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Foreword
This ETSI Standard (ES) has been produced by ETSI Technical Committee Speech Processing, Transmission and Quality Aspects (STQ), and is now submitted for the ETSI standards Membership Approval Procedure.

Introduction
The performance of speech recognition systems receiving speech that has been transmitted over mobile channels can be significantly degraded when compared to using an unmodified signal. The degradations are as a result of both the low bit rate speech coding and channel transmission errors. A Distributed Speech Recognition (DSR) system overcomes these problems by eliminating the speech channel and instead using an error protected data channel to send a parameterized representation of the speech, which is suitable for recognition. The processing is distributed between the terminal and the network. The terminal performs the feature parameter extraction, or the front-end of the speech recognition system. These features are transmitted over a data channel to a remote "back-end" recognizer. The end result is that the degradation in performance due to transcoding on the voice channel is removed and channel invariability is achieved.

The present document presents a standard for a front-end to ensure compatibility between the terminal and the remote recognizer. The first ETSI standard DSR front-end ES 201 108 [1] was published in February 2000 and is based on the Mel-Cepstrum representation that has been used extensively in speech recognition systems. This second standard is for an Advanced DSR front-end that provides substantially improved recognition performance in background noise. Evaluation of the performance during the selection of the present document showed an average of 53 % reduction in speech recognition error rates in noise compared to ES 201 108 [1].

For some applications, it may be necessary to reconstruct the speech waveform at the back-end. Examples include:

· Interactive Voice Response (IVR) services based on the DSR of "sensitive" information, such as banking and brokerage transactions. DSR features may be stored for future human verification purposes or to satisfy procedural requirements.

· Human verification of utterances in a speech database collected from a deployed DSR system. This database can then be used to retrain and tune models in order to improve system performance.
· Applications where machine and human recognition are mixed (e.g. human assisted dictation).

In order to enable the reconstruction of speech waveform at the back-end, additional parameters such as fundamental frequency (F0) and voicing class need to be extracted at the front-end, compressed, and transmitted. The availability of tonal parameters (F0 and voicing class) is also useful in enhancing the recognition accuracy of tonal languages, e.g. Mandarin, Cantonese, and Thai.

The present document specifies a proposed standard for an Extended Advanced Front-End (XAFE) that extends the noise‑robust advanced front-end with additional parameters, viz., fundamental frequency F0 and voicing class. It also specifies the back-end speech reconstruction algorithm using the transmitted parameters.

1
Scope

The present document specifies algorithms for extended advanced front-end feature extraction, their transmission, back‑end pitch tracking and smoothing, and back-end speech reconstruction which form part of a system for distributed speech recognition. The specification covers the following components:

a) the algorithm for advanced front-end feature extraction to create Mel-Cepstrum parameters;

b) the algorithm for extraction of additional parameters, viz., fundamental frequency F0 and voicing class;

c) the algorithm to compress these features to provide a lower data transmission rate;

d) the formatting of these features with error protection into a bitstream for transmission;

e) the decoding of the bitstream to generate the advanced front-end features at a receiver together with the associated algorithms for channel error mitigation;

f) the algorithm for pitch tracking and smoothing at the back-end to minimize pitch errors;

g) the algorithm for speech reconstruction at the back-end to synthesize intelligible speech.

NOTE:
The components a), c), d) and e) are already covered by the ES 202 050 [2]. Besides these (four) components, the present document covers the components b), f) and g) to provide back-end speech reconstruction and enhanced tonal language recognition capabilities. If these capabilities are not of interest, the reader is better served by (un-extended) ES 202 050 [2].

The present document does not cover the "back-end" speech recognition algorithms that make use of the received DSR advanced front-end features.

The algorithms are defined in a mathematical form, pseudo-code, or as flow diagrams. Software implementing these algorithms written in the 'C' programming language will be provided with the final published version of the present document. Conformance tests are not specified as part of the standard. The recognition performance of proprietary implementations of the standard can be compared with those obtained using the reference 'C' code on appropriate speech databases.

It is anticipated that the DSR bitstream will be used as a payload in other higher level protocols when deployed in specific systems supporting DSR applications. In particular, for packet data transmission, it is anticipated that the IETF AVT RTP DSR payload definition (see bibliography) will be used to transport DSR features using the frame pair format described in clause 7.

The extended advanced DSR standard is designed for use with discontinuous transmission and to support the transmission of Voice Activity information. Annex A describes a VAD algorithm that is recommended for use in conjunction with the Advanced DSR standard, however it is not part of the present document and manufacturers may choose to use an alternative VAD algorithm.

The Extended Advanced Front-End (XAFE) incorporates tonal information, viz., fundamental frequency F0 and voicing class, as additional parameters. This information can be used for enhancing the recognition accuracy of tonal languages, e.g. Mandarin, Cantonese, and Thai.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI ES 201 108: "Speech Processing, Transmission and Quality Aspects (STQ); Distributed speech recognition; Front-end feature extraction algorithm; Compression algorithms".
[2]
ETSI ES 202 050: "Speech Processing, Transmission and Quality aspects (STQ); Distributed speech recognition; Advanced Front-end feature extraction algorithm; Compression algorithms".
[3]
ETSI EN 300 903: "Digital cellular telecommunications system (Phase 2+); Transmission planning aspects of the speech service in the GSM Public Land Mobile Network (PLMN) system (GSM 03.50)".
3
Definitions, symbols and abbreviations
3.1
Definitions
For the purposes of the present document, the following terms and definitions apply:

analog-to-digital conversion: electronic process in which a continuously variable (analog) signal is changed, without altering its essential content, into a multi-level (digital) signal

blind equalization: process of compensating the filtering effect that occurs in signal recording

NOTE:
In the present document blind equalization is performed in the cepstral domain.

DC-offset: Direct Current (DC) component of the waveform signal

discrete cosine transform: process of transforming the log filter-bank amplitudes into cepstral coefficients

fast fourier transform: fast algorithm for performing the discrete Fourier transform to compute the spectrum representation of a time-domain signal

feature compression: process of reducing the amount of data to represent the speech features calculated in feature extraction

feature extraction: process of calculating a compact parametric representation of speech signal features which are relevant for speech recognition

NOTE:
The feature extraction process is carried out by the front-end algorithm.

feature vector: set of feature parameters (coefficients) calculated by the front-end algorithm over a segment of speech waveform

framing: process of splitting the continuous stream of signal samples into segments of constant length to facilitate blockwise processing of the signal

frame pair packet: definition is specific to the present document: the combined data from two quantized feature vectors together with 4 bits of CRC

front-end: part of a speech recognition system which performs the process of feature extraction

magnitude spectrum: absolute-valued Fourier transform representation of the input signal

multiframe: grouping of multiple frame vectors into a larger data structure

mel-frequency warping: process of non-linearly modifying the frequency scale of the Fourier transform representation of the spectrum

mel-frequency cepstral coefficients: cepstral coefficients calculated from the mel-frequency warped Fourier transform representation of the log magnitude spectrum

notch filtering: filtering process in which the otherwise flat frequency response of the filter has a sharp notch at a predefined frequency

NOTE:
In the present document, the notch is placed at the zero frequency, to remove the DC component of the signal.

offset compensation: process of removing DC offset from a signal

power spectral density: squared magnitude spectrum of the signal

pre-emphasis: filtering process in which the frequency response of the filter has emphasis at a given frequency range

NOTE:
In the present document, the high-frequency range of the signal spectrum is pre-emphasized.

sampling rate: number of samples of an analog signal that are taken per second to represent it digitally

SNR-dependent Waveform Processing (SWP): processing of signal waveform with objective to emphasize high-SNR waveform portions and de-emphasize low-SNR waveform portions

voice activity detection: process of detecting voice activity in the signal
NOTE:
In the present document one voice activity detector is used for noise estimation and a second one is used for non-speech frame dropping.

wiener filtering: filtering of signal by using Wiener filter (filter designed by using Wiener theory)
NOTE:
In this work, objective of Wiener filtering is to de-noise signal

windowing: process of multiplying a waveform signal segment by a time window of given shape, to emphasize pre‑defined characteristics of the signal

zero-padding: method of appending zero-valued samples to the end of a segment of speech samples for performing a FFT operation

3.2
Symbols
For the purposes of the present document, the following symbols apply:

For feature extraction:

bin
FFT frequency index
c(i)
cepstral coefficients; used with appropriate subscript
E(k)
filter-bank energy; used with appropriate subscript
H(bin) or H(k)
Wiener filter frequency characteristic; used with appropriate subscript
h(n)
Wiener filter impulse response; used with appropriate subscript
k
filter-bank band index
KFB
number of bands in filter-bank
lnE
log-compressed energy feature appended to cepstral coefficients

n
waveform signal time index
N
length, (e.g. frame length, FFT length, ...); used with appropriate subscript
P(bin)
power spectrum; used with appropriate subscript
S(k)
log filter-bank energy; used with appropriate subscript
s(n)
waveform signal; used with appropriate subscript
t
frame time index
TPSD
number of frames used in the PSD Mean technique

w(n)
windowing function in time domain; used with appropriate subscript
W(bin)
frequency window 

X(bin)
FFT complex output

For compression:
Idx i, i + 1 (t)
codebook index

N i, i + 1
size of the codebook (compression)

Q i, i + 1
compression codebook

qj i, i + 1
jth codevector in the codebook Q i, i + 1 

y(t)
feature vector with 14 components

3.3
Abbreviations
For the purposes of the present document, the following abbreviations apply:

APM
All-Pole spectral envelope Modelling

AVT
Audio/Video Transport

BPL
Break Point Lists

CDE
Cepstra De-Equalization

CLS
CLaSsification

COMB
COMBined magnitudes estimate calculation

CRC
Cyclic Redundancy Code

CTM
Cepstra To Magnitudes transformation

DC
Direct Current

DCT
Discrete Cosine Transform

DSR
Distributed Speech Recognition

FB
Filter-Bank

FFT
Fast Fourier Transform

FIR
Finite Impulse Response

FVS
Feature Vector Selection

HFB
High Frequency Band

HOCR
High Order Cepstra Recovery

HSI
Harmonic Structure Initialization

IDCT
Inverse Discrete Cosine Transform

IETF
Internet Engineering Task Force

IVR
Interactive Voice Response

LBND
Low-Band Noise Detection

LFB
Low Frequency Band

LSB
Least Significant Bit

LSTD
Line Spectrum to Time-Domain transformation

MEL-FB
MEL Filter Bank

MF
Mel-Filtering

MFCC
Mel-Frequency Cepstral Coefficients

MSB
Most Significant Bit

NR
Noise Reduction

OLA
OverLap-Add

PF
PostFiltering

PITCH
PITCH estimation

PP
Pre-Processing

PSD
Power Spectral Density

PTS
Pitch Tracking and Smoothing

QMF
Quadrature-Mirror Filters

RTP
Real Time Protocol

SEC
Spectrum and Energy Computation

SFEQ
Solving Front-EQuation

SNR
Signal to Noise Ratio

SS
Spectral Subtraction

STFT
check

SWP
SNR-dependent Waveform Processing

UPH
Unvoiced PHase

VAD
Voice Activity Detection (used for non-speech frame dropping)

VADNest
Voice Activity Detection (used for Noise estimation)

VADVC
Voice Activity Detection for Voicing Classification

VC
Voicing Class

VPH
Voiced Phase synthesis

VQ
Vector Quantizer

XAFE
eXtended Advanced Front-End

4
System overview

This clause describes the distributed speech recognition front-end algorithm based on mel-cepstral feature extraction technique. The specification covers the computation of feature vectors from speech waveforms sampled at different rates (8 kHz, 11 kHz and 16 kHz).

The feature vectors consist of 13 static cepstral coefficients and a log-energy coefficient.

The feature extraction algorithm defined in this clause forms a generic part of the specification while clauses 4 to 6 define the feature compression and bit-stream formatting algorithms which may be used in specific applications.

The characteristics of the input audio parts of a DSR terminal will have an effect on the resulting recognition performance at the remote server. Developers of DSR speech recognition servers can assume that the DSR terminals will operate within the ranges of characteristics as specified in EN 300 903 [3]. DSR terminal developers should be aware that reduced recognition performance may be obtained if they operate outside the recommended tolerances.

