, such that neighbouring pitch values are similar (with the similarity factor 1,28) in the sense defined above. The pitch values are processed from the smallest to the largest. When the similarity is violated between the consecutive sorted pitch values, the previous group is closed and a new group is opened.

For each group, the total energy of all frames in the group is calculated. The group that has the biggest total energy is selected. All other frames that are not within the selected group are marked as deleted in the original (unsorted) voiced segment temporary buffer q.

Reference pitch value calculation
One or more pitch tracks are identified in the voiced segment (represented by the buffers q and e). The tracking is done only on the frames that were not deleted by the relevant frames identification process. If frame K (examined frame of the stage 1) was not deleted, it will be included in one of the pitch tracks. A pitch track is defined as a set of successive undeleted voiced frames, whose neighbouring pitch values are similar in the above specified sense. The energy of each pitch track is the sum of the log-energy of all its frames

After all the pitch tracks are identified, the one with the biggest energy is examined. The reference pitch Pref is defined as the pitch value in the selected track that is closest to position K. If the selected pitch track includes frame K, it means that the reference pitch is exactly the pitch value of the examined frame (meaning it will not change at the first stage of processing).

First stage output calculation

Let p1 and p2 be two positive numbers. We define the distance measure Dist(p1,p2) in the following way:

[image: image452.wmf]2

1

2

1

2

1

)

,

(

p

p

p

p

p

p

Dist

+

-

=

Given a reference pitch value Pref and the pitch value of the current examined frame p[H1], the new pitch value Pout is calculated as specified by the following pseudo code:

INTEGER SCALING
{

[image: image453.wmf]])

1

[

(

H

p

P

if

ref

==

[image: image454.wmf]])

1

[

H

p

P

out

==

;

[image: image455.wmf]])

1

[

(

H

p

P

elseif

ref

>

{

[image: image456.wmf]])

1

[

(

H

p

P

ceil

Q

ref

=

;

[image: image457.wmf](

)

]

1

[

,

min

arg

,...,

1

H

p

m

P

Dist

M

ref

Q

m

´

=

=

;

[image: image458.wmf]]

1

[

H

p

M

P

out

´

=

;

}

[image: image459.wmf]else

{

[image: image460.wmf])

]

1

[

(

ref

P

H

p

ceil

Q

=

;

[image: image461.wmf](

)

]

1

[

,

min

arg

,...,

1

H

p

P

m

Dist

M

ref

Q

m

´

=

=

;

[image: image462.wmf]M

H

p

P

out

/

]

1

[

=

;

}

[image: image463.wmf])

2

(

==

M

if

{

[image: image464.wmf]])

1

[

(

H

p

P

if

ref

>

{

[image: image465.wmf](

)

(

)

)

]

1

[

,

]

1

[

2

,

4

,

1

(

H

p

P

Dist

H

p

P

Dist

if

ref

ref

>

´

[image: image466.wmf]]

1

[

H

p

P

out

=

;

}

[image: image467.wmf]])

1

[

(

H

p

P

if

ref

<

{

[image: image468.wmf](

)

(

)

)

]

1

[

,

]

1

[

,

2

4

,

1

(

H

p

P

Dist

H

p

P

Dist

if

ref

ref

>

´

[image: image469.wmf]]

1

[

H

p

P

out

=

;

}

}
}
10.2.2.2
Second stage - voiced/unvoiced decision and other corrections

Let p[n], n = 0, 1, 2 (L2 = 3) be the pitch period values of the second stage buffer, such that p[2] is the most recent value (the new output of the first stage), and p[0] is the oldest value. An output value will be associated with the middle location n=1 in the buffer, and will be marked Pout.

Pout will be assigned the value of p[1], unless one of the following occurs:

If all three frames are voiced, and p[2] is similar to p[0], then we examine the middle value p[1]. If it is not similar (with
[image: image470.wmf]28

,

1

=

r

) to the average of p[2] and p[0], the output value Pout will receive this average value instead of p[1].

If p[0] and p[2] are voiced and similar, and if p[1] is unvoiced, then the output frame will be voiced with a pitch Pout equal to average of p[0] and p[2]. Here the similarity is evaluated using a similarity factor of
[image: image471.wmf]28

,

1

=

r

 instead of 1,4, even though the pitch values to be compared are two frames apart.
1) If the oldest frame in the buffer is unvoiced (p[0]==0) and the two other frames are voiced, or if the most recent frame is unvoiced (p[2]==0) and the two other frames are voiced, then the similarity between the two voiced frames is examined. If they are not similar, then the output frame will be unvoiced, i.e. Pout=0.

10.2.2.3
Third stage - smoothing

Let p[n], n = 0, 1, ..., L3 - 1 be the pitch period values of the third stage buffer, such that p[L3-1] is the most recent value (the new output of the second stage), and p[0] is the oldest value. L3 is odd. An output value will be associated with the middle location (L3-1)/2 in the buffer, and will be marked pfixed.

If there is an unvoiced frame in the middle location (i.e. p[(L3-1)/2]==0) then the output frame is also unvoiced and pfixed=0. Otherwise, a filtering operation is performed by weighting a modified version of all the pitch values in the buffer as described below.

A new set of pitch values q[n], n = 0, 1, …, L3 - 1 is derived from the current values p[n] in the third stage buffer, according to the following rules:

2) q[(L3-1)/2] = p[(L3-1)/2].

3) For each n, if p[n]==0 (unvoiced frame) then q[n] = p[(L3-1)/2].

4) All other pitch values are multiplied by an integer or divided by an integer, such that they become as close as possible to the value of the middle frame p[(L3-1)/2]. That is, q[n] = M×p[n] or q[n]=p[n]/M where M is an integer greater or equal one. The exact calculation of the new value is done as is described by the pseudo code titled INTEGER SCALING in the clause 10.2.2.1 above wherein the variables substitution should be done as: Pref by p[(L3-1)/2], p[H1] by p[n], and Pout by q[n].

The final output pitch is calculated in the following way:

[image: image472.wmf]å

-

=

´

=

1

3

0

]

[

]

[

L

n

fixed

n

h

n

q

p

where:

h[0]=1/9, h[1]=2/9, h[2]=3/9, h[3]=2/9, h[4]=1/9, (L3 = 5).

10.2.2.4
Voicing class correction

The input for the voicing class correction are three voicing class values VC[n-1], VC[n] and VC[n+1] associated with three consecutive frames, and pitch values before and after the tracking procedure associated with the middle frame n and marked as P and pfixed correspondingly. The output of this processing step is a corrected voicing class value vcfixed associated with the middle frame n. VC[n-1] is initialized by zero when the very first frame is processed. The processing is described by the following pseudo code:

{

if (VC[n-1]=="mixed-voiced" AND VC[n]=="fully-voiced" AND VC[n+1] != "fully-voiced")

vcfixed = "mixed-voiced";

else

vcfixed = VC[n];

if (P == 0 AND pfixed != 0)

vcfixed = "mixed-voiced";

elseif (P != 0 AND pfixed == 0)

vcfixed = "unvoiced";
}

10.2.3
Harmonic Structure Initialization

Inputs for the Harmonic Structure Initialization (HSI) block are the pitch value p=pfixed and the voicing class value vcfixed corresponding to the current frame being synthesized. The HSI block produces modified values of the input parameters and array(s) of harmonic-elements.

The reconstruction algorithm treats non-speech frames and unvoiced frames in the same way. Consequently the voicing class value is modified as:

if (vcfixed == "non-speech")
(10.1)

vc = "unvoiced";
else

vc = vcfixed;

The modified voicing class vc has one of the three possible values: "fully-voiced", "mixed-voiced", and "unvoiced". Accordingly we refer to the frame being synthesized as fully-voiced, mixed-voiced or unvoiced.

For a fully-voiced frame an array VH = {Hk, k=1,…,Nv} of harmonics is allocated. Each harmonic
[image: image473.wmf])

,

,

(

k

k

k

k

A

f

H

j

=

is represented by a normalized frequency fk, magnitude Ak and phase (k values. The number of harmonics Nv is:

[image: image474.wmf])

2

(

p

floor

N

v

=

(10.2)
The normalized frequency fk associated with k-th harmonic is set to:

[image: image475.wmf]p

k

f

k

=

(10.3)

For an unvoiced frame an array UH = {Hk, k=1,…,Nu} of harmonics is allocated. The number of harmonics Nu is:

[image: image476.wmf]1

2

-

=

FFTL

N

u

(10.4)
The normalized frequency associated with k-th harmonic is set to:

[image: image477.wmf]FFTL

k

f

k

=

(10.5)

For a mixed-voiced frame both VH and UH arrays are allocated.

The HSI block does not set values of the harmonic magnitudes and phases. This is a subject of the further processing.

The elements of the VH-array will be henceforth referred to as voiced harmonics, and the elements of the VU-array as unvoiced harmonics.

10.2.4
Unvoiced phase synthesis

The input for the Unvoiced Phase synthesis (UPH) block is the UH array of unvoiced harmonics. Thus the block is entered only if the vc_variable value is either "unvoiced" or "mixed-voiced". The block sets phase values {(k,k=1,…,Nu} associated with the array elements (unvoiced harmonics). The phase values are obtained by a generator of pseudo random uniformly distributed numbers, and they are scaled to fit into the interval [0(, 2(]. A new vector of phase values is generated each time the UPH block is entered.

10.2.5
Cepstra de-equalization

This block inverts the blind equalization transform (clause 5.4) performed at front-end. Twelve cepstra coefficients Ck, k=1, …, 12, are modified as described by the pseudo code shown below:

weightingPar = min(1,max(0, logE - 211/64));
stepSize = 0,0087890625 weightingPar;

new_bias(i) = 0,999 bias(i) + stepSize (Ci - RefCep(i)), i=1,…,12;
Ci += bias(i), i=1,…,12;
bias(i) = new_bias(i), i=1,…,12.

where logE is log-energy value of the current frame from the decoded feature vector; bias and RefCep vectors are initialized as described in clause 5.4.

10.2.6
Transformation of features extracted at 16 kHz

This processing step is performed only if the features have been extracted from the input speech sampled at 16 kHz. The function of this block is to convert the features (cepstra and log-energy) to the ones representing [0 kHz, 4 kHz] frequency band corresponding to the sampling rate of 8 kHz.

First, the vector of cepstra coefficients undergoes 26-dimensional IDCT:

[image: image478.wmf]26

,...,

1

,

)

5

,

0

(

26

cos

26

2

12

0

=

÷

ø

ö

ç

è

æ

-

´

´

´

=

å

=

k

k

n

C

val

n

n

k

p

(10.6)
Then the first 23 obtained values are used to produce a modified cepstra vector by means of 23-dimensional DCT:

[image: image479.wmf](

)

12

,...,

0

,

5

,

0

23

cos

23

1

=

÷

ø

ö

ç

è

æ

-

´

´

=

å

=

k

i

k

val

C

i

i

k

p

(10.7)

Finally the last three values val24, val25 and val26 are used to modify the log-energy as specified below:
{

del = ln(1.9);

E = exp(logE);

fixE = exp(val24 - del) + exp(val25 - del) + exp(val26 - del);

if (E > fixE)

{

E = E - fixE;

logE = max(-50, ln(E));

}
}

10.2.7
Harmonic magnitudes reconstruction

Harmonic magnitudes reconstruction is done in three major steps. An estimate AE of the magnitudes vector is obtained in the SFEQ block. Another estimate AI of the magnitudes vector is obtained in the CTM block. Then a final estimate A is calculated in the COMB block by combining AE with AI.

10.2.7.1
High order cepstra recovery

The harmonic magnitudes are estimated from the mel-frequency cepstral coefficients (MFCC) and the pitch period value (clauses 10.2.7.2 to 10.2.7.4). At the front-end, only 13 of the 23 possible MFCC's are computed (clause 5.3.7), compressed, and transmitted to the back-end. The remaining 10 values, C13 through C22, referred to as high order cepstra here, are simply discarded, i.e. not computed. Clearly, if these missing values are available, the harmonic magnitudes can be estimated more accurately. The HOCR block attempts to at least partially recover the missing high order cepstral information for voiced frames (both mixed and fully voiced). This recovery process continues further within the Solving Front-Equation (SFEQ) block as described below in clause 10.2.7.2. For unvoiced frames, the high order cepstra are not recovered.