Figure 4.1 shows the block scheme of the proposed front-end and its implementation in both the terminal and server sides. In the terminal part, which is shown in figure 4.1(a), speech features are computed from the input signal in the Feature Extraction part. Then, features are compressed and further processed for channel transmission.

In the Feature Extraction part, noise reduction is performed first. Then, waveform processing is applied to the de-noised signal and cepstral features are calculated. At the end, blind equalization is applied to the cepstral features. The Feature Extraction part also contains an 11 kHz and 16 kHz extension block for handling these two sampling frequencies. Voice Activity Detection (VAD) for the non-speech frame dropping is also implemented in Feature Extraction.

At the server side (see figure 4.1(b)), bit-stream decoding, error mitigation and decompression are applied. Before entering the back-end, an additional server feature processing is performed. All blocks of the proposed front-end are described in detail in the following clauses.
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Figure 4.1: Block scheme of the proposed extended front-end
(a) shows blocks implemented at the terminal side and
(b) shows blocks implemented at the server side

5
Feature extraction description

5.1
Noise reduction

5.1.1
Two stage mel-warped Wiener filter approach

Noise reduction is based on Wiener filter theory and it is performed in two stages. Figure 5.1 shows the main components of the Noise Reduction block of the proposed front-end. The input signal is first de-noised in the first stage and the output of the first stage then enters the second stage. In the second stage, an additional, dynamic noise reduction is performed, which is dependent on the Signal-to-Noise Ratio (SNR) of the processed signal.

Noise reduction is performed on a frame-by-frame basis. After framing the input signal, the linear spectrum of each frame is estimated in the Spectrum Estimation block. In PSD Mean block (Power Spectral Density), the signal spectrum is smoothed along the time (frame) index. Then, in the WF Design block, frequency domain Wiener filter coefficients are calculated by using both the current frame spectrum estimation and the noise spectrum estimation. The noise spectrum is estimated from noise frames, which are detected by a Voice Activity Detector (VADNest). Linear Wiener filter coefficients are further smoothed along the frequency axis by using a Mel Filter-Bank, resulting in a Mel-warped frequency domain Wiener filter. The impulse response of this Mel-warped Wiener filter is obtained by applying a Mel IDCT (Mel-warped Inverse Discrete Cosine Transform). Finally, the input signal of each stage is filtered in the Apply Filter block. Notice from figure 5.1 that the input signal to the second stage is the output signal from the first stage. At the end of Noise Reduction, the DC offset of the noise-reduced signal is removed in the OFF block.

Additionally, in the second stage, the aggression of noise reduction is controlled by Gain Factorization block.
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Figure 5.1: Block scheme of noise reduction

5.1.2
Buffering

The input of the noise reduction block is a 80-sample frame. A 4-frame (frame 0 to frame 3) buffer is used for each stage of the noise reduction. At each new input frame, the 2 buffers are shifted by one frame. The new input frame becomes frame 3 of the first buffer. Then the frame 1 (from position 80 to position 159 in the buffer) of the first buffer is denoised and this denoised frame becomes frame 3 of the second buffer. The frame 1 of the second buffer is denoised and this denoised frame is the output of the noise reduction block. Hence at each stage of the noise reduction block, there is a latency of 2 frames (20 ms). For each stage of the noise reduction block, the spectrum estimation is performed on the window which starts at position 60 and ends at position 259.

5.1.3
Spectrum estimation

Input signal is divided into overlapping frames of Nin samples. 25 ms (Nin = 200) frame length and 10ms (80 samples) frame shift are used. Each frame 
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where:
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Then, zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT =256 is the Fast Fourier Transform (FFT) length:
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To get the frequency representation of each frame, the FFT is applied to 
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where bin denotes the FFT frequency index.

The power spectrum of each frame, 
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The power spectrum 
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By this smoothing operation, the length of the power spectrum is reduced to 
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5.1.4
Power spectral density mean

This module computes for each power spectrum bin 
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Figure 5.2: Mean computation over the last TPSD frames as performed in PSD mean

Power Spectral Density mean (PSD mean) is calculated as:
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where the chosen value for 
[image: image20.wmf]PSD

T

 is 2 and t is frame (time) index. Note that throughout the present document, we use frame index t only if it is necessary for explanation. If the frame index is dropped, current frame is referred.

5.1.5
Wiener filter design

A forgetting factor 
[image: image21.wmf]lambdaNSE

 (used in the update of the noise spectrum estimate in first stage of noise reduction) is computed for each frame depending on the frame time index 
[image: image22.wmf]t

:
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where 
[image: image24.wmf]___

NBFRAMETHRESHOLDNSE

 equals 100 and 
[image: image25.wmf]_

LAMBDANSE

 equals 0,99.

In first stage the noise spectrum estimate is updated according to the following equation, dependent on the flagVADNest from VADNest:
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where 
[image: image27.wmf]EPS

 equals 
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.

In the second stage the noise spectrum estimate is updated permanently according to the following equation:
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Then the noiseless signal spectrum is estimated using a "decision-directed" approach:
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Then the a priori SNR 
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 is computed as:
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The filter transfer function 
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 is obtained according to the following equation:
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The filter transfer function 
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 is used to improve the estimation of the noiseless signal spectrum:
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Then an improved a priori SNR 
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 is obtained:
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where 
[image: image48.wmf]TH

h

 equals 0,079 432 823 (value corresponding to a SNR of -22 dB).

The improved transfer function 
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 is then obtained according to the following equation:
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The improved transfer function 
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 is then used to calculate the noiseless signal spectrum 
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5.1.6
VAD for noise estimation (VADNest)

A forgetting factor 
[image: image55.wmf]lambdaLTE

 (used in the update of the long-term energy) is computed for each frame using the frame time index 
[image: image56.wmf]t

:
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where 
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 equals 10 and 
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 equals 0,97.

Then the logarithmic energy 
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 of the M (M = 80) last samples of the input signal 
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Then 
[image: image63.wmf]frameEn

 is used in the update of 
[image: image64.wmf]meanEn

:
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where 
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 equals 20, 
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 equals 0,99.

Then 
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 and 
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 are used to decide if the current frame is speech (
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where 
[image: image75.wmf]__
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 are initialized to 0. The frame time index 
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is initialised to 0 and is incremented each frame by 1 so that it equals 1 for the first frame processed.

5.1.7
Mel filter-bank

The linear-frequency Wiener filter coefficients 
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Then, the central frequency of the k-th band, fcentr(k), is calculated as:
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with KFB = 23 and
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where 
[image: image90.wmf]000
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 are added to the KFB = 23 Mel FB bands for purposes of following DCT transformation to the time domain; thus, in total we calculate KFB + 2 = 25 Mel-warped Wiener filter coefficients. The FFT bin index corresponding to central frequencies is obtained as:
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Frequency windows W(k,i) for 
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and W(k,i) = 0 for other i. For k = 0
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and W(0,i) = 0 for other i. For k = KFB + 1
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and W(KFB+1,i)=0 for other i. Mel-warped Wiener filter coefficients 
[image: image98.wmf](

)

k

H

mel

_

2

 for 
[image: image99.wmf]1

0

+

£

£

FB

K

k

 are computed as:



[image: image100.wmf](

)

(

)

(

)

(

)

å

å

-

=

-

=

´

=

1

0

2

1

0

_

2

,

,

1

SPEC

SPEC

N

i

N

i

mel

i

H

i

k

W

i

k

W

k

H


(5.28)

5.1.8
Gain factorization

In this block, factorization of the Wiener filter Mel-warped coefficients (or gains), 
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, is performed to control the aggression of noise reduction in the second stage.

In the first stage, de-noised frame signal energy 
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In the second stage, the noise energy at the current frame index t is estimated by using the noise power spectrum 
[image: image109.wmf](
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 as:
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Then, smoothed SNR is evaluated by using three de-noised frame energies (notice there is two frames delay between the first and the second stage) and noise energy like:
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To decide the degree of aggression of the second stage Wiener filter for each frame, the low SNR level is tracked by using the following logic:
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with 
[image: image113.wmf]track
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 initialized to zero. The forgetting factor 
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The intention of gain factorization is to apply more aggressive noise reduction to purely noisy frames and less aggressive noise reduction to frames also containing speech. At this point, the current SNR estimation, 
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with 
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The second stage Wiener filter gains are multiplied by 
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The coefficient 
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 takes values from 0,1 to 0,8, which means that the aggression of the second stage Wiener filter is reduced to 10 % for speech + noise frames and to 80 % for noise frames.

5.1.9
Mel IDCT

The time-domain impulse response of Wiener filter 
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 from equation (5.35)) by using Mel-warped inverse DCT:
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where 
[image: image128.wmf](

)

n

k

IDCT

mel

,

 are Mel-warped inverse DCT basis computed as follows. 
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where fsamp = 8 000 is sampling frequency. fcentr(0) = 0 and fcentr(KFB + 1) = fsamp / 2. Then, Mel-warped inverse DCT basis are obtained as
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where 
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The impulse response of Wiener filter is mirrored as:
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5.1.10
Apply filter

The causal impulse response 
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The causal impulse response 
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where the filter length 
[image: image143.wmf]FL

 equals 17.

The truncated impulse response is weighted by a Hanning window:
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Then the input signal [image: image145.wmf]in

s

 is filtered with the filter impulse response [image: image146.wmf]_
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 to produce the noise-reduced signal 
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where the filter length 
[image: image149.wmf]FL

 equals 17 and the frame shift interval 
[image: image150.wmf]M

 equals 80.

5.1.11
Offset compensation

To remove the DC offset, a notch filtering operation is applied to the noise-reduced signal like:
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where 
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5.2
Waveform Processing
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Figure 5.3: Main components of SNR-dependent waveform processing

SNR-dependent Waveform Processing (SWP) is applied to the noise reduced waveform that comes out from the Noise Reduction (NR) block. The noise reduction block outputs 80-sample frames that are stored in a 240-sample buffer (from sample 0 to sample 239). The waveform processing block is applied on the window that starts at sample 1 and ends at sample 200. Figure 5.3 describes the basic components of SWP. In the Smoothed Energy Contour block, the instant energy contour is computed for each input frame by using the Teager operator like:
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(5.46a)
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and
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The energy contour is smoothed by using a simple FIR filter of length 9 like:
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At the beginning or ending edge of ETeag(n), the ETeag(0) or ETeag(Nin-1) value is repeated, respectively.

In the Peak Picking block, maxima in the smoothed energy contour related to the fundamental frequency are found. First, the global maximum over the entire energy contour 
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, is found. Then, maxima on both left and right sides of the global maximum are identified. Each maximum is expected to be between 25 and 80 samples away from its neighbour.

In the block Waveform SNR Weighting, a weighting function is applied to the input frame. Having the number of maxima 
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and equals 0 otherwise. At the transitions (from 0,0 to 1,0 or from 1,0 to 0,0), the 
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Finally, the following weighting is applied to the input noise-reduced frame:
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5.3
Cepstrum Calculation

This block performs cepstrum calculation. Cepstrum calculation is applied on the signal that comes out from the waveform processing block. Figure 5.4 shows main components of the Cepstrum Calculation block.
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Figure 5.4: Main components of the cepstrum calculation block

5.3.1
Log energy calculation

For each frame, a log energy parameter is calculated from the de-noised signal as:
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where ETHRESH = exp(-50) and Eswp is computed as:
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5.3.2
Pre-emphasis (PE)

A pre-emphasis filter is applied to the output of the waveform processing block 
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where 
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 is the last sample from the previous frame and equals 0 for the first frame.

5.3.3
Windowing (W) 

A Hamming window of length Nin =200 is applied to the output of the pre-emphasis block:
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5.3.4
Fourier transform (FFT) and power spectrum estimation

Each frame of Nin samples is zero padded to form an extended frame of 256 samples. An FFT of length NFFT = 256 is applied to compute the complex spectrum 
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Corresponding power spectrum 
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5.3.5
Mel Filtering (MEL-FB)

Purpose
The leading idea of the MEL-FB module is to recombine the information contained in the frequency-dependent representation (FFT) by regrouping it in a Mel-band representation.