The recovery of high order cepstra is achieved through lookup table (table 10.1) using the pitch period as a parameter. Table 10.1 was generated by analysing a large speech database and computing the average value of (uncompressed) high order cepstra over all frames with pitch values falling in the appropriate range.

Table 10.1: High order cepstra for different pitch ranges

	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22

	p

26

26

<

p

32

32

<

p

34

34

<

p

35

35

<

p

36

36

<

p

37

37

<

p

38

	-5,111350E-01

-1,682880E+00

-3,716587E-01

-7,956616E-01

-7,253695E-03

-5,274537E-01

9,280691E-04

-2,563041E-01

-1,049254E-01

-9,817168E-02

-1,323581E+00

-1,247226E+00

8,918094E-01

6,301045E-01

2,640953E-01

-6,120602E-01

-1,029995E+00

-1,210108E+00

-7,136748E-01

-2,458055E-01

-3,166838E+00

-3,976374E+00

-2,099192E+00

-5,804268E-01

4,614631E-01

4,824880E-01

7,639357E-01

-3,386363E-02

-6,201262E-01

-7,372425E-01

-3,018169E+00

-3,911408E+00

-2,720349E+00

-1,107410E+00

2,002102E-01

7,917436E-011,441889E+00

7,677763E-01

-3,245252E-02

-7,143410E-01

 -2,260784E+00

 -3,289034E+00

 -2,556978E+00

 -1,653956E+00

-1,588058E-01

3,966002E-01

1,494472E+00

8,604176E-01

1,893507E-01

-3,483856E-01

-1,802585E+00

-2,144211E+00

-2,228024E+00

-1,802318E+00

-1,032504E+00

5,535706E-03

9,357433E-01

6,810726E-01

3,568225E-01

1,610291E-01

-1,227172E+00

-1,603199E+00

-1,504956E+00

-1,772818E+00

-1,395420E+00

-6,263873E-01

3,036422E-01

1,871070E-01

4,406141E-01

5,066580E-01

	38

<

p

39

39

<

p

40

40

<

p

<41

41

<

p

42

42

<

p

43

43

<

p

46

46

<

p

50

	-1,031216E+00

-1,387326E+00

-1,014192E+00

-1,288828E+00

-1,319227E+00

-1,078165E+00

-3,695266E-01

-1,856345E-01

4,743951E-01

5,453367E-01

-7,697338E-01

-1,251034E+00

-1,135184E+00

-1,052677E+00

-1,081295E+00

-1,276117E+00

-8,835811E-01

-4,264293E-01

2,759056E-01

3,279340E-01

-2,970808E-01

-1,177779E+00

-7,915491E-01

-1,044372E+00

-8,211824E-01

-1,355624E+00

-1,054223E+00

-6,738636E-01

1,521423E-02

9,342021E-02

-1,576688E-01

-1,062970E+00

-6,441808E-01

-6,141125E-01

-7,753426E-01

-1,160622E+00

-1,042945E+00

-7,988926E-01

-3,823192E-01

-1,765679E-01

-2,594792E-01

-9,725035E-01

-4,955449E-01

-3,837078E-01

-5,113737E-01

 -1,020689E+00

-8,800513E-01

-9,256434E-01

-5,710840E-01

-2,608341E-01

1,150858E-01

-6,361938E-01

2,567051E-01

-2,648086E-01

-4,371306E-01

-1,010725E+00

-7,759937E-01

-6,455466E-01

-2,855171E-01

-7,813629E-02

5,119228E-01

-3,679310E-01

6,489079E-01

1,279952E-01

2,239187E-01

-3,094574E-01

-2,643344E-01

-4,557250E-01

-2,296919E-01

-1,546537E-01

	50

<

p

54

54

<

p

62

62

<

p

66

66

<

p

68

68

<

p

69

69

<

p

70

70

<

p

71

	4,467755E-01

-2,535201E-01

7,538735E-01

5,603248E-01

7,922218E-01

3,434679E-01

4,104464E-01

-1,230457E-01

-1,280315E-01

-1,211750E-01

6,339330E-02

-7,212541E-01

5,986097E-01

1,459474E-01

6,876847E-01

-4,344984E-02

2,450704E-01

-1,760258E-01

-3,539870E-03

-7,837202E-02

-2,380725E-01

-1,641640E+00

1,450078E-01

-7,527372E-01

3,593675E-01

-4,426172E-01

1,779412E-02

-2,862400E-01

-7,476118E-02

-5,290803E-02

-3,377764E-01

-2,151872E+00

-1,180943E-01

-1,035271E+00

3,817170E-01

-5,135021E-01

2,217322E-01

-2,720239E-01

-1,189329E-01

-1,244790E-01

-1,775208E-01

-2,086558E+00

-2,195775E-01

-9,837000E-01

3,482551E-01

-4,620659E-01

2,664061E-01

-2,996481E-01

-9,481932E-02

-1,516739E-01

-1,539969E-01

-1,986363E+00

-3,533201E-01

-9,162003E-01

3,157739E-01

-3,801906E-01

2,569408E-01

-2,515628E-01

-1,431256E-01

-2,086413E-01

-3,404706E-01

-1,925969E+00

-3,744814E-01

-8,535586E-01

2,496247E-01

-4,021760E-01

3,560743E-01

-2,202438E-01

-1,582776E-01

-2,290248E-01

	71

<

p

72

72

<

p

74

74

<

p

76

76

<

p

77

77

<

p

78

78

<

p

79

79

<

p

80

80

<

p

	-7,373724E-01

-1,685859E+00

-3,222678E-01

-9,107897E-01

2,935433E-01

-5,313740E-01

4,481341E-01

-2,842423E-01

-1,526781E-01

-2,500107E-01

-6,542689E-01

-1,688334E+00

-1,748565E-01

-9,630367E-01

2,920569E-01

-6,694176E-01

3,618038E-01

-2,193661E-01

-8,691479E-02

-1,523485E-01

-3,450635E-01

-1,905594E+00

-6,137879E-02

-1,113471E+00

2,747527E-01

-6,160255E-01

1,056195E-01

-2,321364E-01

-3,847001E-02

-9,724520E-02

2,806036E-02

-2,085802E+00

-4,639831E-02

-1,303672E+00

1,851366E-01

-6,901463E-01

-9,140391E-03

-2,332839E-01

-9,564089E-02

-1,168974E-01

8,053611E-02

-2,152415E+00

7,933393E-02

-1,489653E+00

2,179069E-01

-8,265848E-01

-5,724430E-02

-2,088230E-01

-9,954191E-02

-8,906914E-02

7,484316E-02

-2,018542E+00

-5,265641E-02

-1,365789E+00

2,166845E-01

-9,570920E-01

-1,540541E-01

-2,568645E-01

-7,194232E-02

-2,474382E-02

-1,306538E-01

-1,829025E+00

-7,194354E-02

-1,013687E+00

2,636875E-01

-6,979883E-01

-1,266116E-01

-2,186688E-01

-9,609150E-02

-1,777760E-02

-5,111350E-01

-1,682880E+00

-3,716587E-01

-7,956616E-01

-7,253695E-03

-5,274537E-01

9,280691E-04

-2,563041E-01

-1,049254E-01

-9,817168E-02

10.2.7.2
Solving front-end equation

The inputs for the SFEQ block are the MFCC vector C, an array HA={Hk, k=1,…,Nh} of harmonics and a boolean indicator voiced_flag. If current frame is of fully-voiced class then VH array is fed into the block (HA=VH) and the indicator is set to voiced_flag = TRUE. If current frame is of unvoiced class then UH array is passed to the block (HA=UH) and the indicator is set to voiced_flag = FALSE. If the frame is of mixed-voiced class then the block is entered twice, one time with (HA=VH, voiced_flag=TRUE) and another time with (HA=UH, voiced_flag=FALSE). The SFEQ block outputs an estimate
[image: image480.wmf]}

,...,

1

,

{

h

E

k

E

N

k

A

A

=

=

 of harmonic magnitudes.

A sequence of processing steps is carried out as described below.

Step 1. Original bins calculation
23-dimensional Inverse Discrete Cosine Transform (IDCT) followed by the exponent operation is applied to the low order cepstra vector LOC = {Ck, k=0,…,12} resulting in an original bins vector
[image: image481.wmf]}

23

,...,

1

,

{

=

=

k

b

B

org

k

org

[image: image482.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

´

´

´

=

å

=

12

0

)

5

,

0

(

23

cos

23

2

exp

n

n

org

k

k

n

C

b

p

(10.8)

If the features have been extracted from the input speech signal sampled at 16 kHz the original bins are modified as follows:

[image: image483.wmf]23

,...,

1

,

=

´

=

k

MFS

b

b

k

org

k

org

k

(10.9)
where MFSk is a sum of the weights of k-th Mel-filter given by (5.58), (5.59).

Step 2. Basis vectors calculation
For each harmonic, the (normalized) frequency fk value is converted to the nearest FFT index fidxk

[image: image484.wmf]h

k

k

N

k

FFTL

f

round

fidx

,

1

),

(

=

´

=

(10.10)
A binary grid vector
[image: image485.wmf]}

2

/

,...,

0

,

{

FFTL

n

g

G

n

=

=

 is computed in two steps:

1)
gn = 0, n=0,…,FFTL/2
(10.11a)

2)

[image: image486.wmf]h

fidx

N

k

g

k

,...,

1

,

1

=

=

(10.11b)
23 prototype basis vectors PBVk, k=1,23, are calculated. A prototype basis vector
[image: image487.wmf]}

2

/

,...,

0

,

{

FFTL

i

pbv

PBV

k

i

k

=

=

 is derived from the triangular weighting window associated with k-th frequency channel of the Mel-filters bank given by (5.58), (5.59), clause 5.3.5.

[image: image488.wmf](

)

ï

ï

ï

î

ï

ï

ï

í

ì

£

£

+

+

-

-

-

£

£

+

-

+

-

>

<

=

´

+

´

´

=

+

+

-

-

-

+

-

1

1

1

1

1

1

1

2

1

,

1

1

,

1

1

,

0

6

,

0

4

,

0

k

k

k

k

k

k

k

k

k

k

k

k

k

i

k

i

k

i

i

k

i

cbin

i

cbin

if

cbin

cbin

cbin

i

cbin

i

cbin

if

cbin

cbin

cbin

i

cbin

i

and

cbin

i

if

where

g

pbv

m

m

m

(10.12)
cbink is a shortcut notation for bincenter(k) given by (5.57).

(Note that in k-th prototype basis vector only coordinates
[image: image489.wmf]h

k

fidx

N

n

pbv

n

,...,

1

,

=

 may have non-zero values.) A basis vector
[image: image490.wmf]}

,...,

1

,

{

h

k

N

n

bv

BV

=

=

is derived from each prototype basis vector PBVk by selecting only those coordinates having the indexes fidxn as follows:

[image: image491.wmf]23

,...,

1

},

,...,

1

,

{

=

=

=

=

k

N

n

pbv

bv

BV

h

k

fidx

k

n

k

n

(10.13)

Step 3. Basis bin vectors and matrix calculation
Each basis vector BVk is converted to a (in general) complex valued vector
[image: image492.wmf]}

,...,

0

,

{

h

k

i

k

N

i

ls

LS

=

=

as specified by the following pseudo code:

{

[image: image493.wmf];

k

k

BV

LS

=

 if (voiced_flag == FALSE)

[image: image494.wmf](

)

h

n

n

k

n

k

n

N

n

f

peph

j

bv

ls

,...,

1

),

)

exp(

=

´

´

´

=

j

;
}
where:
(n is a phase associated with n-th unvoiced harmonic as described in clause 10.2.4; and
peph is phase frequency characteristic of the preemphasis operator:

[image: image495.wmf]9

,

0

,

)

2

cos(

2

1

)

2

sin(

)

2

cos(

1

)

(

2

=

+

´

-

´

´

+

´

-

=

PE

PE

f

PE

f

PE

j

f

PE

f

peph

p

p

p

(10.14)

Note that if voiced_flag is TRUE the coordinates of the LS-vectors have real values.