The FFT-bins are linearly recombined for each Mel-band. The useful frequency band lies between fstart and fsamp / 2. This band is divided into KFB channels equidistant in the Mel frequency domain. Each channel has a triangular-shaped frequency window. Consecutive channels are half-overlapping.

Frequencies and index

In the FFT calculation, index value bin = NFFT corresponds to the frequency fsamp. The formula that accounts for the index calculation of frequencies is then:
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where 
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 stands for rounding towards the nearest integer.

Mel-function

The Mel-function is the operator which rescales the frequency domain.
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The inverse Mel-function is:
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Central frequencies of the filters
The central frequencies of the filters are calculated from the Mel-function, in order to have an equidistant distribution of the bands in the Mel domain.
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Figure 5.5: Linear to Mel frequency mapping
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In our proposal, parameters are chosen as follows:
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In terms of FFT index, the central frequencies of the filters correspond to:
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For the k-th Mel-band, the frequency window is divided into two parts . The former part (i.e. frequencies 
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if the bin i is from 
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For other situations, weights equal zero.

Output of MEL-FB
The output of each Mel filter is the weighted sum of the de-noised power spectrum values 
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 from equation (5.53) in each band. Triangular, half-overlapped windowing is used as follows:
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5.3.6
Non-linear transformation (Log)

The output of Mel filtering is subjected to a logarithm function (natural logarithm).
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A flooring is applied in such a way that the log filter bank outputs cannot be smaller than -10.

5.3.7
Cepstral coefficients (DCT)

13 cepstral coefficients are calculated from the output of the Non-linear transformation block by applying a DCT.
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Notice that in the case of 16 kHz input signal, number of FB bands KFB is increased by 3 (see clause 5.5 for more details).

5.3.8
Cepstrum calculation output

The final feature vector consists in 14 coefficients: the log‑energy coefficient lnE and the 13 cepstral coefficients c(0) to c(12).

The 
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5.4
Blind equalization

12 cepstral coefficients (
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) are equalized according to the following LMS algorithm:
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where lnE is the log energy of the current frame as computed by (5.49a) and the values of 
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The reference cepstrum corresponds to the cepstrum of a flat spectrum.

5.5
Extension to 11 kHz and 16 kHz sampling frequencies

For the 11 kHz sampling frequency, we perform downsampling from 11 kHz to 8 kHz and all front-end processing is the same as in the case of the 8 kHz sampling frequency.

For the 16 kHz sampling frequency, we extended the 8 kHz front-end as shown on figure 5.6. In this approach, the 8 kHz feature extraction part processes the signal from the Low-Frequency Band (LFB, 0 kHz to 4 kHz) and it is re‑used without significant changes. The signal from the High Frequency Band (HFB, 4 kHz to 8 kHz) is processed separately and the high-frequency information is added to the low-frequency information just before transforming the log FB energies to cepstral coefficients. Additionally, the whole-band log energy parameter lnE is also computed by using both the low-frequency and high-frequency information.

5.5.1
FFT-based spectrum estimation

As it can be observed from figure 5.6, the input signal, 
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, to get both the LFB and HFB signal portions:
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Figure 5.6: Extension of 8 kHz front-end for 16 kHz sampling frequency

The LFB QMF is a Finite Impulse Response (FIR) filter of length 118 from the ITU-T standard software tools library for downsampling. The HFB QMF is an FIR filter obtained from the LFB QMF by multiplying each sample of its impulse response by (-1)n, where n is sample index. Both LFB and HFB signals are decimated by factor 2 by choosing only every second sample from the corresponding filtered signal. Additionally, the HFB signal is frequency-inverted (spectrum inversion, SI on figure 5.6) by multiplying the HFB signal sequence by the sequence (-1)n, where n is the sample index. The LFB signal enters the Noise Reduction part of Feature Extraction and it is processed up to the cepstral coefficient computation in the same way as in the case of 8 kHz sampling frequency.

By downsampling and spectral-inversion, the HFB signal is shifted to the frequency range 0 kHz to 4 kHz. This shifted HFB signal 
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 is further processed on frame-by-frame basis, where the frame length and frame shift are synchronized with the LFB processing and are the same as in the case of 8 kHz input signal (i.e. 25ms/10ms). Each frame of length Nin = 200 is windowed by a Hamming window:
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and zeros are padded from the sample Nin up to the sample NFFT -1, where NFFT = 256 is the FFT length:
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(5.70)

A smoothed HFB power spectrum, 
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, is estimated by using an FFT followed by power of 2 like:
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By the smoothing operation, the length of the power spectrum is reduced to 
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5.5.2
Mel Filter-Bank

The entire high-frequency band is divided into KHFB = 3 Filter-Bank (FB) bands, which are equidistantly distributed in the Mel-frequency domain. Energies within the FB bands, 
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, are estimated by using triangular-shaped, half‑overlapped frequency windows applied on the HFB power spectrum. To obtain the central frequencies of FB bands in terms of FFT bin indices, 
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Then, the central frequency of the k-th band, fcentr(k), is calculated as:
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with:
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where 
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Having the central frequencies, 
[image: image235.wmf](

)

k

bin

centr

, the energy within the k-th FB band, 
[image: image236.wmf](

)

k

E

HFB

, is computed as:



[image: image237.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

_

11

1

_

1

1

1

              1

1

centr

centr

centr

centr

bink

centr

HFBSmoothHFB

ibink

centrcentr

bink

centr

SmoothHFB

ibink

centrcentr

ibink

EkPi

binkbink

ibink

Pi

binkbink

=-+

+

=+

--

=´+

--

æö

-

+-´

ç÷

ç÷

+-

èø

å

å


(5.78)

where 
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5.5.3
High-frequency band coding and decoding

Before coding, the natural logarithm is applied to the HFB mel FB energies 
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 as:
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with a flooring avoiding values of SHFB(k) lower than -10. The HFB log FB energies, 
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, are coded and decoded by using three auxiliary bands computed from 2 kHz to 4 kHz frequency interval of LFB power spectrum. For coding, the auxiliary bands are calculated before applying both Noise Reduction (NR) and waveform processing (SWP) to the LFB signal. For decoding, the auxiliary bands are calculated after applying both NR and SWP to the LFB signal. Auxiliary bands are approximately logarithmically spaced in the given frequency interval.

The three auxiliary log FB energies for coding are computed from the input signal power spectrum 
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, calculated in the first stage of Noise Reduction block (see equation (5.6) in clause 5.1.2) as:
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with flooring that avoids values of 
[image: image251.wmf](

)

k

S

aux

LFB

_

 lower than -10. Then, coding is performed as:
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The three auxiliary bands for decoding are computed from the de-noised power spectrum 
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, calculated in the Cepstrum Calculation block (see clause 5.3.5) as:
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with flooring that avoids values of 
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where 
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In the current implementation, frequency weights are 
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5.5.4
VAD for noise estimation and spectral subtraction in high-frequency bands

A simple, energy-based Voice Activity Detector for Noise estimation (VADNestH) is designed for noise estimation in the HFB signal. A forgetting factor for a) updating the noise estimation and b) tracking the low log energy level is computed for each frame t according to the logic:
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The low log energy level is tracked by using the following logic:
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where 
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VADNestH flag 
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VADNestH flag is used for estimating the HFB noise spectrum in terms of FB energies like:
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where t is the frame index and the noise FB energy vector is initialized to a zero vector.

Spectral subtraction is performed like:
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where  = 1,5 and  = 0,1 were set empirically.

5.5.5
Merging spectral subtraction bands with decoded bands

In the Cepstrum Calculation block, log FB energies from both LFB and HFB are joined and cepstral coefficients representing the entire frequency band are calculated. It is obvious that the noise reduction performed on the LFB signal is more complex than the Spectral Subtraction (SS) algorithm applied on HFB FB bands, and thus FB energies resulting from these two processes are not entirely compatible. To reduce the differences between the FB energies from the HFB and LFB, the SS HFB log FB energies are used in combination with the HFB log FB energies resulting from the coding scheme described in clause 5.5.3.

First, rough pre-emphasis correction and log non-linearity are applied on HFB energies resulting from spectral subtraction like:
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where 
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 is pre-emphasis constant. The HFB log FB energies 
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where 
[image: image284.wmf]7
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 is an empirically set constant.

For each frame, a cepstrum is calculated from a vector of log FB energies that is formed by appending the three HFB log FB energies to the LFB log FB energies. Before joining the LFB and HFB log FB energies, the transition between the last LFB band 
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 (computed as in clause 5.3.7) and the first HFB 
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and
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where
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Finally, the log FB energy vector for cepstrum calculation 
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, is formed like:
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5.5.6
Log energy calculation for 16 kHz

Log energy parameter is computed by using information from both the LFB and HFB. We used the HFB log FB energies, 
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 by using pre‑emphasis corrected, de-noised HFB log FB energies like:
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where:
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and apre = 0,9 is the pre-emphasis constant. Then, the energy parameter is computed as the natural logarithm of the sum of the de-noised LFB energy 
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 and the de-noised HFB energy 
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5.6
Pitch and class estimation

As indicated in figure 4.1, estimation of pitch and voicing class parameters is embedded inside the noise reduction block (clause 5.1). A block diagram for pitch and class estimation is shown in figure 5.7. The "spectrum estimation" block at the top-left corner of figure 5.7 represents the block with the same name in figure 5.1. The input to this block, viz., sin(n), and one of the outputs from this block, viz., X(bin) (Eq. 5.4), form the inputs to the estimation of the Pitch (P) and Voicing Class (VC) parameters.
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Figure 5.7: Block scheme for pitch and class estimation

5.6.1
Spectrum and energy computation

The input to the SEC block is X(bin), bin = 0, 1,…, NFFT -1, where X(bin) represents the complex short-time Fourier Transform of sin(n). As a first step, X(0) is set to 0 to remove any DC offset. Then, the following quantities are computed: power spectrum pbin, pre-emphasized power spectrum pbinpe, frame energy E, logarithm of frame energy logE, and average spectral value sw(1).

The power spectrum is computed as
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The pre-emphasized power spectrum is computed as:


[image: image301.wmf](

)

2

2

,

)

128

/

sin(

)

128

/

cos(

97

,

0

1

p

p

k

k

pbin

pbin

k

k

pe

+

´

-

´

=


The frame energy is computed as:
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The log-energy is computed as logE = log(E). A floor is used in the energy calculation, which makes sure that the result for logE is not less than -50. The floor value for E (lower limit for the argument of ln) is approximately 2e-22.

The average spectral value is computed as:
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The power spectrum pbin is fed into the MF block, mel-filtered as described in clause 5.3.5, and the mel-filter outputs fbanki, i = 1, …, 23 are fed into the VADVC block. The pre-emphasized power spectrum pbinpe is fed into the LBND block. The frame energy E is fed into the LBND block and the CLS block. The short-time Fourier transform X(bin), the power spectrum pbin, the log-energy logE, and the average spectral value Sw(1) are fed into the PITCH block. Furthermore, the input speech signal Sin(n) is fed into the PP block and the CLS block.

5.6.2
Voice Activity Detection for Voicing Classification (VADVC)

The input to the Voice Activity Detection (VAD) block is the mel-filter output fbanki, i = 1, …, 23. The outputs of the VAD block are the vad_flag and hangover_flag. The vad_flag, if TRUE, indicates that the current frame is a speech frame. The hangover_flag, if TRUE, indicates that the current frame is likely to be a speech frame because it follows a speech segment. The operation of the VAD block is described below with reference to figure 5.8.