Each LSk vector is further converted to a synthetic magnitude spectrum vector
[image: image496.wmf]}

1

2

/

,...,

0

,

{

-

=

=

FFTL

i

sm

SM

k

i

k

 by convolution with Fourier transformed Hamming window function followed by absolute value operation as follows:

[image: image497.wmf]å

=

-

´

=

h

N

n

n

k

n

k

i

FFTL

i

f

HWT

ls

sm

1

)

(

(10.15)
where:

[image: image498.wmf](

)

,

_

,

_

,

0

1

1

1

1

23

,

0

54

,

0

)

(

BW

WT

f

if

BW

WT

f

if

N

f

N

f

f

f

HWT

£

ï

î

ï

í

ì

>

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

+

D

+

÷

ø

ö

ç

è

æ

-

-

D

´

+

D

=

(10.16)

[image: image499.wmf](

)

(

)

(

)

î

í

ì

´

´

´

=

=

D

f

N

f

f

if

f

p

p

sin

sin

0

,

0

(10.17)

[image: image500.wmf]000

8

100

_

=

BW

WT

(10.18)

N =200 is frame length.

Mel-filtering operation given by formula (5.60) is applied to each synthetic magnitude spectrum vector
[image: image501.wmf]k

SM

, (in (5.60) Pswi(i) is substituted by
[image: image502.wmf]k

i

sm

), and a 23-dimensional basis bins vector
[image: image503.wmf]}

23

,...,

1

,

{

=

=

i

bb

BB

k

i

k

T is obtained. We see the basis bins vectors as column vectors.

A 23-by-23 basis bins matrix BB which has the vectors BBk as its columns is constructed:

[image: image504.wmf][

]

23

2

1

...

BB

BB

BB

BB

=

(10.19)

Step 4. Equation matrix calculation
A 23-by-23 symmetric equation matrix EM is computed as follows.

[image: image505.wmf]E

BB

BB

EM

T

´

´

+

´

=

l

001

,

0

(10.20)
where
[image: image506.wmf]23

))

(

(

BB

BB

diag

sum

T

´

=

l

 is an average of the main diagonal elements of the matrix BBTBB and E is unit 23 by 23 matrix.

In order to reduce the computational complexity of the further processing in the reference implementation, the LU‑decomposition is applied to the equation matrix EM, and the LU representation is stored.

Step 5. Initialization of iterative process
Iteration counter is set:

it_count = 1
Step 6. High bins calculation.
This step is carried out only if voiced_flag = TRUE, and is skipped otherwise.
23-dimensional IDCT followed by the exponent operation is applied to the high order cepstra vector HOC = {Ck, k=13,…,22} output from the HOCR block. The transform results in a high bins vector
[image: image507.wmf]}

23

,...,

1

,

{

=

=

k

b

B

high

k

high

[image: image508.wmf]÷

÷

ø

ö

ç

ç

è

æ

÷

ø

ö

ç

è

æ

-

´

´

´

=

å

=

22

13

)

5

,

0

(

23

cos

23

2

exp

n

n

high

k

k

n

C

b

p

(10.21)

If the features have been extracted from an input speech signal sampled at 16 kHz and the first iteration is being performed (it_count ==1) then the transform given by 10.9 (Step 1) is applied to the high bin values.

Step 7. Reference bins calculation
A 23-dimensional reference bins vector
[image: image509.wmf]}

23

,...,

1

,

{

=

=

k

b

B

ref

k

ref

 is computed as follows.

if (voiced_flag == TRUE)
{

/* coordinatewise multiplication of Borg and Bhigh vectors */

[image: image510.wmf]23

,...,

1

,

=

´

=

k

b

b

b

org

k

hig

k

ref

k

;
}
else
{

/* Borg is taken as Bref */

Bref = Borg ;
}

Step 8. Basis coefficients calculation
A right side vector is computed by multiplication of the transposed basis bins matrix by the reference bins vector:

[image: image511.wmf]ref

T

B

BB

V

´

=

(10.22)
A set of linear equations specified in matrix notation as:

[image: image512.wmf]V

EM

=

´

g

(10.23)
is solved and a basis coefficients vector
[image: image513.wmf]T

k

k

}

23

,...,

1

,

{

=

=

g

g

is obtained:

[image: image514.wmf]V

EM

´

=

-

1

g

(10.24)

In the reference implementation the equations (10.23) are solved using the LU-decomposition representation of the EM matrix computed at step 4.

Negative basis coefficients if any are replaced by zero:

[image: image515.wmf]23

,...,

1

),

,

0

max(

=

=

k

k

k

g

g

(10.25)

Step 9. Control branching
The control branching step is described by the following pseudo code:

if (voiced_flag == FALSE OR it_count == 3)
{

go to Step 12;
}
/* Otherwise the processing proceeds with the next step 10. */

Step 10. Output bins calculation
First, an output bins vector
[image: image516.wmf]T

out

k

out

k

b

B

}

23

,...,

1

,

{

=

=

is calculated by the multiplication of the transposed basis bins matrix with the basis coefficients vector:

[image: image517.wmf]g

´

=

T

out

BB

B

(10.26)
Then each zero-valued coordinate of this vector (if any) is replaced by a regularization value:

[image: image518.wmf]23

005

,

0

23

1

å

=

´

=

k

out

k

b

h

(10.27)
as shown by the following pseudo code instructions being performed for k=1,…,23:

if
[image: image519.wmf])

0

(

==

out

k

b

[image: image520.wmf];

h

=

out

k

b

Step 11. High order cepstra refinement
Truncated logarithm operation described in clause 5.3.6 is applied to the coordinates of the output bins vector:

[image: image521.wmf]}

23

,...,

1

),

ln

,

50

max(

{

=

-

=

=

k

b

lb

lB

out

k

k

out

(10.28)

Discrete Cosine Transform (DCT) is applied to the lBout vector, besides only 10 last values are calculated out of 23:

[image: image522.wmf](

)

22

,...,

13

,

5

,

0

23

cos

23

1

=

÷

ø

ö

ç

è

æ

-

´

´

=

å

=

k

i

k

lb

C

i

i

out

k

p

(10.29)

which are considered as new estimate of the high order cepstra (HOC). Current high order cepstra values are replaced by these ten coefficients:

[image: image523.wmf]}

22

,...,

13

,

{

=

=

k

C

HOC

out

k

(10.30)

The iteration counter it_count is incremented and control is passed to Step 6.

Step 12. Harmonic magnitude estimates calculation
The vector
[image: image524.wmf]}

,...,

1

,

{

h

E

k

E

N

k

A

A

=

=

of harmonic magnitude estimates is computed as a linear combination of the basis vectors (computed at step 2) weighted by the basis coefficients (computed at step 8):

[image: image525.wmf]å

=

´

=

h

N

n

n

n

E

BV

A

1

g

(10.31a)

Finally, the obtained vector is modified in order to cancel the effect of the high frequency preemphasis done in the front-end:

[image: image526.wmf])

2

cos(

9

,

0

2

9

,

0

1

,...,

1

,

2

k

k

h

k

E

k

E

k

f

MagPemp

where

N

k

MagPemp

A

A

´

´

-

+

=

=

=

p

(10.31b)
(fk are harmonic normalized frequencies)

10.2.7.3
Cepstra to magnitudes transformation

From the pitch period and voicing class parameters, the frequencies fk, k=1,…,Nv of voiced harmonics and the frequencies fk, k=1,…,Nu of unvoiced harmonics are computed in clause 10.2.3. One method to estimate the magnitudes at these frequencies from the mel-frequency cepstral coefficients C0, C1,…, C12 is described in clause 10.2.7.2. In this clause, a second method for transforming cepstra to magnitudes is specified.

As a first step, the high order cepstra are recovered as described in clause 10.2.7.1 for voiced frames to form the complete cepstra C0, C1,…, C22. For unvoiced frames, the high order cepstra are not recovered. From the cepstra of each frame, a fixed cepstra are subtracted as follows: Di = Ci - Fi, i = 0, 1,…, 12 for unvoiced frames and i = 0, 1,…, 22 for voiced frames. The fixed Cepstral values Fi are shown in table 10.2. The modified cepstra Di, i = 0, 1,…, 12 (or 22) are used in the estimation of the harmonic magnitudes as described below. To estimate the harmonic magnitude AIk at harmonic frequency fk , the harmonic frequency fk is first transformed to a corresponding mel-frequency mk using equation (5.55a) as follows:

[image: image527.wmf]÷

ø

ö

ç

è

æ

+

´

=

700

1

log

595

2

10

k

k

f

m

(10.32)

The mel-frequency mk is then transformed to an index jk with the help of table 10.3. In the table, (integer) index values from 0 to 24 and corresponding mel-frequencies are shown. Let the mel-frequencies given in the table 10.3 be denoted by M0,…,MJ,…,M24. Given a harmonic mel-frequency mk, it is first bounded so that it does not exceed M24. Then, the index J (in the range from 1 to 24) is found such that mk (MJ. The (possibly non-integer) index value jk corresponding to mk is then calculated as:

[image: image528.wmf]))

(

)

((

1

1

1

-

-

-

-

-

+

=

J

J

J

k

J

k

M

M

M

m

M

j

(10.33)

From the index jk, another index lk is computed as follows:

[image: image529.wmf]ï

î

ï

í

ì

>

<

=

otherwise

;

5

,

23

if

;

5

,

23

5

,

0

if

;

5

,

0

k

k

k

k

j

j

j

l

(10.34)

From the modified cepstra Di, i = 0, 1,…, 12 (or 22), and the index lk, the log-magnitude estimate ak is obtained as

[image: image530.wmf]å

=

´

´

-

+

=

i

Max

i

k

i

k

i

l

D

D

a

_

1

0

))

23

(

)

5

,

0

cos((

23

2

23

p

(10.35)

where, Max_i is 12 or 22 depending on whether the frame is unvoiced or voiced respectively. From ak, the harmonic magnitude estimate AIk is obtained as follows:

[image: image531.wmf]ï

î

ï

í

ì

>

-

´

´

<

+

´

´

=

otherwise

);

exp(

5

,

23

if

);

24

(

2

)

exp(

5

,

0

if

));

/(

(

2

)

exp(

1

0

k

k

k

k

k

k

k

k

a

j

j

a

j

M

M

m

a

B

(10.36a)

[image: image532.wmf]k

k

I

B

A

=

(10.36b)

The above method (10.33 through 10.36) is applied to each harmonic frequency to estimate the harmonic magnitudes AIk for k = 1, 2,…, Nu (or Nv).

Table 10.2: Fixed cepstral values
	Fixed Cepstral values F0 through F22

	2,5245156e+01

-3,1339415e+01

-5,0421652e+00

-3,9743845e+00

-1,5154464e+00

-1,3563063e+00

-5,6955354e-01

-7,1809975e-01

-5,5995365e-01

-6,2237629e-01

-5,3362716e-02

-1,6299096e-01

-2,5138527e-01

-8,1102386e-02

-2,1767279e-01

9,1988824e-02

1,8607947e-01

9,6931091e-02

9,9251014e-02

4,1572605e-02

2,6646199e-02

-7,0223354e-02

-2,2043307e-02

Table 10.3: Index values and corresponding mel-frequencies

	Index value
	Mel-Frequencies

	0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
	9,6383e+01

1,8517e+02

2,6747e+02

3,4416e+02

4,5023e+02

5,1577e+02

6,0745e+02

6,9222e+02

7,7107e+02

8,6828e+02

9,5777e+02

1,0407e+03

1,1179e+03

1,2075e+03

1,2906e+03

1,3827e+03

1,4679e+03

1,5472e+03

1,6330e+03

1,7238e+03

1,8078e+03

1,8859e+03

1,9766e+03

2,0605e+03

2,1461e+03

10.2.7.4
Combined magnitudes estimate calculation

This block calculates a final combined estimate
[image: image533.wmf])

,...,

1

,

{

h

N

n

An

A

=

=

of harmonic magnitudes from the estimates
[image: image534.wmf]}

,...,

1

,

{

h

E

n

E

N

n

A

A

=

=

 and
[image: image535.wmf]}

,...,

1

,

{

h

I

n

I

N

n

A

A

=

=

obtained in SFEQ block (clause 10.2.7.2) and CTM block (clause 10.2.7.3) correspondingly. Voiced and unvoiced harmonic arrays are treated slightly differently.