In the following, we denote the mel-filter output for the mth frame and ith channel by F(m,i), and when the specific channel is not important, the mel-filter output for the mth frame by F(m). Using these values as input, the channel energy estimator provides a smoothed estimate of the channel energies as follows:
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(5.98)

where Ech(m,i) is the smoothed channel energy estimate for the mth frame and the ith channel, Emin is the minimum allowable channel energy, {i, i = 1, 2, …, 23} are the correction factors to compensate for the effect of the pre‑emphasis filter and the varying widths of the triangular weighting windows used in mel-filtering, and ch(m) is the channel energy smoothing factor defined as:
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The minimum channel energy Emin is 5 000 for 8 kHz, 6 400 for 11 kHz, and 10 000 for 16 kHz sampling frequency respectively. he value of the correction factor i is given by the ith value in the 23-element table: {0,3333, 0,3333, 0,2857, 0,2857, 0,2857, 0,2500, 0,2500, 0,2222, 0,2000, 0,2000, 0,2000, 0,1818, 0,1667, 0,1538, 0,1429, 0,1429, 0,1333, 0,1176, 0,1111, 0,1111, 0,1000, 0,0909, 0,0870}.

From the channel energy estimate, the peak-to-average ratio for the current frame m, denoted by P2A(m) is estimated at the peak-to-average ratio estimator as follows:
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Similar to the channel energy estimate, the channel noise energy estimate (defined below) is initialized as follows:


if ((m ( INIT_FRAMES) OR (fupdate_flag == TRUE))


{



if (P2A(m) < PEAK_TO_AVE_THLD)



{
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else



{
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where En(m,i) is the smoothed noise energy estimate for the mth frame and the ith channel, INIT_FRAMES is the number of initial frames which are assumed to be noise-only frames, and fupdate_flag is the forced update flag defined later. The value of INIT_FRAMES = 10, and that of PEAK_TO_AVE_THLD = 10.0. Initially, fupdate_flag is set to FALSE.
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Figure 5.8: Block diagram of the voice activity detection (VADVC) algorithm

The channel energy estimate Ech(m) and the channel noise energy estimate En(m) are used to estimate the quantized channel signal-to-noise ratio (SNR) indices at the channel SNR estimator as:
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where the values {q(m, i), i = 1, 2, …, 23}are constrained to be between 0 and 89 both inclusive.

From the channel SNR estimate q(m) for the current frame, the voice metric V(m) for the current frame is computed at the voice metric calculator as the sum:
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where v(k) is the kth value of the 90-element voice metric table v defined as: v = {1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,
5,5,5,6,6,7,7,7,8,8,9,9,10,10,11,12,12,13,13,14,15,15,16,17,17,18,19,20,20,21,22,23,24,24,25,26,27,28,28,29,30,31,32,33,34,35,36,37,37,38,39,40,41,42,43,44,45,46,47,48,49,50,50,50,50,50,50,50,50,50,50}.

The channel energy estimate Ech(m) is also used as input to the spectral deviation estimator, which estimates the spectral deviation E(m) for the current frame as follows. First, the log energy spectrum is estimated as:
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Next, the spectral deviation E(m) is estimated as the sum of the absolute difference between the current log energy spectrum and an average long-term log energy spectrum denoted by 
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E

(m), that is:
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The average long-term log energy spectrum is initialized as follows:


if ((m ( INIT_FRAMES) OR (fupdate_flag == TRUE))
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The average long-term log energy spectrum is updated as follows:
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where the parameter SIG_THLD(m) depends on the quantized signal SNR described next. The initial value of SIG_THLD is 217.

The speech signal SNR is estimated at the signal SNR estimator as follows. First, the total noise energy of the current frame Etn(m) is computed as the sum of the channel noise energies, that is:
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Next, the instantaneous total signal energy Ets,inst(m) is computed as follows:


if (V(m) > SIG_THLD(m))
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Initialization of Ets,inst(m) is performed as follows:


if ((m ( INIT_FRAMES) OR (fupdate_flag == TRUE))


Ets,inst(m) = INIT_SIG_ENRG; 
(5.110)

where the value of INIT_SIG_ENRG = 1,0E+09 for 8 kHz, 1,67E+09 for 11 kHz, and 3,0E+09 for 16 kHz respectively.

Once the total instantaneous signal energy and the total noise energy are computed, the instantaneous signal-to-noise ratio of the current frame denoted by SNRinst(m) is computed as:


SNRinst = max(0,0, 10 log10(Ets,inst(m) / Etn(m)))
(5.111)

From the instantaneous SNR, the smoothed SNR is estimated as:


if ((m ( INIT_FRAMES) OR (fupdate_flag == TRUE))



SNR(m) = SNRinst(m);


else


{



if (V(m) > SIG_THLD(m))



{




SNR(m) = ( SNR(m-1) + (1-() SNRinst(m);




( = min((+0.003, HI_BETA);



}



else




( = max((-0.003, LO_BETA);


}
(5.112)

The lower and upper limits of the smoothing factor ( are respectively LO_BETA = 0,950 and HI_BETA = 0,998. Initially, the value of ( is set at LO_BETA. The signal SNR is then quantized to 20 different values as:


SNRq(m) = max(0,min(round(SNR(m)/1,5),19)). 
(5.113)

The quantized signal SNR is used to determine different threshold values. For example, the signal threshold for the next frame SIG_THLD(m+1) is determined using SNRq(m) as an index into the 20-element table {36, 43, 52, 62, 73, 86, 101, 117, 134, 153, 173, 194, 217, 242, 268, 295, 295, 295, 295, 295}.

At this point, the voice metric V(m), the spectral deviation E(m), the peak-to-average ratio P2A(m), and the quantized signal SNR SNRq(m) are input to an update decision determiner. The logic shown below in pseudo-code demonstrates how the noise estimate update decision is made and also how a forced update decision is made (a forced update mechanism allows the voice activity detector to recover from wrong classification of background noise as speech whenever there is a sudden increase in background noise level).

First, the update threshold for the current frame UPDATE_THLD(m) is determined using SNRq(m) as an index into a 20‑element table given by {31, 32, 33, 34, 35, 36, 37, 37, 37, 37, 37, 37, 37, 37, 37, 38, 38, 38, 38, 38}. The update decision determination process begins by clearing the update flag (update_flag) and the forced update flag (fupdate_flag). These flags are set if certain conditions are satisfied as illustrated by the pseudo-code below. The initial value of update_cnt is set to 0.


update_flag = FALSE;


fupdate_flag = FALSE;


if ((m > INIT_FRAMES) AND (V(m) < UPDATE_THLD(m)) AND 



(P2A(m) < PEAK_TO_AVE_THLD)


{



update_flag = TRUE;



update_cnt = 0;


}


else


{



if ((P2A(m) < PEAK_TO_AVE_THLD) AND (E(m) < DEV_THLD))



{




update_cnt = update_cnt + 1;




if (update_cnt ( UPDATE_CNT_THLD)




{





update_flag = TRUE;





fupdate_flag = TRUE;




}



}


}
(5.114)

In order to avoid long term "creeping" of the update counter (update_cnt) setting the forced update flag (fupdate_flag) falsely in the above pseudo-code, an hysteresis logic is implemented as shown below. Initial values of last_update_cnt and hyster_cnt are set to 0.


if (update_cnt == last_update_cnt)



hyster_cnt = hyster_cnt + 1;


else


{



hyster_cnt = 0;



last_update_cnt = update_cnt;


}


if (hyster_cnt > HYSTER_CNT_THLD)


update_cnt = 0;
(5.115)

The values of different constants used above are as follows: DEV_THLD = 70, UPDATE_CNT_THLD = 500, and HYSTER_CNT_THLD = 9. Whenever the above referenced update flag is set for a given frame, the channel noise estimate for the next frame is updated in the noise energy smoother as follows:
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The updated channel noise estimate is stored in noise energy estimate storage for all future frames until the next update occurs. The output of the noise energy estimate storage En(m) is used as an input to the channel SNR estimator as described earlier.

Next, we describe the operation of the voice activity determiner, which uses the voice metric V(m) and the quantized signal SNR value SNRq(m) as inputs. For the first INIT_FRAMES frames, the outputs of the voice activity determiner, viz., vad_flag and hangover_flag are set to FALSE since these frames are assumed to be noise-only frames. For the following frames, the voice activity determiner operates by testing if the voice metric exceeds the voice metric threshold Vth. If the output of this test is TRUE, then the current frame is declared "voice-active". Otherwise, the hangover count variable (hangover_count) is tested to find out if it is greater than or equal to zero. If the output of this test is TRUE, then also the current frame is declared "voice-active". If the outputs of both tests are FALSE, then the current frame is declared "voice-inactive". The "hangover" mechanism is generally used to cover slowly decaying speech that might otherwise be classified as noise, and to bridge over small gaps or pauses in speech. It is activated if the number of consecutive "voice-active" frames (counted by the burst_count variable) is at least equal to Bcnt, the burst count threshold. To activate the mechanism, the number of hangover frames is set to Hcnt, the hangover count threshold. The pseudo-code for the voice activity determiner is shown below. To begin with, the voice metric threshold Vth, the hangover count threshold Hcnt, and the burst count threshold Bcnt are initialized to 56, 28 and 6 respectively. Furthermore, the variables hangover_count and burst_count are both initialized to 0.
if (V(m) > Vth(m))


{



vad_local = TRUE;



burst_count = burst_count + 1;



if (burst_count >= Bcnt(m))




hangover_count = Hcnt(m);


}


else


{



vad_local = FALSE:



burst_count = 0;


}

if ((vad_local == TRUE) OR (hangover_count > 0))



vad_flag = TRUE;


else



vad_flag = FALSE;

if ((vad_local == FALSE) && (hangover_count > 0))

{



hangover_flag = TRUE;



hangover_count = hangover_count - 1;


}


else


hangover_flag = FALSE; 
(5.117)

As a final step, the quantized SNR value is used to determine the voice metric threshold Vth, the hangover count threshold Hcnt, and the burst count threshold Bcnt for the next frame as:


Vth(m+1) = Vtable[SNRq(m)], Hcnt(m+1) = Htable[SNRq(m)], Bcnt(m+1) = Btable[SNRq(m)], 
(5.118)

where SNRq(m) is used as an index into the respective tables. These tables are defined by: Vtable = {32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 55, 56, 57, 57, 58, 58, 58, 58}, Htable = {54, 52, 50, 48, 46, 44, 42, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16}, and Btable = {2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6}.

5.6.3
Low-band noise detection

In the scope of clause 5.6.3, the following symbolic notations for some constants are used if not stated differently in the text:

FFTL = 256 - FFT dimension;

fs = 8 - sampling rate of the input speech data in kHz.
The input to the low-band noise detection (LBND) block are the pre-emphasized power spectrum pbinpe,k, k=0,…,FFTL/2, from the SEC block, the vad_flag and the frame energy E. The output of the LBND block is lbn_flag indicating (if TRUE) that the current frame contains background noise in the low frequency band.

The LBND code maintains an internal state variable LH_Ratio which is initialized to 1,9. The operation of the LBND block is described by the following pseudo code wherein the cut_idx parameter is defined as:
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if (vad_flag == FALSE)

{


if (2E/FFTL < 500)



cur_ratio = 0;


else


{

low_max = 
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high_max = 
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if (high_max == 0)



cur_ratio = 10;


else



cur_ratio = low_max / high_max

}

LH_Ratio = 
[image: image324.wmf];
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if (LH_Ratio > 1,9)


lbn_flag = TRUE;

else


lbn_flag = FALSE; 
(5.120)

5.6.4
Pre-Processing for pitch and class estimation

The input to the Pre-Processing (PP) block is the input signal 
[image: image325.wmf]in
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 and the lbn_flag from the Low-Band Noise Detection (LBND) block. The outputs of the PP block are the low-pass filtered, downsampled speech signal 
[image: image326.wmf]lpds
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which is fed into the Pitch estimation block (PITCH) and the high-pass filtered upper-band signal 
[image: image327.wmf]ub

s

which is fed into the Classification block (CLS). The low-pass and high-pass filtering are performed using pole-zero filters with the generic form shown below:
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where 
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 is the input, 
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 is the output, M is order of the filter, 
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are the coefficients of the numerator polynomial defining the zeros, and 
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 are the coefficients of the denominator polynomial defining the poles. The filter coefficients used are shown in table 5.1. The low-pass filtered speech is first decimated by a factor DSMP, where DSMP is 4. The latest (2 × MAX_PITCH / DSMP) samples referred to as the low-pass filtered extended downsampled frame is fed into the PITCH block. The value of the MAX_PITCH parameter is 160.

Table 5.1: Filter coefficients used in the pre-processing block

	Filter details
	Filter Coefficients

	low-pass filter numerator coefficients

filter order - 7 

lbn_flag = FALSE
	0,0003405377

0,0018389033

0,0038821292

0,0037459142

0,0010216130

-0,0010216130

-0,0008853979

-0,0002043226

	low-pass filter denominator coefficients;

filter order - 7 

lbn_flag = FALSE
	1,00000000

-4,47943480

8,88015848

-10,05821568

6,99836861

-2,98181953

0,71850318

-0,07538083

	low-pass filter numerator coefficients

filter order - 6 

lbn_flag = TRUE
	0,00034054

0,00204323

0,00510806

0,00681075

0,00510806

0,00204323

0,00034054

	low-pass filter denominator coefficients

filter order - 6 

lbn_flag = TRUE
	1,00000000

-3,57943480

5,65866717

-4,96541523

2,52949491

-0,70527411

0,08375648

	high-pass filter numerator coefficients

filter order - 6
	0,14773250

-0,88639500

2,21598750

-2,95464999

2,21598749

-0,88639500

0,14773250

	high-pass filter denominator coefficients

filter order - 6
	1,00000000

-2,37972104

2,91040657

-2,05513144

0,87792390

-0,20986545

0,02183157


5.6.5
Pitch estimation

In the scope of clause 5.6.5, the following symbolic notations for some constants and variables are used if not stated differently in the text:

FFTL = 256 - FFT dimension;

N = 200 - frame size;

fs = 8 - sampling rate of the input speech data in kHz;

stft(n) = X(n) - Shorth Time Fourier Transform (STFT) spectrum given by (5.4);

pbin(n) = pbinn - power spectrum computed in the SEC block.
A flowchart of the pitch estimation process is shown on figure 5.9. Pitch frequency (F0) candidates are generated sequentially in high, middle and low frequency intervals (search ranges). The candidates generated for a search range are added to the candidates generated earlier and an attempt is made to determine a pitch estimate among the candidates. If the pitch estimate is not determined, the next search range is processed. Otherwise certain internal variables, which represent the pitch estimation history information are updated. At output, the pitch estimate is converted from the frequency to time representation or is set to 0 indicating an unvoiced frame.
5.6.5.1
Dirichlet interpolation

Frequency resolution of the discrete complex spectrum in the diapason [0 kHz, 4 kHz] is doubled by the interpolation of the STFT (5.4) by Dirichlet kernel. The interpolated STFT is calculated as follows:
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where:


(N4kHz-1) is the index of the FFT point representing 4kHz frequency;
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LDK= 8
In (5.122), an stft(i) value corresponding to a negative value of i<0 is replaced by the complex conjugate stft×(-i) associated with -i.

The number of istft samples computed and used further is FFTIL = 2 × N4 kHz - 1. The istf vector is used for the processing of the current and the next frames.
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Figure 5.9: Pitch estimation flowchart
5.6.5.2
Non-speech and low-energy frames

If the frame either has been classified by the VADVC block as a non-speech frame or its log-energy value is less than a predefined threshold log E < 13,6 then the pitch frequency F0 estimate is set to 0 and the final step of history information update is performed as described further.

5.6.5.3
Search ranges specification and processing

The entire search diapason for pitch frequency is defined as SR = [52 Hz, 420 Hz]. If a variable StableTrackF0 (which is described below) has a non-zero value then SR is narrowed as follows:

SR = SR ( [0,666 × StableTrackF0, 2,2 × StableTrackF0].
Three slightly overlapping search ranges are specified:

SR1 = SR ( [52 Hz, 120 Hz];
SR2 = SR ( [100 Hz, 210 Hz];
SR3 = SR ( [200 Hz, 420 Hz].

The processing stages described in clauses 5.6.5.3 to 5.6.5.7 are performed consequently for the three search ranges in the order SR3, SR2, SR1. If there are differences specific to a certain search range they are explained in the relevant clause. It might happen that some of the search ranges are empty. No processing is performed for an empty search range.

5.6.5.4
Spectral peaks determination

This stage is performed only twice: first time for the SR3 and SR2 ranges, and a second time for SR1.

When the processing is being performed for SR3/SR2 search interval, power spectrum with doubled frequency resolution is computed as follows:
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When the processing is being performed for SR1 search interval, an STFT corresponding to a double frame is approximated as follows:
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where istftprev is the Dirichlet interpolated STFT of the previous frame. Then power spectrum is computed as:
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(5.126)

In (5.124) to (5.126), n = 0, 1, …, FFTIL - 1 corresponding to the frequency interval [0, 4kHz].

Smoothing by 3-tap symmetric filter is applied to the power spectrum:
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The values of the smoothed power spectrum sps(n) are analysed within the range n( [N0+2, FFTIL-3] and all local maxima are determined. N0 is set to 
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 if low band noise has been detected at that frame. Otherwise N0 = 0. That is, if low band noise is present then the spectral components residing at frequencies lower than 300 Hz are not analysed. A value sps(n) is considered as a local maximum if the following condition is TRUE
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Let {(Ak, nk), k = 1,…,Npeaks} be a list of all the local maxima (representing spectral peaks) sorted in ascending order of their frequencies where Ak = sps(nk).

Scaling down of high frequency peaks

The entire range [0, FFTIL] of the frequency index is divided into three equal sub-intervals, and the maximal values Amax1, Amax2 and Amax3 of Ak is found in the low, middle and high sub-intervals correspondingly. The value Amaxj (j = 2,3) is evaluated against a threshold 
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. If Amaxj > THRj then all the Ak associated with j-th interval are multiplied by factor THRj/Amaxj . The following parameter values are used 
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If the number of the peaks (the local maxima) exceeds 30 then the peaks with amplitudes less than 
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 are discarded from the peaks list. If the number of remaining peaks is still exceeds 30 then all the high frequency peaks starting from the peak #31 are discarded. The total number Npeaks of the peaks is updated as needed.

The peaks are sorted in descending order of their amplitudes. If the number of peaks is greater than 20 then only 20 first peaks are selected for further processed, and the number Npeaks is set to 20.

Location and amplitude of each peak is refined by fitting parabola through the corresponding local maximum and the two neighbouring samples of the power spectrum sps.
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Then the peak locations lock are converted to Hz units and the square roots are taken from the peak amplitudes:
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The sequence {PAk, PFk, k=1,…,Npeaks} represents magnitude spectrum peaks.

Scaling down of high frequency peaks procedure is applied to this peaks sequence as described above except for that this time 
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is used for the threshold THRj computation instead of 
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If Npeaks > 7 the final attempt to reduce the number of peaks is done as follows. If a number N1 exists so that 
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then only N1 starting peaks are taken. Otherwise the peaks are scanned from the end of the list towards the beginning and all the peaks with amplitudes less than 
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The peak amplitudes are normalized:
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5.6.5.5
F0 Candidates generation

Pitch candidates are selected among the local maxima of a piecewise constant utility function U(F0):
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Lower F0min and upper F0max limits for F0 are defined as the left and the right edges respectively of the processed search range SRi, i = 1, 2, 3.

First, a partial utility function is built including only contributions of a few highest peaks. The partial utility function is represented by a list of break points. Then all local maxima locations of the partial utility function are determined. Finally, the values of the whole utility function at the local maxima are computed.

Building partial utility function

NPprelim peaks are selected from the top of the peaks list. NPprelim = min(Npeaks, 7). A counter variable is initialized BPCount = 0. For each peak (NPAk, PFk), k=1,…,NPprelim, a list BPLk of the utility function break points is collected as described below.

The maximal and minimal dividers of the peak frequency are calculated:
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The counter BPCount is updated BPCount = BPCount + Nmax - Nmin +1 and compared against a predefined threshold BPLimit:
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If the counter value exceeds the threshold then the entire peaks processing is terminated, and no more break point lists are built. Otherwise the processing of the k-th peak continues. Index n scans the range [Nmin, Nmax] in the reverse order n = Nmax, Nmax-1, …, Nmin each time generating four new breakpoints in the list, each break point is given by its frequency value BPF and amplitude value BPA:
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Note that the break points in the list are ordered in the increasing order of the frequency.

If the list is not empty and 
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All the Break Point Lists {BPLk} are merged together into one array Upartial={(BPFn, BPAn)} preserving the frequency ascending order, and the amplitudes of the break points are modified as:
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If the last break point frequency is less than F0max then a new terminating element (BPF = F0max, BPA = 0) is appended to the array. Further we will refer to the number of elements in the Upartial array as NBP.

Preliminary candidates determination

NCprelim break points are determined which are the highest in amplitude local maxima among the elements of the Upartial array, where NCprelim = min(4,NBP). These break points being sorted in the descended order of amplitude form a list of preliminary candidates. If a variable StableTrackF0 (which is described in clause 5.6.5.8) has a non-zero value then an additional break point BPad is sought which is the highest in amplitude local maximum among the Upartial array elements having frequency in the range [StableTrackF0/1,22, StableTrackF0 × 1,22]. If such the break point is found then the amplitude associated with it is increased by 0,06 and compared against the amplitudes of the preliminary candidates list members. If the modified amplitude is greater than the amplitude of at least one of the preliminary candidates then BPad is inserted into the preliminary candidate list so that the list elements order is preserved, and the last list member is put out. Finally, the frequency value for each candidate is modified as:
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If n < NBP where n is the index of the break point in the Upartial array.

Candidate amplitudes refinement

For each preliminary candidate the amplitude value is recomputed in accordance to formula (5.131) wherein F0 is substituted by the frequency value associated with that candidate and the summation is performed over all the Npeaks spectral peaks.

Final candidates determination

NC (final) candidates are selected from the preliminary candidates, NC = min(2,Nprelim). For the selection purpose a compare function is defined for a pair (F1,A1) and (F2,A2) of candidates given by their frequencies Fi and amplitudes Ai. Let F1 < F2. The first candidate is declared to be better than the second one if the following condition is satisfied:
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otherwise the second candidate is considered as the best between the two.

NC best candidates are determined, sorted in descending order of their quality, and form a final candidates list. If the pitch estimate PrevF0 obtained at the previous frame has non-zero value then the preliminary candidates are determined having frequency values within the interval [PrevF0/1,22, PrevF0 × 1,22]. If such preliminary candidates exist then one of them having the maximal amplitude is declared as an additional candidate. The amplitude a of the additional candidate is increased by 0,06 (b = a + 0,06), and compared against the amplitudes of the final candidates list members. If a member exists with amplitude less than b then the last member of the final candidates list is replaced by the additional candidate.

Below the amplitudes associated with the candidates are referred to as Spectral Scores (SS).

5.6.5.6
Computing correlation scores

Correlation score is computed for each pitch candidate. The input for correlation score calculation stage comprises the low-pass filtered extended downsampled frame (clause 5.6.4) and the candidate pitch frequency F0. Here we designate the low-pass filtered extended downsampled frame by u(n) and assume that the origin n = 0 is associated with the sample #NDS counting from the end of the vector u, so that the preceding to it samples have negative index values. NDS is the length of downsampled frame NDS = 200/DSMP where DSMP is the downsampling factor (clause 5.6.4).

Candidate pitch frequency is converted to a time-domain lag:
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An integer lag is calculated by rounding the lag value to the upper integer number 
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Analysis window length is calculated:



[image: image380.wmf]÷

ø

ö

ç

è

æ

=

DSMP

floor

LW

75


(5.137)

Offset and length parameters calculation
Offset O and length Len parameters are calculated to be used by further processing, besides two following cases are treated differently.

Case 1:
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Case 2:
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Two vectors are extracted from the signal u:


u1={u(t0), u(t0 + 1), …, u(t0 + i( - 1)} and u2={ u(t0 - i(), u(t0 + 1 - i(), …, u(t0 - 1)},

where:
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An auxiliary offset ofs is determined as:


[image: image387.wmf])

(

max

arg

1

0

t

E

i

t

ofs

-

£

£

=

t


where:



[image: image388.wmf]),

)

mod

0

(

)

mod

0

(

(

)

(

2

1

0

2

t

t

t

i

n

i

t

n

u

n

i

t

n

u

t

E

LW

n

-

+

+

+

+

+

=

å

-

=




[image: image389.wmf]î

í

ì

-

<

=

otherwise

i

NDS

NDS

i

if

NDS

t

,

2

/

,

2

/

0

t

t


If ofs+LW
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then O = t0 + ofs and Len = LW.
Otherwise two sets of the offset and length parameters are prepared:

{O1 = t0 + ofs, Len1 = i( - ofs} and (O2 = t0, Len2 = LW - Len1}.