10.2.7.4.1
Combined magnitude estimate for unvoiced harmonics

Vector AE is scaled so that its squared norm is equal to the squared norm of the AI vector as is specified by the pseudo code:
{

[image: image536.wmf]å

-

=

h

N

n

E

n

E

A

E

1

;

2

if (EE == 0)

sc = 0;

else

{

[image: image537.wmf]å

=

=

h

N

n

I

n

I

A

E

1

;

2

[image: image538.wmf];

/

E

I

E

E

sc

=

[image: image539.wmf];

I

E

A

sc

A

´

=

}
}

The magnitudes AE and AI are mixed:

[image: image540.wmf]I

E

A

A

A

´

+

´

=

1

,

0

9

,

0

(10.37)

10.2.7.4.2
Combined magnitude estimate for voiced harmonics

Vector AE is scaled and then mixed with the AI vector using a pitch dependent mixing proportion.

Scaling
Scaling is performed differently for long and short pitch period values.
If the pitch value p is less than 55 samples then AE vector is scaled exactly as is described in clause 10.2.7.4.1. Otherwise (if
[image: image541.wmf]55

³

p

) the scaling procedure described below is carried out.

Two scaling factors sclow and schigh are calculated in frequency bands [0, 1 200 Hz] and [1 200 Hz,FNyquist] respectively.

[image: image542.wmf]å

å

å

å

+

=

+

=

=

=

=

=

Nh

L

n

E

n

Nh

L

n

I

n

high

L

n

E

n

L

n

I

n

low

A

A

sc

A

A

sc

1

2

1

2

1

2

1

2

,

(10.38)
where
[image: image543.wmf]))

000

1

/(

200

1

(

s

f

p

floor

L

´

´

=

. A scaling factor is set to 0 if the denominator of the corresponding expression is equal to zero.

Then the harmonic magnitudes
[image: image544.wmf]E

n

A

are modified as specified by the following pseudo code section being executed for:

n=1,…,Hh.

{

fHz =
[image: image545.wmf]000

1

´

´

s

n

f

f

; /* harmonic frequency in Hz units */

if (
[image: image546.wmf]200

£

fHz

)

[image: image547.wmf]low

E

n

E

n

sc

A

A

´

=

;

elseif (
[image: image548.wmf]500

2

³

fHz

[image: image549.wmf]high

E

n

E

n

sc

A

A

´

=

;

else

{

[image: image550.wmf])

200

500

2

(

)

500

2

(

-

-

=

fHz

l

;

[image: image551.wmf]high

low

sc

sc

sc

´

-

+

´

=

)

1

(

l

l

;

[image: image552.wmf]sc

A

A

E

n

E

n

´

=

;

}
}

Mixing
Mixture parameter values
[image: image553.wmf]n

c

as a function of p n values are specified by table 10.4.

Table 10.4: Magnitude mixture parameter vs. pitch

	N
	
[image: image554.wmf]n

p

	
[image: image555.wmf]n

c

	n
	
[image: image556.wmf]n

p

	
[image: image557.wmf]n

c

	1
	22,5
	0,0459
	14
	87,5
	0,8740

	2
	27,5
	0,0765
	15
	92,5
	0,8586

	3
	32,5
	0,1124
	16
	97,5
	0,8306

	4
	37,5
	0,1384
	17
	102,5
	0,8299

	5
	42,5
	0,1869
	18
	107,5
	0,8496

	6
	47,5
	0,2858
	19
	112,5
	0,8346

	7
	52,5
	0,4309
	20
	117,5
	0,7617

	8
	57,5
	0,5676
	21
	122,5
	0,7336

	9
	62,5
	0,6458
	22
	127,5
	0,6321

	10
	67,5
	0,6779
	23
	132,5
	0,5522

	11
	72,5
	0,7009
	24
	137,5
	0,4016

	12
	77,5
	0,7646
	25
	142,5
	0,3306

	12
	82,5
	0,8347
	26
	147,5
	0,2909

The mixture parameter value
[image: image558.wmf]c

to be used for mixing the magnitude vectors is determined by linear interpolation between the values given by the table as described by the following pseudo code:

{

if (
[image: image559.wmf]1

p

p

£

)

[image: image560.wmf]1

c

c

=

;

elseif (
[image: image561.wmf]26

p

p

³

)

[image: image562.wmf]26

c

c

=

;

else

{

Find n such that
[image: image563.wmf]1

+

<

£

n

n

p

p

p

;

[image: image564.wmf])

(

)

(

1

1

n

n

n

p

p

p

p

-

-

=

+

+

r

;

[image: image565.wmf]1

)

1

(

+

´

-

+

´

=

n

n

c

r

c

r

c

;

}

[image: image566.wmf]I

E

A

A

A

´

-

+

´

=

)

1

(

c

c

;
}

10.2.8
All-pole spectral envelope modelling

Given the harmonic magnitudes estimate, Ak, k = 1, 2,…, Nv , of a voiced frame, an all-pole model is derived from the magnitudes as specified in this clause. The all-pole model parameters aj, j = 1, 2,…, J are used for postfiltering (clause 10.2.9) and harmonic phase synthesis (clause 10.2.10). The model order J is 10.

The magnitudes are first normalized as specified by the pseudo-code below so that the largest normalized value is 1.

if (max(Ak) > 0)

Bk = Ak / max(Ak); k = 1, 2,…, Nv

else

aj = 0; j = 1, 2,…, J

From the normalized magnitudes, a set of interpolated magnitudes is derived. The size of the interpolated vector is given by K = (Nv - 1) (F + 1, where the interpolation factor F is a function of Nv as shown in table 10.5. The interpolated vector is obtained by introducing (F - 1) additional magnitudes through linear interpolation between each consecutive pair of the original magnitudes. When F = 1, i.e. when Nv (25, there is no interpolation and K = Nv. The interpolated vector is specified as follows:

[image: image567.wmf]ï

î

ï

í

ì

-

=

+

<

<

+

-

-

-

-

-

+

+

-

+

+

=

=

+

-

+

1

,...,

2

,

1

,

1

1

)

1

(

);

(

1

)

1

(

1

)

1

(

,...,

1

2

,

1

,

1

;

1

/

)

1

(

1

v

j

j

j

v

F

k

k

N

j

jF

k

F

j

B

B

F

F

j

k

B

F

N

F

F

k

B

G

(10.39)

where, Gk, k = 1, 2,…, K = (Nv - 1) (F + 1 represent the interpolated magnitude vector. Each of the interpolated magnitudes is then assigned a normalized frequency in the range from 0 to (, viz., k = k ((/ (K+1), k = 1, 2,…, K. The interpolated vector is next augmented by two additional magnitude values corresponding to k = 0 (DC) and k = (. The length of the augmented, interpolated vector is thus K + 2. This vector is still denoted by Gk, but the subscript k now ranges from 0 to K + 1 = (Nv - 1) (F + 2. The values of G0 and GK+1 are obtained as shown in the pseudo-code below.

if (F == 1)

{

GK+1 = GK;

if (G2 > 1.2 G1)

G0 = 0.8 G1;

else if (G2 < 0.8 G1)

G0 = 1.2 G1;

else

G0 = G1;

}

else

{

GK+1 = 2.0 (GK - GK-1);

G0 = 2.0 (G1 - G2);

}

Table 10.5: Interpolation factor vs. number of harmonics

	Number of voiced harmonics
	Interpolation factor

	Nv < 12
	4

	12 (Nv < 16
	3

	16 (Nv < 25
	2

	25 (Nv
	1

From the augmented, interpolated vector Gk, k = 0, 1,…, K+1, a pseudo-autocorrelation function Rj is computed using the cosine transform as follows:

[image: image568.wmf];

)

cos(

2

)

1

(

1

1

0

å

=

+

´

+

-

+

=

K

k

k

i

K

j

j

j

G

G

G

R

w

 j = 0, 1,…, J
(10.40)

From the pseudo-autocorrelation coefficients Rj, j = 0, 1,…, J, the all-pole model parameters aj, j = 1, 2,…, J are obtained through the well known Levinson-Durbin recursion as the solution of the normal equations:

[image: image569.wmf]å

=

-

£

£

=

´

J

j

i

j

i

j

J

i

R

R

a

1

1

;

(10.41)

For the case when F = 1, i.e. when Nv (25, the all-pole model parameters derived as above represent the final values. For other cases when F > 1, the model parameters are further refined as specified below. The spectral envelope defined by the all-pole model parameters is given by:

[image: image570.wmf]2

2

2

1

...

1

1

)

(

w

-

w

-

w

-

+

+

+

+

=

w

jJ

J

j

j

e

a

e

a

e

a

H

(10.42)

where, the
[image: image571.wmf]w

j

e

represents a complex exponential at frequency (. The spectral envelope given by (10.42) is sampled at all the frequencies (k = k(/ (K+1), k = 0, 1,..., K+1 to obtain the modelled magnitudes Hk, k = 0, 1,…, K+1. The maximum of the modelled magnitudes at frequencies corresponding to the original estimated magnitudes is then used to normalize the modelled magnitudes as follows:

[image: image572.wmf]1

1,...,

,

0

);

1

)

1

(

,...,

1

2

,

1

,

1

max(

+

=

+

-

+

+

=

=

K

k

F

N

F

F

k

H

H

L

v

k

k

k

(10.43)

Next, scale factors Sk , k = 0, 1,…, K + 1 are computed as follows:

[image: image573.wmf]ï

ï

î

ï

ï

í

ì

-

=

+

<

<

+

-

-

-

-

-

+

+

-

+

+

=

+

=

=

=

+

-

+

+

-

)

1

(

2,...,

,

1

;

1

1

)

1

(

);

(

1

)

1

(

1

)

1

(

1,...,

2

1,

1,

;

/

1

and

0

;

1

1

)

1

(

1

1

)

1

(

v

F

j

jF

F

j

v

k

k

k

N

j

jF

k

F

j

S

S

F

F

j

k

S

F

N

F

F

k

L

G

K

k

k

S

(10.44)

The normalized, modelled magnitudes are then multiplied by the appropriate scale factors to obtain a new set of magnitudes Mk = Lk × Sk, k = 0, 1,…, K+1. This set of magnitudes is used to compute a new pseudo-autocorrelation function using (10.40) and subsequently a new set of all-pole model parameters as a solution (10.41) as the final values.

10.2.9
Postfiltering

Postfiltering is applied to the harmonic magnitudes Ak , k = 1, 2,…, Nv of a voiced frame to emphasize the formants in the speech signal using the all-pole model parameters aj, j = 1, 2,…, J as specified below.

From the number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size K = (Nv - 1) × F + 1 are first determined. Then, a weighting factor Uk is computed for each harmonic as follows:

[image: image574.wmf]))

1

/(

(

)

1

)

1

((

+

´

+

´

-

=

K

F

k

k

p

q

(10.45a)

[image: image575.wmf]å

=

´

´

´

+

=

J

j

k

j

j

k

j

a

1

)

cos(

1

1

Re

q

a

; k = 1, 2,…, Nv
(10.45b)

[image: image576.wmf]å

=

´

´

´

-

=

J

j

k

j

j

k

j

a

1

)

sin(

1

Im

q

a

; k = 1, 2,…, Nv
(10.45c)

[image: image577.wmf]å

=

´

´

´

+

=

J

j

k

j

j

k

j

a

1

)

cos(

1

2

Re

q

b

; k = 1, 2,…, Nv
(10.45d)

[image: image578.wmf]å

=

´

´

´

-

=

J

j

k

j

j

k

j

a

1

)

sin(

2

Im

q

b

; k = 1, 2,…, Nv
(10.45e)

[image: image579.wmf])

cos(

1

3

Re

k

k

q

m

´

-

=

; k = 1, 2,…, Nv
(10.45f)

[image: image580.wmf])

sin(

3

Im

k

k

q

m

´

=

; k = 1, 2,…, Nv
(10.45g)

[image: image581.wmf]]

)

1

(Im

)

1

[(Re

]

)

3

(Im

)

3

[(Re

]

)

2

(Im

)

2

[(Re

2

2

2

2

2

2

k

k

k

k

k

k

k

U

+

+

´

+

=

; k = 1, 2,…, Nv
(10.45h)

The values of (, (, and (are respectively 0,95, 0,75 and 0,5. The weights are then normalized and bounded as follows:

[image: image582.wmf]25

.

0

1

4

1

÷

÷

ø

ö

ç

ç

è

æ

=

å

=

v

N

k

k

v

k

k

U

N

U

V

; k = 1, 2,…, Nv
(10.46a)

[image: image583.wmf]))

,

5

,

1

min(

,

5

,

0

max(

k

k

V

W

=

; k = 1, 2,…, Nv
(10.46b)

Postfiltering is applied to the harmonic magnitudes as follows. It is ensured that the energy in the harmonics before and after postfiltering remains the same.

[image: image584.wmf]î

í

ì

´

³

´

=

otherwise

A

if

W

A

B

k

k

k

k

k

;

05

,

0

;

p

q

(10.47a)

[image: image585.wmf]å

å

=

=

=

r

v

v

N

k

k

N

k

k

B

W

1

2

1

2

(10.47b)

[image: image586.wmf]k

k

B

P

´

=

r

; k = 1, 2,…, Nv
(10.47c)

where Pk, k = 1, 2,…, Nv represent the postfiltered harmonic magnitudes.

10.2.10
Voiced phase synthesis

The harmonic phases (k, k = 1, 2,…, Nv of a voiced frame with harmonic cyclic frequencies (k = 2(fk, k = 1, 2,…, Nv are specified as follows. Each harmonic phase (k is made up of three components: a linear phase component (k,lin, an excitation phase component (k,exc, and an envelope phase component (k,env.

The linear phase component is computed as follows:

[image: image587.wmf]ï

î

ï

í

ì

´

´

+

´

=

;

)

(

;

0

,

1

,

,

1

,

otherwise

k

M

RF

unvoiced

is

frame

previous

if

ave

prev

lin

lin

k

w

j

j

(10.48)

where:
· (1,lin,prev represents the linear phase component of the fundamental phase of the previous frame;
RF represents a rational factor of the R1/R2, where R1,R2 ({1,2,3,4}, such that the jump given by
[image: image588.wmf]1

2

1

R

p

R

p

R

p

prev

´

´

-

´

 between the previous pitch period (pprev) and current pitch period (p) is minimized;
(1,ave is the weighted sum of the fundamental (cyclic) frequency of the previous and current frames given by
[image: image589.wmf]2

/

)

(

1

,

1

,

1

w

w

w

+

´

=

RF

prev

ave

, and M is the frame shift in samples.

Note that pprev and (1,lin,prev are initialized to 0 (meaning the previous frame is unvoiced) when the very first frame is being processed.

The excitation phase component is determined using table 10.6 as follows. Given a harmonic frequency (k, it is first transformed into an integer index
[image: image590.wmf])

256

(

p

w

k

k

round

I

´

=

, the corresponding value T[Ik] from table 10.6 is looked up, and un-normalized to obtain (k,exc = T[Ik] × (.

The envelope phase component is computed using the all-pole mode parameters, aj, j = 1, 2,…, J, as follows. From the number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size K = (Nv - 1) (F + 1 are first determined. Then the envelope phase component is computed as:

[image: image591.wmf]))

1

/(

(

)

1

)

1

((

+

´

+

´

-

=

K

F

k

k

p

q

; k = 1, 2,…, Nv
(10.49a)

[image: image592.wmf]å

=

´

+

=

J

j

k

j

k

j

a

1

)

cos(

1

Re

q

; k = 1, 2,…, Nv
(10.49b)

[image: image593.wmf]å

=

´

-

=

J

j

k

j

k

j

a

1

)

sin(

Im

q

; k = 1, 2,…, Nv
(10.49c)

[image: image594.wmf])

Re

/

(Im

tan

)

2

(

1

,

k

k

env

k

-

´

-

=

j

; k = 1, 2,…, Nv
(10.49d)

The excitation and envelope components of the phases are added and any linear component is removed as follows:

[image: image595.wmf]v

env

k

exc

k

sum

k

N

k

2,...,

1,

;

,

,

,

=

j

+

j

=

j

(10.50a)

[image: image596.wmf]v

sum

sum

k

add

k

N

k

k

2,...,

1,

;

,

1

,

,

=

´

-

=

j

j

j

(10.50b)

The linear phase component and the additional phase component are added to obtain the harmonic phases for the voiced frame as follows:

[image: image597.wmf]v

add

k

lin

k

k

N

k

2,...,

1,

;

,

,

=

j

+

j

=

j

(10.51)

Table 10.6: Normalized excitation phases

	Index
	Normalized phase
	Index
	Normalized phase
	Index
	Normalized phase
	Index
	Normalized phase

	0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

	0,000000

0,577271

0,471039

0,402039

0,341461

0,282104

0,221069

0,157074

0,089905

0,019989

-0,051819

-0,124237

-0,195770

-0,264679

-0,328705

-0,385162

-0,430573

-0,460846

-0,472351

-0,464783

-0,444977

-0,425323

-0,415466

-0,418579

-0,433502

-0,457764

-0,488617

-0,523315

-0,559174

-0,593689

-0,625031

-0,652130

-0,674835

-0,693390

-0,707428

-0,715729

-0,717133

-0,713837

-0,713104

-0,723785

-0,750366

-0,791931

-0,845093

-0,905945

-0,970825

0,963654

0,901123

0,846222

0,805481

0,788788

0,807312

0,857269

0,904724

0,922668

0,913757

0,888916

0,856750

0,823730

0,796082

0,781250

0,786346

0,809631

0,831787

0,831818
	64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

	0,806122

0,761841

0,707184

0,649353

0,595245

0,553375

0,535004

0,551025

0,593689

0,629669

0,641205

0,637146

0,630432

0,626068

0,618439

0,597534

0,558716

0,504242

0,439545

0,371796

0,314423

0,322479

0,692352

0,820557

0,775940

0,703735

0,625885

0,549744

0,479889

0,420258

0,374023

0,341888

0,319366

0,297546

0,268768

0,230896

0,186066

0,137939

0,090027

0,045288

0,005859

-0,026398

-0,049316

-0,059448

-0,052521

-0,028687

-0,000732

0,012024

0,001312

-0,028900

-0,070801

-0,117004

-0,160583

-0,194824

-0,214020

-0,217743

-0,215424

-0,221161

-0,241730

-0,274475

-0,313202

-0,351440

-0,384247

-0,409363
	128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

	-0,428986

-0,449249

-0,476257

-0,512085

-0,555054

-0,601379

-0,646881

-0,687469

-0,720123

-0,743896

-0,760712

-0,774292

-0,786865

-0,796417

-0,797058

-0,782288

-0,753052

-0,723755

-0,710052

-0,714722

-0,731720

-0,753998

-0,776672

-0,797760

-0,817749

-0,838562

-0,861664

-0,887115

-0,913971

-0,941437

-0,969849

0,999176

0,963562

0,922089

0,875092

0,824432

0,773285

0,726074

0,688934

0,669617

0,674377

0,698090

0,719421

0,721069

0,702698

0,671631

0,634674

0,596527

0,559784

0,525757

0,494995

0,468231

0,446991

0,433105

0,427216

0,426483

0,424225

0,414124

0,393951

0,365723

0,333374

0,301086

0,272278

0,249054
	192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
	0,231750

0,219360

0,211182

0,207703

0,209747

0,215332

0,217590

0,208527

0,184631

0,147583

0,101593

0,051697

0,002960

-0,039154

-0,068756

-0,080597

-0,073730

-0,055573

-0,038666

-0,030792

-0,033630

-0,047180

-0,072174

-0,109039

-0,156860

-0,213318

-0,275146

-0,338562

-0,398956

-0,450836

-0,487793

-0,505707

-0,510162

-0,518524

-0,545410

-0,592499

-0,654510

-0,725586

-0,801025

-0,877136

-0,950897

0,980316

0,918762

0,866211

0,824219

0,795319

0,786377

0,810913

0,872406

0,925385

0,926483

0,882111

0,808807

0,716248

0,608063

0,480927

0,310974

-0,054810

-0,554077

-0,763275

-0,904968

0,977448

0,884125

0,849152

0,999969

10.2.11
Line spectrum to time-domain transformation

This block transforms a line spectrum of the frame represented by an array
[image: image598.wmf]}

,...,

1

),

,

,

(

{

h

n

n

n

n

N

n

A

f

H

H

=

=

=

j

 of harmonics to a time-domain speech signal segment. If the frame is of fully-voiced class as indicated by vc =="fully‑voiced" the array H is set to VH. In case of unvoiced frame (vc =="unvoiced") H is set to UH. In the case of mixed-voiced frame the arrays of voiced and unvoiced harmonics are combined as described in the following clause.
10.2.11.1
Mixed-voiced frames processing

This step is performed for the mixed-voiced frames only as indicated by vc == "mixed_voiced". The input to the step are the array
[image: image599.wmf]}

,...,

1

),

,

,

(

{

v

v

n

v

n

v

n

v

n

N

n

A

f

H

VH

=

=

=

j

of voiced harmonics and the array
[image: image600.wmf]}

,...,

1

),

,

,

(

{

u

u

n

u

n

u

n

u

n

N

n

A

f

H

UH

=

=

=

j

of unvoiced harmonics. The output is a combined array
[image: image601.wmf]}

,...,

1

),

,

,

(

{

h

n

n

n

n

N

n

A

f

H

H

=

=

=

j

of harmonics. The combined array contains the voiced harmonics associated with frequencies lower than 1 200 Hz and the unvoiced harmonics associated with frequencies higher than 1 200 Hz. The processing is described by the following pseudo code:

{

v_last =
[image: image602.wmf])

)

000

1

(

200

1

(

p

ceil

´

; /* index of the last voiced harmonic to be taken */

u_first =
[image: image603.wmf]1

))

000

1

(

200

1

(

+

´

FFTL

ceil

; /* index of the first unvoiced harmonic to be taken */

[image: image604.wmf]å

å

=

+

=

=

u

v

N

first

u

n

u

n

N

last

v

n

v

n

A

A

sc

_

1

_

2

; /* compute magnitude scaling factor */

[image: image605.wmf]last

v

n

H

H

v

n

n

_

,...,

1

,

=

=

;

[image: image606.wmf]u

u

n

first

u

n

last

v

u

n

first

u

n

last

v

N

first

u

n

f

f

,...,

_

,

,

1

_

_

1

_

_

=

=

=

+

-

+

+

-

+

j

j

;

[image: image607.wmf]u

u

n

first

u

n

last

v

N

first

u

n

A

sc

A

,...,

_

,

1

_

_

=

´

=

+

-

+

;

[image: image608.wmf]1

_

_

+

-

+

=

first

u

N

last

v

N

u

h

;
}

10.2.11.2
Filtering very high-frequency harmonics

At this step the harmonics associated with the frequencies close enough to the Nyquist frequency (if any) are filtered out. Those elements of the harmonics array which satisfy the condition:

[image: image609.wmf])

2

/

93

,

0

(

)

(

FFTL

round

FFTL

f

round

´

>

´

(10.52)
are eliminated and the number Nh of harmonics is updated appropriately.