Correlator

Input parameters for this block are O, Len and i(
Three vectors are extracted from u:

X = {u(O), u(O + 1), …, u(O + Len - 1)}T

Y = {u(O - i(), u(O - i( + 1), …, u(O - i( + Len - 1)}T
Z = {u(O - i( + 1), u(O - i( + 2), …, u(O - i( + Len)}T
For each vector the sum of the coordinates is computed: (X, (Y and (Z. The following inner products are computed also: XTX, YTY, ZTZ, XTY, XTZ and YTZ.

Where there are two sets of the offset and length parameters (O1, Len1) and (O2, Len2), the correlator block is applied twice, one time for each set, and the corresponding output values (the sums and the inner products) are summed.

DC removal

The inner products computed by the correlator are modified as follows:

XTX = XTX -  ((X)2/LW
YTY = YTY -  ((Y)2/LW
ZTZ  = ZTZ -  ((Z)2/LW
XTY = XTY -  (X×(Y/LW
XTZ = XTZ -  (X×(Z/LW
YTZ = YTZ -  (Y×(Z/LW

Interpolation

Correlation score CS is computed by the following interpolation formula:
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where:
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Finally, CS value is truncated if it falls outside the interval [0, 1].


CS = max(CS,0),

CS = min(CS,1).

5.6.5.7
Pitch estimate selection

Input to this stage is the set of pitch candidates. Each candidate (F0k, SSk, CSk) is represented by the corresponding pitch frequency F0k, spectral score (the utility function value) SSk and correlation score CSk. The block outputs a pitch estimate (F0, SS, CS) which either is selected among the candidates or indicates that that the frame represents unvoiced speech in which case F0 is set to 0.

Pitch estimate selection block might be entered several (at most 3) times during the processing of one frame. It is entered after pitch candidates generation is performed for each pitch search interval SRi. Each time the list of pitch candidates which is fed into the block is updated appropriately to include all the pitch candidates detected so far. Thus the list passed into this block after the processing of SR3 search range includes the candidates found within this range, typically two candidates. If one of the candidates is selected as the pitch estimate then the pitch estimation process terminates and the control flows to the history information update block (described in clause 5.6.5.8). Otherwise the candidates generated within the SR2 range are combined with the ones found within SR3 and the combined list (typically containing four candidates) is fed into pitch estimate selection block. If no pitch estimate is selected at this time the block is entered again after SR1 range is processed. At this time the candidate list contains the candidates generated in all the three ranges (typically 6 candidates). A variable EPT which is fed to the block along with the candidates list indicates whether the list contains candidates generated for all the three search ranges (EPT = 1) or not (EPT = 0).

The selection process is shown on the flow-chart of figure 5.10.
The candidates are sorted at step 100 in descending order of their F0 values. Then at step 110 the candidates are scanned sequentially until a candidate of class 1 is found, or all the candidates are tested. A candidate is defined to be of class 1 if the CS and SS values associated with the candidate satisfy the following condition:


(CS ( C1 AND SS ( S1) OR (SS ( S11 AND SS + CS ( C S1)
(Class 1 condition)

where:


C1 = 0,79, S1 = 0,78, S11 = 0,68 and CS1 = 1,6.

At step 130 the flow branches. If a class 1 candidate is found it is selected to be a preferred candidate, and the control is passed to step 140 performing a Find Best in Vicinity procedure described by the following. Those candidates among the ones following in the list the preferred candidate are checked to determine those ones which are close in terms of F0 to the preferred candidate. Two values F01 and F02 are defined to be close to each other if:


(F01 < 1,2 × F02 AND F02 < 1,2 × F01)
(Closeness condition).

A plurality of better candidates is determined among the close candidates. A better candidate must have a higher SS and a higher CS values than those of the preferred candidate respectively. If at least one better candidate exists then the best candidate is determined among the better candidates. The best candidate is characterized by that there is no other better candidate, which has a higher SS and a higher CS values than those of the best candidate respectively. The best candidate is selected to be a preferred candidate instead of the former one. If no better candidate is found the preferred candidate remains the same.

At step 150 the candidates following the preferred candidate are scanned one by one until either a candidate of class 1 is found whose scores SScandidate and CScandidate satisfy following condition:

SScandidate + CScandidate ( SSpreferred + CSpreferred + 0,18

or all the candidates are scanned. If a candidate is found which meets the above condition it is selected to be the preferred candidate and Find Best in Vicinity procedure is applied. Otherwise the control is passed directly to step 180, where the EPT variable value is tested. If EPT indicates that all the pitch search ranges have been processed the pitch estimate is set to the preferred candidate. Otherwise the following condition is tested:


SSpreferred ( 0,95 AND CSpreferred ( 0,95

If the condition is satisfied the pitch estimate is set to the preferred candidate, otherwise the pitch frequency F0 is set to 0 indicating that no pitch is detected.
Returning to the conditional branching step 130, if no class 1 candidate is found then at step 120 it is checked if the StableTrackF0 variable has non-zero value in which case the control is passed to step 210, otherwise step 270 is performed.

At step 210 a reference fundamental frequency value F0ref is set to StableTrackF0. Then at step 220 the candidates are scanned sequentially until either a candidate of a class 2 is found or all the candidates are tested. A candidate is defined to be of class 2 if the frequency and the score values associated with it satisfy the condition:


(CS > C2 AND SS > S2) AND (1/1,22 < |F0/F0ref | < 1,22
(Class 2 condition)

where C2 = 0,7, S2 = 0,7. If no class 2 candidate is found then the pitch estimate is set to 0 at step 240. Otherwise, the class 2 candidate is chosen to be the preferred candidate and Find Best in Vicinity procedure is applied at step 250. Then at step 260 the pitch estimate is set to the preferred candidate.

Returning to the conditional branching step 120, if StableTrackF0 = 0 then control is passed to step 270 where a Continuous Pitch Condition:

PrevF0 > 0 AND StablePitchCount > 1

is tested (StablePitchCount variable is described below in clause 5.9.8) If the condition is satisfied then at step 280 the frequency reference value F0ref is set to PrevF0 and the class 2 candidate search is performed at step 290. If a class 2 candidate is found (test step 300) then it is selected as the preferred candidate, Find Best In Vicinity procedure is applied at step 310, and the pitch estimate is set to the preferred candidate at step 320. Otherwise, the processing proceeds with step 330 likewise it happens if Continuous Pitch Condition test of step 270 fails.

At step 330 the candidates are scanned sequentially until a candidate of class 3 is found or all the candidates are tested. A candidate is defined to be of class 3 if the scores associated with it satisfy the condition:


(CS ( C3 OR SS ( S3)
(Class 3 condition)

where, C3 = 0,85, S3 = 0,82. If no class 3 candidate is found then the pitch frequency is set to 0. Otherwise, the class 3 candidate is selected as the preferred candidate, and Find Best in Vicinity procedure is applied at step 360. Then at step 370 the pitch estimate is set to the preferred candidate.
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Figure 5.10: Pitch estimate selection
5.6.5.8
History information update

The pitch estimator maintains following variables holding information on the estimation process history: PrevF0, StableTrackF0, StablePitchCount and DistFromStableTrack.

The variables are initialized as follows:

PrevF0 = 0, StablePitchCount = 0, DistFromStableTrack = 1 000, StableTrackF0 = 0.

The variables are updated at each frame after pitch estimation processing is completed and the pitch frequency estimate F0 is set. The update process is described by the following pseudo code section.

if (F0 > 0  AND  PrevF0 > 0  AND 1/1.22 < |F0/PrevF0| < 1.22)

StablePitchCount = StablePitchCount + 1;
else

StablePitchCount = 0;
if (StablePitchCount ( 6) 
{

DistFromStableTrack = 0;

StableTrackF0 = F0;
}
else if (DistFromStableTrack 
[image: image394.wmf]2
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{

if (StableTrackF0 > 0  AND 1/1.22 < |F0/StableTrackF0| < 1.22)

{


DistFromStableTrack = 0;


StableTrackF0 = F0;

}

else


DistFromStableTrack = DistFromStableTrack + 1;
}
else {

StableTrackF0 = 0;

DistFromStableTrack = DistFromStableTrack + 1;
}
PrevF0 = F0;

5.6.5.9
Output pitch value

The pitch frequency estimate F0 is converted to an output pitch value P representing pitch period duration measured in sampling intervals.
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5.6.6
Classification

The inputs to the classification block are the vad_flag and hangover_flag from the VAD block, the frame energy E from the SEC block, the input signal 
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, the upper-band signal 
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from the PP block, and the pitch period estimate P from the PITCH block. The output of the classification block is the voicing class VC, which is one of the output parameters of the front-end.

The voicing class VC is estimated from the different inputs to the classification block as follows. From the upper-band signal 
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s

and the frame energy E, the upper-band energy fraction EFub is computed as:
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From the offset-free input signal 
[image: image400.wmf]of
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, the zero-crossing measure ZCM is computed as follows.
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where:
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The logic used by the classification block is illustrated by the pseudo-code below.

if (vad_flag == FALSE)


VC = "non-speech";

else if (P == 0)


VC = "unvoiced";

else if ((hangover_flag == TRUE) || (EFub  EF_UB_THLD) || (ZCM >= ZCM_THLD))


VC = "mixed-voiced";

else


VC = "fully-voiced";

end

The upper-band energy fraction threshold EF_UB_THLD is 0.0018 and the zero-crossing measure threshold ZCM_THLD is 0,4375.

6
Feature compression

6.1
Introduction

This clause describes the distributed speech recognition front-end feature vector compression algorithm. The algorithm makes use of the parameters from the front-end feature extraction algorithm of clause 5. Its purpose is to reduce the number of bits needed to represent each front-end feature vector.

6.2
Compression algorithm description

6.2.1
Input

The compression algorithm is designed to take the feature parameters for each short-time analysis frame of speech data as they are available and as specified in clause 5.4.

Fourteen of the sixteen parameters are compressed using a Vector Quantizer (VQ). The input parameters for the VQ are the first twelve static Mel cepstral coefficients:
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where t denotes the frame index, plus the zeroth cepstral coefficient c(0) and a log energy term lnE(t) as defined in clause 5.3.2. The final input to the compression algorithm is the VAD flag. These parameters are formatted as:
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(6.2)

The remaining two parameters, viz., pitch period and class, are compressed jointly using absolute and differential scalar quantization techniques.

6.2.2
Vector quantization

The feature vector y(t) is directly quantized with a split vector quantizer. The 14 coefficients (c(1) to c(12), c(0) and lnE) are grouped into pairs, and each pair is quantized using its own VQ codebook. The resulting set of index values is then used to represent the speech frame. Coefficient pairings (by front-end parameter) are shown in table 6.1, along with the codebook size used for each pair. The VAD flag is transmitted as a single bit. c(1) to c(10) are quantized with 6 bits per pair, while c(11) and c(12) are quantized with 5 bits. The closest VQ centroid is found using a weighted Euclidean distance to determine the index:
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where 
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 is the (possibly identity) weight matrix to be applied for the codebook 
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. The indices are then retained for transmission to the back-end.

Table 6.1: Split vector quantization feature pairings

	
	Size
	Weight Matrix
	
	

	Codebook
	(NI,I + 1)
	(WI,I + 1)
	Element 1
	Element 2

	Q0,1
	64
	I
	c(1)
	c(2)

	Q2,3
	64
	I
	c(3)
	c(4)

	Q4,5
	64
	I
	c(5)
	c(6)

	Q6,7
	64
	I
	c(7)
	c(8)

	Q8,9
	64
	I
	c(9)
	c(10)

	Q10,11
	32
	I
	c(11)
	c(12)

	Q12,13
	256
	Non-identity
	c(0)
	lnE


Two sets of VQ codebooks are defined; one is used for speech sampled at 8 kHz or 11 kHz while the other for speech sampled at 16 kHz. The numeric values of these codebooks and weights are specified as part of the software implementing the standard. The weights used (to one decimal place of numeric accuracy) are:

8 kHz or 11 kHz sampling rate 
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16 kHz sampling rate
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6.2.3
Pitch and class quantization

The pitch period of a frame can range from 19 samples to 140 samples (both inclusive) at 8 kHz sampling rate. The voicing class of a frame can be one of the following four: non-speech, unvoiced speech, mixed-voiced speech, and (fully) voiced speech. The class information of a frame is represented jointly using the pitch and class indices. The pitch information of alternate frames is quantized absolutely using 7 bits or differentially using 5 bits.

6.2.3.1
Class quantization

When the voicing class of a frame is non-speech or unvoiced speech, the pitch index of the corresponding frame is chosen to be zero, i.e. all-zero codeword either 5 bits or 7 bits long. For non-speech, the 1-bit class index is chosen as 0, and for unvoiced speech, the class index is chosen as 1. For such frames, the pitch period is indeterminate.

When the voicing class of a frame is mixed-voiced speech or (fully) voiced speech, the pitch index of the corresponding frame is chosen to be some index other than zero, either 5 bits or 7 bits long. For mixed-voiced speech, the 1-bit class index is chosen as 0, and for (fully) voiced speech, the class index is chosen as 1. For such frames, the pitch index specifies the pitch period as discussed under clause 5.2.3.2.

Thus the pitch and class indices of a frame jointly determine the voicing class of the frame as illustrated in table 6.2.

Table 6.2: Class quantization

	Voicing Class (VC)
	Pitch index (Pidx)
	Class index (Cidx)

	Non-speech
	0
	0

	Unvoiced-speech
	0
	1

	Mixed-voiced speech
	> 0
	0

	Fully-voiced speech
	> 0
	1


6.2.3.2
Pitch quantization

The pitch period of an even-numbered frame (with the starting frame numbered zero), or equivalently, the first frame of each frame pair is quantized absolutely using 7 bits. Out of the 128 indices ranging from 0 to 127, the index 0 is reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 5.2.3.1. The remaining 127 indices are assigned in increasing order to 127 quantization levels that span the range from 19 to 140 uniformly in the log-domain. Given the pitch period of the frame, the quantization level that is closest to the pitch period in the Euclidean sense and the corresponding index are chosen:
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where P(m) is the pitch period of the mth frame (m even), 
[image: image417.wmf]j

q

 is the jth quantization level, and Pidx(m) is the pitch quantization index for the mth frame.

The pitch period of an odd-numbered frame (with the starting frame numbered zero), or equivalently, the second frame of each frame pair is quantized differentially using 5 bits. Out of the 32 indices ranging from 0 to 31, the index 0 is reserved for indicating that the voicing class is non-speech or unvoiced speech as discussed under clause 6.2.3.1. The remaining 31 indices are assigned in increasing order to 31 quantization levels, which are chosen depending on which of the three preceding quantized pitch periods serves as the reference (for differential quantization) and what its value is. The choice of the reference pitch period and the 31 quantization levels for different situations are illustrated in table 6.3. With reference to the table, a quantized pitch period value with a non-zero index may be reliable or unreliable to serve as a reference. An absolutely quantized pitch period value is always considered reliable. A differentially quantized pitch period value is considered reliable only if the reference value used for its quantization is the quantized pitch period value of the preceding frame. In table 6.3, the different quantization levels are specified as a factor that multiplies the chosen reference value. If any quantization level falls outside the pitch range of 19 to 140, then it is limited to the appropriate boundary value.

Table 6.3: Choice of reference and quantization levels for differential quantization

	Pitch indices of preceding 3 frames
	Choice of reference pitch period and 31 quantization levels for (m+1)th frame

	Pidx(m-2)
	Pidx(m-1)
	Pidx(m)
	

	0
	0

OR

 > 0 but unreliable
	0
	No suitable reference is available. Use 5-bit absolute quantization. 

The 31 quantization levels are chosen to span the range from 19 to 140 uniformly in the log-domain.

	Do not care
	Don't care
	> 0
	The quantized pitch period value of the mth frame is chosen as the reference.

Out of the 31 quantization levels, 27 are chosen to cover the range from (0,8163 × reference) to (1,2250 × reference) uniformly in the log-domain. The other 4 levels depend on the reference value as follows:

19  reference  30 - (2,00, 3,00, 4,00, 5,00) × reference

30 < reference  60 - (1,50, 2,00, 2,50, 3,00) × reference

60 < reference  95 - (0,50, 0,67, 1,50, 2,00) × reference

95 < reference  140 - (0,25, 0,33, 0,50, 0,67) × reference

	Do not care
	> 0

Reliable
	0
	The quantized pitch period value of the (m-1)th frame is chosen as the reference.

The choice of quantization levels is the same as shown in the row below.

	> 0
	0

OR

> 0 but unreliable
	0
	The quantized pitch period value of the (m-2)th frame is chosen as the reference.

Out of the 31 quantization levels, 25 are chosen to cover the range from (0,7781 × reference) to (1,2852 × reference) uniformly in the log-domain. The other 6 levels depend on the reference value as follows:

19  reference  30 - (1,50, 2,00, 2,50, 3,00, 4,00, 5,00) × reference

30 < reference  60 - (0,67, 1,50, 2,00, 2,50, 3,00, 4,00) × reference

60 < reference  95 - (0,33, 0,50, 0,67, 1,50, 1,75, 2,00) × reference

95 < reference ( 140 - (0,20, 0,25, 0,33, 0,50, 0,67, 1,50) × reference


The 31 indices used for differential quantization are assigned in increasing order to the 31 quantization levels. Given the pitch period of the frame, the quantization level that is closest to the pitch period in the Euclidean sense and the corresponding index are chosen:
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where P(m+1) is the pitch period of the (m+1)th frame (m even), 
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 is the jth quantization level, and Pidx(m+1) is the pitch quantization index for the (m+1)th frame.

7
Framing, bit-stream formatting and error protection

7.1
Introduction

This clause describes the format of the bitstream used to transmit the compressed feature vectors. The frame structure used and the error protection that is applied to the bitstream is defined.
 The basic unit for transmission consists of a pair of speech frames and associated error protection bits with the format defined in clause 7.2.4. This frame pair unit can be used either for circuit data systems or packet data systems such as the IETF Real-Time Protocols (RTP). For circuit data transmission a multiframe format is defined consisting of 12 frame pairs in each multiframe and is described in clauses 7.2.1 to 7.2.3. The formats for DSR transmission using RTP are defined in the IETF Audio Video Transport, Internet-Draft (see bibliography) where the number of frame pairs sent per payload is flexible and can be designed for a particular application.

7.2
Algorithm description

7.2.1
Multiframe format

In order to reduce the transmission overhead, each multiframe message packages speech features from multiple short‑time analysis frames. A multiframe, as shown in table 7.1, consists of a synchronization sequence, a header field, and a stream of frame packets.

Table 7.1: Multiframe format

	Sync Sequence
	Header Field
	Frame Packet Stream

	<- 2 octets ->
	<- 4 octets ->
	<- 162 octets ->

	<- 168 octets ->


In order to improve the error robustness of the protocol, the multiframe has a fixed length (168 octets). A multiframe represents 240 ms of speech, resulting in a data rate of 5 600 bits/s.

In the specification that follows, octets are transmitted in ascending numerical order; inside an octet, bit 1 is the first bit to be transmitted. When a field is contained within a single octet, the lowest-numbered bit of the field represents the lowest-order value (or the least significant bit). When a field spans more than one octet, the lowest-numbered bit in the first octet represents the lowest-order value (LSB), and the highest-numbered bit in the last octet represents the highest‑order value (MSB). An exception to this field mapping convention is made for the cyclic redundancy code (CRC) fields. For these fields, the lowest numbered bit of the octet is the highest-order term of the polynomial representing the field. In simple stream formatting diagrams (e.g. table 7.1) fields are transmitted left to right.

7.2.2
Synchronization sequence

Each multiframe begins with the 16-bit synchronization sequence 0 ( 87B2 (sent LSB first, as shown in table 7.2).

The inverse synchronization sequence 0 ( 784D can be used for synchronous channels requiring rate adaptation. Each multiframe may be preceded or followed by one or more inverse synchronization sequences. The inverse synchronization is not required if a multiframe is immediately followed by the synchronization sequence for the next multiframe.

Table 7.2: Multiframe synchronization sequence

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	1
	0
	0
	0
	0
	1
	1
	1
	1

	
	1
	0
	1
	1
	0
	0
	1
	0
	2


7.2.3
Header field

Following the synchronization sequence, a header field is transmitted. Due to the critical nature of the data in this field, it is represented in a (31, 16) extended systematic codeword. This code will support 16-bits of data and has an error correction capability for up to three bit errors, an error detection capability for up to seven bit errors, or a combination of both error detection and correction.

Ordering of the message data and parity bits is shown in table 7.3, and definition of the fields appears in table 7.4. The 4 bit multiframe counter gives each multiframe a modulo-16 index. The counter value for the first multiframe is "0001". The multiframe counter is incremented by one for each successive multiframe until the final multiframe. The final multiframe is indicated by zeros in the frame packet stream (see clause 7.2.4).

Note:
The remaining nine bits which are currently undefined are left for future expansion. A fixed length field has been chosen for the header in order to improve error robustness and mitigation capability.

Table 7.3: Header field format

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	Ext
	MframeCnt
	feType
	SampRate
	1

	
	EXP8
	EXP7
	EXP6
	EXP5
	EXP4
	EXP3
	EXP2
	EXP1
	2

	
	P8
	P7
	P6
	P5
	P4
	P3
	P2
	P1
	3

	
	P16
	P15
	P14
	P13
	P12
	P11
	P10
	P9
	4


Table 7.4: Header field definitions

	Field
	No. Bits
	Meaning
	Code
	Indicator

	SampRate 
	2
	sampling rate
	00
	8 kHz

	
	
	
	01
	11 kHz

	
	
	
	10
	undefined

	
	
	
	11
	16 kHz

	FeType
	1
	Front-end specification
	0
	standard 

	
	
	
	1
	noise robust 

	MframeCnt
	4
	multiframe counter
	xxxx
	Modulo-16 number

	Ext
	1
	Extended front-end
	0
	Not extended (4 800 bps)

	
	
	
	1
	Extended (5 600 bps)

	EXP1 - EXP8
	8
	Expansion bits (TBD)
	0
	(zero pad)

	P1 - P16
	16
	Cyclic code parity bits
	(see below)


The generator polynomial used is:
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The proposed (31, 16) code is extended, with the addition of an (even) overall parity check bit, to 32 bits. The parity bits of the codeword are generated using the calculation:
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where T denotes the matrix transpose.

7.2.4
Frame packet stream

Each 10 ms frame from the front-end is represented by the codebook indices specified in clause 6.2.2, the pitch index and class index specified in clause 6.2.3, and the VAD flag. The indices and the VAD flag for a pair of frames are formatted according to table 7.5.

Note:
The exact alignment with octet boundaries will vary from frame pair to frame pair.