10.2.11.3
Energy normalization

A synthetic complex discrete spectrum is calculated:

[image: image610.wmf]2

/

,...,

0

,

)

(

)

exp(

1

FFTL

i

FFTL

i

f

j

A

sd

h

N

n

n

n

n

i

=

-

D

´

´

´

=

å

=

j

(10.53)
by convolution of the line spectrum with truncated Dirichlet kernel:

[image: image611.wmf](

)

(

)

(

)

î

í

ì

´

´

´

>

=

=

D

otherwise

f

N

f

BW

WT

f

or

f

if

f

,

sin

sin

_

0

,

0

p

p

(10.54)
where WT_BW is given by (10.18). Then the frame energy estimate Ee is calculated:

[image: image612.wmf]÷

ø

ö

ç

è

æ

´

+

+

=

å

-

=

1

2

/

1

2

2

2

/

2

0

2

1

FFTL

i

i

FFTL

e

sd

sd

sd

FFTL

E

(10.55)
If the energy estimate is nonzero a normalization factor NF is computed using the logE parameter extracted from the decoded feature vector:

[image: image613.wmf]e

E

E

NF

)

exp(log

=

,
(10.56)
otherwise the normalization factor is set to zero NF = 0.
The harmonic magnitudes are scaled:

[image: image614.wmf]h

n

n

N

n

A

NF

A

,...,

1

,

=

´

=

(10.57)

10.2.11.4
STFT spectrum synthesis

A synthetic complex discrete spectrum s_stft is calculated like in (10.53) but Fourier transform of 2M (M = 80 is frame shift) samples long Hann window is used instead of the Dirichlet kernel:

[image: image615.wmf]2

/

,...,

0

,

)

(

)

exp(

_

1

FFTL

i

FFTL

i

f

HnWT

j

A

stft

s

h

N

n

n

n

n

i

=

-

´

´

´

=

å

=

j

,
(10.58)

[image: image616.wmf](

)

,

_

,

_

,

0

1

2

1

1

2

1

25

,

0

50

,

0

)

(

BW

WT

f

if

BW

WT

f

if

M

f

M

f

f

f

HWT

£

ï

î

ï

í

ì

>

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

+

D

+

÷

ø

ö

ç

è

æ

-

-

D

´

+

D

=

(10.59)
where
[image: image617.wmf]D

is given by (10.17), and WT_BW by (10.18).

10.2.11.5
Inverse FFT

An inverse FFT is applied to the synthetic STFT spectrum resulting in FFTL-dimensional vector
[image: image618.wmf]}

1

,...,

0

,

{

-

=

=

FFTL

n

s

S

syn

n

syn

with real coordinates which is used as a time-domain representation of current frame:

[image: image619.wmf]å

-

=

´

´

´

=

1

0

)

2

exp(

_

1

FFTL

i

i

syn

n

FFTL

n

i

j

stft

s

FFTL

s

p

(10.60)
In (10.60)
[image: image620.wmf]2

/

_

_

*

1

FFTL

i

if

stft

s

stft

s

i

FFTL

i

³

=

-

-

10.2.12
Overlap-Add

The input to the Overlap-Add block (OLA) is the synthesized time-domain frame Ssyn . The OLA block outputs an M = 80 samples long segment of speech which is appended to the already synthesized part of the speech signal. The OLA block maintains a pair of M samples long buffers:
[image: image621.wmf]}

,...,

1

,

{

M

k

buf

BUF

out

k

out

=

=

and
[image: image622.wmf]}

,...,

1

,

{

M

k

buf

BUF

ola

k

ola

=

=

.

Each coordinate of BUFola is initialized by zero values when the very first frame is processed. BUFola preserves its contents in between invocations of the OLA block. The procedure performed in the OLA block is specified by the following pseudo code:

{

[image: image623.wmf]1

,...,

1

,

_

1

1

-

=

+

=

+

-

+

+

M

k

stft

s

buf

buf

k

M

FFTL

ola

k

ola

k

; /* overlap-add */

[image: image624.wmf]M

k

buf

buf

ola

k

out

k

,...,

1

,

=

=

; /* copy OLA buffer to OUT buffer */

[image: image625.wmf]M

k

stft

s

buf

k

ola

k

,...,

1

,

_

1

=

=

-

; /* prepare for the next frame */

Output BUFout ;
}

Annex A (informative):
Voice Activity Detection (VAD)
A.1
Introduction

The voice activity detector has two stages - a frame-by-frame detection stage consisting of three measurements, and a decision stage in which the pattern of measurements, stored in a circular buffer, is analysed to indicate speech likelihood. The final decision from this second stage is applied retrospectively to the earliest frame in the buffer, so providing a short look-ahead facility. A hangover facility is also provided, with hangover duration related to speech likelihood.

A.2
Stage 1 - Detection

In non-stationary noise, long-term (stationary) energy thresholds based, for example, on initial noise estimates are not a reliable indicator of speech. In addition, in high noise conditions the structure of the speech (e.g. harmonics) cannot be wholly relied upon as an indicator of speech as they may be corrupted by noise, or structured noises may confuse a detector based on this method.

The voice activity detector presented here uses a comparatively noise-robust characteristic of the speech, namely the energy acceleration associated with voice onset. This acceleration is measured in three ways:

i. from energy values across the whole spectrum of each frame,

ii. from energy values over a sub-region of the spectrum of each frame considered likely to contain the fundamental pitch, and

iii. from the "acceleration" of the variance of energy values within the lower half of the spectrum of each frame.

Due to the presence of the fundamental pitch, the sub-region (characterised typically as the second third and fourth Mel-spectum bands as defined within the body of this document) generally experiences higher signal to noise ratios than the full spectum. Consequently the sub-region measurement is potentially more noise robust than the measurement based on the full spectrum.

However, the sub-region measurement is vulnerable to the effects of high-pass microphones, significant speaker variability and band-limited noise within the sub-region. Consequently it cannot be relied upon in all circumstances and is treated here instead as an augmentation of the whole spectrum measure rather than as a substitute for it.

The variance measure detects structure within the lower half of the spectrum as harmonic peaks and troughs provide a greater variance than most noise, making it particularly sensitive to voiced speech. This complements the whole spectrum measure, which is better able to detect unvoiced and plosive speech.

Measurement 1 - Whole spectrum

The whole-spectrum measurement uses the Mel-warped Wiener filter coefficients generated by the first stage of the double Wiener filter (see clause 5.1.7). A single input value is obtained by squaring the sum of the Mel filter banks.

The voice activity detector applies each of the following steps to the input from each frame, as described below:

1.
If Frame<15 AND Acceleration<2,5, Tracker=MAX(Tracker,Input)

Step one initialises the noise level estimate Tracker. The acceleration measure prevents Tracker being updated if speech commences within the lead-in of Frame < 15 frames.

2.
If Input<TrackerxUpperBound and Input>TrackerxLowerBound,

Tracker=axTracker+(1-a)xInput

Step two updates Tracker if the current input is similar to the noise estimate.
3.
If Input<TrackerxFloor, Tracker=bxTracker+(1-b)xInput

Step three is a failsafe for those instances where there is speech or an uncharacteristically large noise within the first few frames, allowing the resulting erroneously high noise estimate in Tracker to decay. Note there is no update of Tracker if the value is greater than UpperBound, or between LowerBound and Floor.
4.
If Input>TrackerxThreshold, output TRUE else output FALSE.

Step four returns true if the current input is more than 165 % the size of the value in Tracker.

Where a = 0,8 and b = 0,97, UpperBound is 150 % and LowerBound 75 %. Floor is 50 % and Threshold is 165 %. Input is obtained by squaring the sum of the Mel filter banks as described above.

While Acceleration could be calculated using the double-differentiation of successive inputs, it is estimated here by tracking the ratio of two rolling averages of successive inputs. The ratio of fast and slow-adapting rolling averages reflects the acceleration of successive inputs. The contribution rates for the averages used here were (0 x mean + 1 x input) i.e. instantaneous, and ((Frame - 1) x mean + 1 x input) / Frame for fast and slow rolling averages respectively, making the acceleration measure increasingly sensitive over the first 15 frames of step one.

As noted above, the ratio of the instantaneous input value to the short-term mean value Tracker in step 4 is a function of the acceleration of successive inputs.

Measurement 2 - Spectral sub-region

The sub-region measurement uses as its input the average of the second, third and fourth Mel-warped Wiener filter coefficients generated by the first stage of the double Wiener filter (see clause 5.1.7). The detector then applies each of the following steps to the input from each frame, as described below:

1.
Input=pxCurrentInput+(1-p)xPreviousInput

Step one uses a rolling average to generate a smoothed version of the current input, where p = 0,75.
2.
If Frame<15, Tracker=MAX(Tracker,Input)

Step two initialises the noise estimate as the maximum of the smoothed input over the first 15 frames. Note that the variables such as ‘Input’ and ‘Tracker’ are distinct for each measurement.

Steps 3 to 5 are functionally the same as steps 2 to 4 of measurement 1, with the exception that Threshold now equals 3,25.
3.
If Input<TrackerxUpperBound and Input>TrackerxLowerBound,

Tracker=axTracker+(1-a)xInput

4.
If Input<TrackerxFloor, Tracker=bxTracker+(1-b)xInput

5.
If Input>TrackerxThreshold, output TRUE else output FALSE.

Measurement 3 - Spectral Variance

The spectral variance measurement uses as its input the variance of the values comprising the whole frequency range of the linear-frequency Wiener filter coefficients for each frame. This variance is calculated as:

[image: image626.wmf](

)

(

)

(

)

2

2

1

0

2

1

0

2

2

/

1

SPEC

N

i

N

i

SPEC

N

bin

H

bin

H

N

SPEC

SPEC

÷

÷

ø

ö

ç

ç

è

æ

-

å

å

-

=

-

=

(A.1)

where
[image: image627.wmf]4

FFT

SPEC

N

N

=

, and
[image: image628.wmf](

)

bin

H

2

 are the values of the linear-frequency Wiener filter coefficients as calculated by equation (5.17) in clause 5.1.5.

In step 1, the detector takes the maximum input value of the first 15 frames as in step 2 of Measurement 2.

Steps 2 to 4 are then the same as steps 2-4 of Measurement 1, to give a true/false output.

A.3
Stage 2 - VAD Logic

The three measurements discussed above are input to a VAD decision algorithm. The algorithm generates a single 1/0 (true/false or T/F) result based on these measurements, and stores it in a buffer. Successive results populate the buffer, so providing for contextual analysis of the buffer pattern. The VAD decision algorithm does not begin output until the buffer is fully populated with valid results. This process introduces a frame delay equal to the length of the buffer minus one.

For an N = 7 frame buffer, the most recent result is stored at position N as illustrated below. For subsequent results, the buffer contents shift left.

[image: image629.wmf]

1

2

3

4

5

6

7

The VAD decision algorithm applies each of the following steps:

Step 1:

VN = Measurement 1 OR Measurement 2 OR Measurement 3

Thus result VN is true if any of the three measurements returns true. Result VN is then stored at position N on the buffer.

Step 2:

M = MAX
[image: image630.wmf]C

i

i

N

i

1

,

FALSE

V

0

C

TRUE

V

C

þ

ý

ü

î

í

ì

<

<

=

=

=

+

+

,

,

The decision algorithm then analyses the resulting buffer pattern. It searches for the longest single sequence of 'true' values in the buffer; moving along the buffer, a counter C is incremented if the next buffer value is true, and is reset to 0 if it is false. The maximum value C attains over the whole buffer is then taken as the value of M. For example, the sequence T T F T T T F would generate a value of 3 for M.

Step 3:

If M>=SP AND T<LS, T=LS

Where SP is a ‘speech possible’ threshold, corresponding to a sequence of 3 or more ‘true’ values found in the buffer at step 2. A short hangover timer T of LS = 5 frames is activated if no hangover is already present.

Step 4:

If M>=SL AND F>FS, T=LM else if M>=SL, T=LL

Where SL is a ‘speech likely’ threshold, corresponding to a sequence of 4 or more ‘true’ values found in the buffer at step 2. A medium hangover timer T of LM = 23 frames is activated if the current frame number F is outside an initial lead-in safety period of FS frames. Otherwise, a failsafe long hangover timer T of LL = 40 frames is used in case the early presence of speech in the utterance has caused the initial noise estimates of the detectors to be too high.

Step 5:

If M<SP AND T>0, T--

If the lesser of the speech likelihood thresholds is not reached, reduce any current hangover time by 1. Thus the hangover timer T only decrements in the likely absence of speech.

Step 6:

If T>0 output TRUE else output FALSE

Unless hangover timer T has reached a value of zero, the algorithm outputs a positive speech decision. Because T is given a value immediately upon speech detection and only decrements in the absence of speech, step 6 provides a ‘true’ output both during speech and for the duration of any hangover. Because the output is applied to the frame about to leave the buffer, it also provides the look-ahead facility.

Step 7:

Frame++, Shift buffer left and return to step 1

In preparation for the next frame, left-shift the buffer to accommodate the next input.
As noted above, the output speech decision is applied to the frame being ejected from the buffer. The look-ahead effect this provides is detailed below.

The figure below illustrates the buffer, labelled with the frame number of the result VN found at that position:

[image: image631.wmf]

Time t

Time t+1

1

2

3

4

5

6

7

2

3

4

5

6

7

8

Thus at time t, seven frames have populated the buffer, and the result VN for frames 6 and 7 was True. Applying the algorithm above, a negative speech decision is applied to frame 1.

At time t+1, left-shifting of the buffer has ejected frame 1, and the result VN from new frame 8 is True. Applying the algorithm above, a positive speech decision is applied to frame 2. This will also be the case for frames 3, 4 and 5 as subsequent new frames arrive, so forming a 4-frame look-ahead preceding the possible speech in frames 6, 7 and 8.

Assuming only these three inputs are 'True', the full speech decision sequence will be:

	Frame No.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	…

	VN result

	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Timer value
	0
	5
	5
	5
	5
	5
	4
	3
	2
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Speech decision
	F
	T
	T
	T
	T
	T
	T
	T
	T
	T
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F

Where frames 2-5 form a look-ahead in anticipation of further incoming speech, whilst frames 9 and 10 provide only a short hangover as this short isolated sequence may not actually be speech. Empirically the value of short hangover duration LS is a compromise between minimising unwanted noise and providing a couple of frames to bridge speech that is broken up by noise or classification error.

To illustrate this, consider a possible alternative subsequent VN sequence, for which the full speech decision sequence will be:

	Frame No.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	…

	VN result

	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0

	Timer value
	0
	5
	5
	5
	5
	5
	4
	3
	2
	1
	5
	23
	23
	23
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14

	Speech decision
	F
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T

The buffer length and hangover timers can be adjusted to suit needs, although the buffer should always be greater than or equal to the SL threshold value. Once results from all frames in the utterance have been added, the buffer shifts until empty whilst still applying the algorithm.

Annex B (informative):
Bibliography

IETF Audio Video Transport, Internet-Draft: "RTP Payload Format for ETSI ES 201 108 Distributed Speech Recognition Encoding" http://www.ietf.org/internet-drafts/draft-ietf-avt-dsr-05.txt.
History

	Document history

	V1.1.1
	August 2003
	Membership Approval Procedure
MV 20031024:
2003-08-26 to 2003-10-24

	
	
	

	
	
	

	
	
	

	
	
	

_1087307830.unknown

_1110211671.unknown

_1115452932.unknown

_1115455032.unknown

_1115455894.unknown

_1115456177.unknown

_1122986738.unknown

_1128152822.unknown

_1128153338.unknown

_1128158431.unknown

_1128170478.unknown

_1128153279.unknown

_1122988729.unknown

_1123048159.unknown

_1126970220.unknown

_1123048144.unknown

_1122986811.vsd

_1115456355.unknown

_1115456806.unknown

_1115456825.unknown

_1115456876.unknown

_1119868144.doc

1

2

3

4

5

6

7

_1115456857.unknown

_1115456815.unknown

_1115456720.unknown

_1115456731.unknown

_1115456637.unknown

_1115456230.unknown

_1115456317.unknown

_1115456340.unknown

_1115456305.unknown

_1115456200.unknown

_1115456208.unknown

_1115456190.unknown

_1115456034.unknown

_1115456093.unknown

_1115456133.unknown

_1115456170.unknown

_1115456116.unknown

_1115456067.unknown

_1115456079.unknown

_1115456046.unknown

_1115455987.unknown

_1115456012.unknown

_1115456018.unknown

_1115456001.unknown

_1115455959.unknown

_1115455976.unknown

_1115455951.unknown

_1115455351.unknown

_1115455727.unknown

_1115455768.unknown

_1115455833.unknown

_1115455881.unknown

_1115455823.unknown

_1115455745.unknown

_1115455757.unknown

_1115455734.unknown

_1115455648.unknown

_1115455701.unknown

_1115455719.unknown

_1115455683.unknown

_1115455563.unknown

_1115455630.unknown

_1115455534.unknown

_1115455503.unknown

_1115455207.unknown

_1115455276.unknown

_1115455328.unknown

_1115455339.unknown

_1115455308.unknown

_1115455246.unknown

_1115455268.unknown

_1115455214.unknown

_1115455158.unknown

_1115455175.unknown

_1115455189.unknown

_1115455167.unknown

_1115455082.unknown

_1115455135.unknown

_1115455071.unknown

_1115454189.unknown

_1115454575.unknown

_1115454948.unknown

_1115455003.unknown

_1115455025.unknown

_1115454988.unknown

_1115454778.unknown

_1115454786.unknown

_1115454764.unknown

_1115454303.unknown

_1115454383.unknown

_1115454557.unknown

_1115454318.unknown

_1115454205.unknown

_1115454222.unknown

_1115454196.unknown

_1115453162.unknown

_1115453745.unknown

_1115454095.unknown

_1115454180.unknown

_1115453793.unknown

_1115453432.unknown

_1115453548.unknown

_1115453242.unknown

_1115452974.unknown

_1115453068.unknown

_1115453095.unknown

_1115452987.unknown

_1115452950.unknown

_1115452965.unknown

_1115452939.unknown

_1115449501.doc

11 kHz and 16 kHz

Extension

VAD

Noise

Reduction

Pitch &

class

estimation

Waveform

Processing

Cepstrum

Calculation

Blind

Equalization

Feature

Compression

Framing,

Bit

-

Stream

Formatting,

Error Protection

Input

Signal

To

Channel

Terminal

Terminal Front

-

End

Feature Extraction

(a)

Bit

-

Stream Decoding,

Error Mitigation

Feature

Decompression

Server Feature

Processing

Back

-

End

Pitch Tracking

& Smoothing

Speech

Reconstruction

From

Channel

Server

Tonal Features

Output Speech

(b)

_1115452307.unknown

_1115452684.unknown

_1115452762.unknown

_1115452800.unknown

_1115452828.unknown

_1115452776.unknown

_1115452722.unknown

_1115452740.unknown

_1115452697.unknown

_1115452605.unknown

_1115452645.unknown

_1115452676.unknown

_1115452625.unknown

_1115452479.unknown

_1115452485.unknown

_1115452338.unknown

_1115451070.unknown

_1115452016.unknown

_1115452169.unknown

_1115452224.unknown

_1115452161.unknown

_1115451900.unknown

_1115451947.unknown

_1115451187.unknown

_1115450870.unknown

_1115451048.doc

W

FFT

MEL-FB

Log

DCT

sswp_pe(n)

sswp_w(n)

Pswp(bin)

EFB(k)

sswp(n)

SFB(k)

 c(i)

PE

_1115451060.unknown

_1115450922.unknown

_1115450851.unknown

_1115450858.unknown

_1115450812.unknown

_1110483542.unknown

_1110544021.unknown

_1110730704.unknown

_1114492599.doc

SEC

VADVC

PITCH

CLS

PP

LBND

Spectrum

Estimation

s

in

(n)

MF

P

VC

Reset of the Noise Reduction blocks

_1115024571.unknown

_1115109930.unknown

_1115109964.unknown

_1115109740.unknown

_1114495433.doc
[image: image1.wmf]

Sort

F0

Find Class 1

candidate

Foun

d

?

Find best

In Vicinity

Find better

Class 1

candidate

Stable

Track?

Set reference to

stable pitch

Found?

Find best

In Vicinity

Set

pitch

Find Class 2

candidate

Found?

Find best

in vicinity

Set UV

pitch

Set

pitch

Continuous

Pitch?

Set reference to

previous pitch

Find Class 2

candidate

Found?

Find best

in vicinity

Set

pitch

Fin

d Class 3

candidate

Found?

Find best

in vicinity

Set UV

pitch

Set

pitch

EPT=0?

Very high

scores

Set UV

pitch

Set

pitch

YES

NO

YES

NO

NO

NO

NO

NO

NO

YES

YES

YES

NO

YES

YES

YES

YES

NO

100

110

130

120

140

150

160

170

180

190

400

410

420

210

220

230

240

250

260

270

280

290

300

310

320

330

340

350

360

_1114954015.unknown

_1114496487.doc
[image: image1.wmf]

PTS

HSI

HOC

R

SFE

Q

CTM

COM

B

APM

PF

VPH

LSTD

OLA

MFCC, logE

pitch

voicing

class

 speech

UP

H

CDE

T16kHz

_1114493513.doc
[image: image1.wmf]

H

igh F0 band

candidates generation

Correlation scores

calculation

Pitch estimate selection

Found pitch?

Middle F0 band

candidates generation

Correlation scores

calculation

Pitch estimate selection

Found pitch?

Low F0 band

c

andidates generation

YES

NO

YES

NO

Low

-

pass filtered downsampled speech

STFT

Correlation scores

calculation

Pitch estimate selection

History info update

Pitch convertion &

output

_1110731254.unknown

_1110732513.unknown

_1112971980.unknown

_1110735703.unknown

_1110731309.unknown

_1110731235.unknown

_1110613172.unknown

_1110614295.unknown

_1110710840.unknown

_1110710883.unknown

_1110721081.unknown

_1110710909.unknown

_1110710864.unknown

_1110710783.unknown

_1110710821.unknown

_1110616381.unknown

_1110621120.unknown

_1110710679.unknown

_1110620308.unknown

_1110615781.unknown

_1110613272.unknown

_1110613853.unknown

_1110613224.unknown

_1110545897.unknown

_1110552075.unknown

_1110559066.unknown

_1110613043.unknown

_1110553137.unknown

_1110557786.unknown

_1110552996.unknown

_1110552018.unknown

_1110551223.unknown

_1110545294.unknown

_1110545551.unknown

_1110545570.unknown

_1110545498.unknown

_1110545146.unknown

_1110535952.unknown

_1110537928.unknown

_1110541685.unknown

_1110544009.unknown

_1110541615.unknown

_1110536672.unknown

_1110537634.unknown

_1110485373.unknown

_1110488695.unknown

_1110494173.unknown

_1110497513.unknown

_1110498458.unknown

_1110498648.unknown

_1110498008.unknown

_1110495299.unknown

_1110493181.unknown

_1110486566.unknown

_1110488264.unknown

_1110485466.unknown

_1110483888.unknown

_1110485226.unknown

_1110483799.unknown

_1110452548.unknown

_1110475027.unknown

_1110479751.unknown

_1110481292.unknown

_1110482388.unknown

_1110481185.unknown

_1110478615.unknown

_1110479400.unknown

_1110475082.unknown

_1110453513.unknown

_1110457886.unknown

_1110474969.unknown

_1110453633.unknown

_1110453135.unknown

_1110453162.unknown

_1110452611.unknown

_1110356901.unknown

_1110371517.unknown

_1110446599.unknown

_1110448851.unknown

_1110449881.unknown

_1110449982.unknown

_1110449274.unknown

_1110448781.unknown

_1110375352.unknown

_1110364436.unknown

_1110364959.unknown

_1110358045.unknown

_1110360867.unknown

_1110301434.unknown

_1110303333.unknown

_1110303659.unknown

_1110302780.unknown

_1110277581.unknown

_1110277923.unknown

_1110212307.unknown

_1095159609.unknown

_1110115908.unknown

_1110180513.unknown

_1110199489.unknown

_1110199952.unknown

_1110210146.unknown

_1110203227.unknown

_1110199867.unknown

_1110199340.unknown

_1110199468.unknown

_1110198182.unknown

_1110131037.unknown

_1110134170.unknown

_1110140081.unknown

_1110141149.unknown

_1110145043.unknown

_1110140719.unknown

_1110137157.unknown

_1110139826.unknown

_1110132605.unknown

_1110133602.unknown

_1110132294.unknown

_1110116554.unknown

_1110116969.unknown

_1110116503.unknown

_1110030689.unknown

_1110096728.unknown

_1110098478.unknown

_1110114299.unknown

_1110114829.unknown

_1110098706.unknown

_1110113744.unknown

_1110098620.unknown

_1110098054.unknown

_1110098135.unknown

_1110097690.unknown

_1110097974.unknown

_1110097672.unknown

_1110053129.unknown

_1110095171.unknown

_1110095367.unknown

_1110094457.unknown

_1110039454.unknown

_1097930662.unknown

_1110030514.unknown

_1110019379.unknown

_1110024900.unknown

_1110028700.unknown

_1110012364.unknown

_1109837619.unknown

_1097065528.unknown

_1097930077.unknown

_1097065570.unknown

_1095163633.unknown

_1087373943.unknown

_1087717506.unknown

_1087978972.unknown

_1087979485.unknown

_1092047554.unknown

_1092119373.unknown

_1092827148.unknown

_1092119541.unknown

_1092047742.unknown

_1087981508.unknown

_1092047536.unknown

_1087979583.unknown

_1087979607.unknown

_1087979687.unknown

_1087979536.unknown

_1087979273.unknown

_1087979349.unknown

_1087979426.unknown

_1087979309.unknown

_1087979173.unknown

_1087979194.unknown

_1087979139.unknown

_1087719012.unknown

_1087720754.unknown

_1087721016.doc

Start

CurrentFrame = get next frame

Buffering Data

Mode

CRC of Current

Frame;

Threshold of

Previous Frame

CRC of

Current

Frame

On

Off

Buffering Data Mode = On

BufferIdx = 0

Buffer[BufferIdx] = CurrentFrame

BufferIdx++

Error

PreviousFrame = CurrentFrame

OK

Buffering Data Mode = Off

Buffer[BufferIdx++] = PreviousFrame

Buffer[BufferIdx++] = CurrentFrame

Buffering Data Mode = On

Both In Error

UnBuffer data from 0 to BufferIdx-1

End

Output Previous Frame

LastGoodFrame = PreviousFrame

Previousframe = CurrentFrame

Otherwise

_1087978950.unknown

_1087721052.doc

Start

Processing of initial

frames to get a reliable

one in the

PreviousFrame.

CRC of

Current

Frame

Threshold

of Previous

Frame

LastGoodFrame =

PreviousFrame

Output

PreviousFrame

PreviousFrame =

CurrentFrame

LastGoodFrame =

PreviousFrame

Output

PreviousFrame

Buffer[0] = Current

BufferIdx = 1

Buffer[0] =

PreviousFrame

BufferIdx = 1

Error

OK

OK

Error

Off

Buffering Data Mode = On

CRC of

Current

Frame

Buffer[

BufferIdx] = Current Frame

BufferIdx++

On

Buffer[

BufferIdx] = Current Frame

BufferIdx++

Threshold of

Current

Frame

Error

OK

Perform Error Correction from

0 to BufferIdx-1

BufferIdx = 0

Buffering Data Mode = Off

Error

OK

Previous Frame =

Current Frame

LastGoodFrame =

Current Frame

Buffering Data Mode = Off

Buffer[

BufferIdx] = Current

BufferIdx++

Buffering

Data Mode

CurrentFrame =

GetNextFrame

_1087720770.unknown

_1087720574.unknown

_1087720582.unknown

_1087719698.unknown

_1087718986.unknown

_1087718996.unknown

_1087717527.unknown

_1087375107.unknown

_1087375267.unknown

_1087375332.unknown

_1087375359.unknown

_1087375385.unknown

_1087375406.unknown

_1087375377.unknown

_1087375349.unknown

_1087375308.unknown

_1087375233.unknown

_1087375248.unknown

_1087375134.unknown

_1087374764.unknown

_1087374824.unknown

_1087374875.unknown

_1087374802.unknown

_1087374007.unknown

_1087374743.unknown

_1087373979.unknown

_1087373177.unknown

_1087373865.unknown

_1087373903.unknown

_1087373924.unknown

_1087373880.unknown

_1087373551.unknown

_1087373715.unknown

_1087373235.unknown

_1087308156.unknown

_1087373067.unknown

_1087373152.unknown

_1087308191.unknown

_1087308087.unknown

_1087308105.unknown

_1087308069.unknown

_1073301456.unknown

_1073466773.unknown

_1073476972.unknown

_1078068674.unknown

_1081235381.unknown

_1087281078.unknown

_1087281153.unknown

_1087281204.unknown

_1082203118.doc
[image: image1.wmf]Smoothed

Energy Contour

Peak

Picking

Waveform

SNR Weighting

waveform

from NR

waveform

to

 CC

_1082203654.doc
[image: image1.wmf]

 0 f

start

 f

centr

(k)

 f

centr

(k+1)

 f

samp

/2

Frequencies

Mel

_1082208624.doc

Time t

Time t+1

1

2

3

4

5

6

7

2

3

4

5

6

7

8

_1082202846.doc
[image: image1.wmf]

 + ... +

SPEC

N

(

)

(

)

1

,

-

-

PSD

in

T

t

bin

P

(

)

t

bin

P

in

,

PSD

T

PSD

T

1

_1078069496.unknown

_1080477490.unknown

_1080477968.unknown

_1078070651.unknown

_1078069436.unknown

_1078069468.unknown

_1078069179.unknown

_1073483174.unknown

_1073823703.unknown

_1073905175.unknown

_1078058052.unknown

_1078059094.unknown

_1073906574.unknown

_1073912515.unknown

_1073906534.unknown

_1073824345.unknown

_1073829062.unknown

_1073904047.unknown

_1073904259.unknown

_1073824628.unknown

_1073826074.unknown

_1073824532.unknown

_1073823761.unknown

_1073753720.unknown

_1073755664.unknown

_1073823685.unknown

_1073755189.unknown

_1073731557.unknown

_1073731588.unknown

_1073731605.unknown

_1073483189.unknown

_1073729287.unknown

_1073480332.unknown

_1073482500.unknown

_1073482725.unknown

_1073483161.unknown

_1073482705.unknown

_1073481438.unknown

_1073482431.unknown

_1073478387.unknown

_1073479972.unknown

_1073477018.unknown

_1073477445.unknown

_1073476982.unknown

_1073467442.unknown

_1073468196.unknown

_1073468437.unknown

_1073468582.unknown

_1073476545.unknown

_1073476836.unknown

_1073468551.unknown

_1073468232.unknown

_1073467740.unknown

_1073467992.unknown

_1073467726.unknown

_1073467061.unknown

_1073467362.unknown

_1073466867.unknown

_1073466923.unknown

_1073390921.unknown

_1073403372.unknown

_1073403472.unknown

_1073403593.unknown

_1073403379.unknown

_1073391513.unknown

_1073403157.unknown

_1073403346.unknown

_1073391541.unknown

_1073403136.unknown

_1073391604.unknown

_1073391535.unknown

_1073391359.unknown

_1073391504.unknown

_1073391331.unknown

_1073302574.unknown

_1073306204.unknown

_1073306680.unknown

_1073390698.unknown

_1073307327.unknown

_1073307851.unknown

_1073308091.unknown

_1073307343.unknown

_1073307170.unknown

_1073306633.unknown

_1073306654.unknown

_1073306421.unknown

_1073302635.unknown

_1073302748.unknown

_1073302749.unknown

_1073302747.unknown

_1073302744.unknown

_1073302746.unknown

_1073302741.unknown

_1073302589.unknown

_1073302603.unknown

_1073302582.unknown

_1073302061.unknown

_1073302514.unknown

_1073302534.unknown

_1073302567.unknown

_1073302528.unknown

_1073302478.unknown

_1073302499.unknown

_1073302441.unknown

_1073302458.unknown

_1073302208.unknown

_1073301706.unknown

_1073302003.unknown

_1073302049.unknown

_1073301842.unknown

_1073301611.unknown

_1073301675.unknown

_1073301589.unknown

_1073134057.unknown

_1073140094.unknown

_1073300484.unknown

_1073301396.unknown

_1073301430.unknown

_1073301321.unknown

_1073294968.unknown

_1073300265.unknown

_1073300315.unknown

_1073300254.unknown

_1073149745.unknown

_1073150498.unknown

_1073291171.unknown

_1073290753.unknown

_1073149876.unknown

_1073145450.unknown

_1073149568.unknown

_1073149473.unknown

_1073145449.unknown

_1073136954.unknown

_1073136994.unknown

_1073139556.unknown

_1073139591.unknown

_1073138444.unknown

_1073138449.unknown

_1073136964.unknown

_1073134192.unknown

_1073136944.unknown

_1073135103.unknown

_1073135642.unknown

_1073135904.unknown

_1073134427.unknown

_1073134072.unknown

_1073134158.unknown

_1073134065.unknown

_1072704138.unknown

_1073125059.unknown

_1073126973.unknown

_1073130236.unknown

_1073131522.unknown

_1073132711.unknown

_1073133621.unknown

_1073134005.unknown

_1073133604.unknown

_1073131546.unknown

_1073131601.unknown

_1073131081.unknown

_1073131223.unknown

_1073130967.unknown

_1073127318.unknown

_1073127982.unknown

_1073129944.unknown

_1073127218.unknown

_1073125492.unknown

_1073126896.unknown

_1073126905.unknown

_1073126784.unknown

_1073125204.unknown

_1073125228.unknown

_1073125164.unknown

_1072787655.unknown

_1072872208.unknown

_1073120389.unknown

_1073117250.unknown

_1072790092.unknown

_1072781906.unknown

_1072784903.unknown

_1072768109.unknown

_1041869658.unknown

_1072539433.unknown

_1072685398.unknown

_1072688037.unknown

_1072690592.unknown

_1072703474.unknown

_1072700180.unknown

_1072689362.unknown

_1072685973.unknown

_1072685338.unknown

_1072685355.unknown

_1072626204.unknown

_1072626323.unknown

_1072539471.unknown

_1051621193.vsd
v�

v�

D1�

v�

u�

v�

H1�

v�

u�

�

voiced segment�

most recent�

Oldest�

0�

v�

1�

N-1�

K�

_1072539383.unknown

_1064045047.vsd
Stage 1:�

Stage 2:�

Stage 3:�

D1�

0�

H1�

D3�

�

�

�

most recent�

Input�

Output�

Oldest�

1�

D2�

H2�

�

H3�

�

H1�

_1065009619.doc

_1042359218.unknown

_1051615551.unknown

_1041871918.unknown

_1041773127.unknown

_1041861403.unknown

_1041863376.unknown

_1041867473.unknown

_1041861426.unknown

_1041777657.unknown

_1041861078.unknown

_1041777580.unknown

_992668097.unknown

_992668100.unknown

_997267221.unknown

_1041772709.unknown

_996750484.unknown

_992668099.unknown

_992668095.unknown

_992668096.unknown

_992668067.unknown