Table 7.5: Frame information for mth and (m+1)th frames

	Bit
	8
	7
	6
	5
	4
	3
	2
	1
	Octet

	
	Idx2,3(m)
	Idx0,1(m)
	1

	
	Idx4,5(m)
	Idx2,3(m) (cont)
	2

	
	Idx6,7(m)
	Idx4,5(m) (cont)
	3

	
	Idx10,11(m)
	VAD(m)
	Idx8,9(m)
	4

	
	Idx 12,13(m)
	Idx 10,11(m) (cont)
	5

	
	Idx0,1(m+1)
	Idx 12,13(m) (cont)
	6

	
	Idx2,3(m+1)
	Idx0,1(m+1) (cont)
	7

	
	Idx6,7(m+1)
	Idx4,5(m+1)
	8

	
	Idx8,9(m+1)
	Idx6,7(m+1) (cont)
	9

	
	Idx10,11(m+1)
	VAD(m+1)
	Idx8,9(m+1) (cont)
	10

	
	Idx 12,13(m)
	11

	
	Pidx(m)
	CRC(m,m+1)
	12

	
	Pidx(m+1)
	Pidx(m) (cont)
	13

	
	
	PC-CRC(m,m+1)
	Cidx(m+1)
	Cidx(m)
	14


The codebook indices for each frame take up 44 bits. After two frames worth of codebook indices, or 88 bits, a 4-bit CRC (
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) calculated on these 88 bits immediately follows it. The pitch indices of the first frame (7 bits) and the second frame (5 bits) of the frame pair then follow. The class indices of the two frames in the frame pair worth 1 bit each next follow. Finally, a 2-bit CRC (denoted by PC-CRC) calculated on the pitch and class bits (total: 14 bits) of the frame pair using the binary polynomial g(X) = 1 + X + X2 is included. The total number of bits in frame pair packet is therefore 44 + 44 + 4 + 7 + 5 + 1 + 1 + 2 = 108, or 13,5 octets. Twelve of these frame pair packets are combined to fill the 162 octet (1 296 bit) feature stream. When the feature stream is combined with the overhead of the synchronization sequence and the header, the resulting format requires a data rate of 5 600 bits/s.

All trailing frames within a final multiframe that contain no valid speech data will be set to all zeros.

8
Bit-stream decoding and error mitigation

8.1
Introduction

This clause describes the algorithms used to decode the received bitstream to regenerate the speech feature vectors. It also covers the error mitigation algorithms that are used to minimize the consequences of transmission errors on the performance of a speech recognizer and/or a speech reconstructor.

8.2
Algorithm description

8.2.1
Synchronization sequence detection

The method used to achieve synchronization is not specified in the present document. The detection of the start of a multiframe may be done by the correlation of the incoming bit stream with the synchronization flag. The output of the correlator may be compared with a correlation threshold (the value of which is not specified in this definition). Whenever the output is equal to or greater than the threshold, the receiver should decide that a flag has been detected. For increased reliability in the presence of errors the header field may also be used to assist the synchronization method.

8.2.2
Header decoding

The decoder used for the header field is not specified in the present document. When the channel can be guaranteed to be error-free, the systematic codeword structure allows for simple extraction of the message bits from the codeword. In the presence of errors, the code may be used to provide either error correction, error detection, or a combination of both moderate error correction capability and error detection capability.

In the presence of errors, the decoding of the frame packet stream in a multiframe is not started until at least two headers have been received in agreement with each other. Multiframes are buffered for decoding until this has occurred. The header block in each received multiframe has its cyclic error correction code decoded and the "common information carrying bits" are extracted. With the header defined in the present document the "common information carrying bits" consist of SampRate, FeType, Ext, and EXP1 - EXP8 (expansion bits).

NOTE:
The use of EXP1 - EXP8 depends on the type of information they may carry in the future. Only those bits which do not change between each multiframe are used in the check of agreement described above.

Once the common information carrying bits have been determined then these are used for all the multiframes in a contiguous sequence of multiframes.

8.2.3
Feature decompression

Codebook, pitch, and class indices and the VAD flag are extracted from the frame packet stream, with optional checking of CRC and PC-CRC. (Back‑end handling of frames failing the CRC and PC-CRC check is specified in clause 8.2.4.) Using the codebook indices received, estimates of the front-end features are extracted with a VQ codebook lookup:
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(8.1)

From the pitch and class indices, the voicing class feature is extracted as specified in table 6.2. For non-speech and unvoiced frames, the pitch period is indeterminate. For a mixed-voiced or (fully) voiced frame, the pitch period is estimated from the pitch index as follows. For a frame with absolute pitch quantization (m even), the pitch index directly specifies the quantized pitch period. For a frame with differential pitch quantization (m odd), the pitch index specifies the factor by which the reference has to be multiplied. The reference, which can be the quantized pitch period value of any one of the preceding three frames, is obtained using the rules of table 6.3. If no suitable reference is available (Row 1 of table 6.3), then the pitch index directly specifies the quantized pitch period.

8.2.4
Error mitigation

8.2.4.1
Detection of frames received with errors

When transmitted over an error prone channel then the received bitstream may contain errors. Two methods are used to determine if a frame pair packet has been received with errors:

· CRC and PC-CRC: The CRC recomputed from the codebook indices of the received frame pair packet data does not match the received CRC for the frame pair, or, the PC-CRC recomputed from the pitch and class indices of the received frame pair packet data does not match the received PC-CRC for the frame pair, or both.

· Data consistency: A heuristic algorithm to determine whether or not the decoded parameters for each of the two speech vectors in a frame pair packet are consistent. The details of this algorithm are described below.

The parameters corresponding to each index, idxi, i + 1, of the two frames within a frame packet pair are compared to determine if either of the indices are likely to have been received with errors:
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The thresholds Ti have been determined based on measurements of error free speech. A voting algorithm is applied to determine if the whole frame pair packet is to be treated as if it had been received with transmission errors. The frame pair packet is classified as received with error if:
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The data consistency check for erroneous data is only applied when frame pair packets failing the CRC test are detected. It is applied to the frame pair packet received before the one failing the CRC test and successively to frames after one failing the CRC test until one is found that passes the data consistency test. The details of this algorithm are shown in the flow charts of figures 8.1 and 8.2.

8.2.4.2
Substitution of parameter values for frames received with errors

The parameters from the last speech vector received without errors before a sequence of one or more "bad" frame pair packets and those from the first good speech vector received without errors afterwards are used to determine replacement vectors to substitute for those received with errors. If there are B consecutive bad frame pairs (corresponding to 2B speech vectors) then the first B speech vectors are replaced by a copy of the last good speech vector before the error and the last B speech vectors are replaced by a copy of the first good speech vector received after the error. It should be noted that the speech vector includes the 12 static cepstral coefficients, the zeroth cepstral coefficient, the log energy term and the VAD flag, and all are therefore replaced together. In the presence of errors, the decoding of the frame packet stream in a multiframe is not started until at least two headers have been received in agreement with each other. Multiframes are buffered for decoding.

8.2.4.3
Modification of parameter values for frames received with errors

The logE, pitch, and class parameters of frames received with errors are modified as follows after the substitution step described in clause 8.2.4.2. This modification step affects only back-end speech reconstruction - it does not affect speech recognition.

First, a 3-point median filter is applied to the logE parameter. The median value of the logE parameters of the preceding, current, and succeeding frames replaces the logE parameter of the current frame. The median filter is switched on only after the first frame error has been detected. In other words, there is no median filtering for an error‑free channel.

Second, the logE, pitch, and class parameters of frames received with errors are modified according to the runlength of errors. Let the runlength of errors be 2B frames. If 2B is less than or equal to 4, no parameter modification is done. In this case, because of the substitution step in clause 8.2.4.2, the first B frames receive their parameters from the good frame on the left (before the error) and the next B frames receive their parameters from the good frame on the right (after the error).

For a runlength greater than 4 but less than or equal to 24, the parameter modification is done as follows. The parameters of the first two frames and last two frames are not modified. From the 3rd frame to the Bth frame, the logE parameter is decreased linearly from left to right by 2 per frame. The value of the logE parameter is however not allowed to go below 4,7. If these frames are (fully) voiced, then they are modified to mixed-voiced frames. The pitch parameters are not changed. From the (2B-2)th frame to (B+1)th frame (both inclusive), the logE parameter is decreased linearly from right to left by 2 per frame with a floor value of 4,7. Fully voiced frames are modified to mixed-voiced frames and the pitch parameters are not modified.

If the runlength of errors is greater than 24, then the first 12 and the last 12 frames are handled exactly as above. The remaining (2B-12) frames in the middle are modified as follows. The logE parameter is set to 4,7, the class parameter is set to "unvoiced", and the pitch parameter is indeterminate.
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Figure 8.1: Error mitigation initialization flow chart


[image: image427.wmf] 

Start

 

Processing of initial

 

frames to get a reliable

 

one in the

 

PreviousFrame.

 

CRC of

 

Current

 

Frame

 

Threshold

 

of Previous

 

Frame

 

LastGoodFrame =

 

PreviousFrame

 

Output

 

PreviousFrame

 

PreviousFrame =

 

CurrentFrame

 

LastGoodFrame =

 

PreviousFrame

 

Output

 

PreviousFrame

 

Buffer[0] = Current

 

BufferIdx = 1

 

Buffer[0] = 

 

PreviousFrame

 

BufferIdx = 1

 

Error

 

OK

 

 

OK

 

 

Error

 

Off

 

Buffering Data Mode = On

 

CRC of

 

Current

 

Frame

 

Buffer[

 

BufferIdx] = Current Frame

 

BufferIdx++

 

On

 

Buffer[

 

BufferIdx] = Current Frame

 

BufferIdx++

 

Threshold of

 

Current

 

Frame

 

Error

 

OK

 

 

Perform Error Correction from

 

0 to Buffe

rIdx

-

1

 

BufferIdx = 0

 

Buffering Data Mode = Off

 

Error

 

OK

 

 

Previous Frame =

 

Current Frame

 

LastGoodFrame =

 

Current Frame

 

Buffering Data Mode = Off

 

Buffer[

 

BufferIdx] = Current

 

BufferIdx++

 

Buffering

 

Data Mode

 

CurrentFrame =

 

GetNextFrame

 


Figure 8.2: Main error mitigation flow chart

9
Server feature processing
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 are calculated resulting in a 39 dimensional feature vector. A feature vector selection procedure is then performed according to the VAD information transmitted.

9.1
lnE and c(0) combination
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9.2
Derivatives calculation

First and second derivatives are computed on a 9-frame window. Velocity and acceleration components are computed according the following formulas:
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where 
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 is the frame time index.

The same formulae are applied to obtain 
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 velocity and acceleration components.

9.3
Feature vector selection

A FVS algorithm is used to select the feature vectors that are sent to the recognizer. All the feature vectors are computed and the feature vectors that are sent to the back-end recognizer are those corresponding to speech frames, as detected by a VAD module (described in annex A).

10
Server side speech reconstruction

10.1
Introduction

This clause describes the server side speech reconstruction algorithm. Speech is reconstructed from feature vectors that have been decoded from the received bit stream and error-mitigated. Each feature vector consists of the following 16 parameters - 13 Mel-Frequency Cepstral Coefficients (MFCC) C0 through C12, the log-energy parameter logE, the pitch period value P, and the voicing class VC. The reconstructed speech is in digitized form and is provided at a sampling rate of 8 kHz regardless of the sampling rate of the input speech from which the feature vectors have been extracted.

The specification also covers a pitch tracking and smoothing algorithm, which is applied to the pitch (and class) parameters before they are used for speech reconstruction.

In clause 10, the following symbolic notations are used for some constants if not stated differently in the text:
N = 200 - frame length in samples;
M = 80 - frame shift in samples;
fs = 8 - sampling rate of synthesized speech signal in kHz;
FFTL = 256 - FFT dimension.

10.2
Algorithm description

The reconstruction algorithm synthesizes one frame of speech signal from each MFCC vector and the corresponding logE, pitch and voicing class parameters. Frame synthesis is based on a harmonic model representation. The model parameters, viz., harmonic frequencies, magnitudes, and phases, are estimated for each frame and a complex spectrum (STFT) of the frame is computed. The complex spectrum is then transformed to time-domain representation and overlap-added with part of the speech signal already synthesized.

10.2.1
Speech reconstruction block diagram

Speech reconstruction block diagram is shown in figure 10.1.
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APM
All-Pole spectral envelope Modelling

CDE
Cepstra De-Equalization
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CTM
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HOCR
High Order Cepstra Recovery

HSI
Harmonic Structure Initialization

LSTD
Line Spectrum to Time-Domain transformation

OLA
Overlap-add

PF
PostFiltering

PTS
Pitch Tracking and Smoothing

SFEQ
Solving Front-End eQuation

T16kHz
feature Transformation at 16kHz

UPH
Unvoiced Phase synthesis
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Figure 10.1: Speech reconstruction block diagram

10.2.2
Pitch Tracking and Smoothing

The input to the Pitch Tracking and Smoothing block (PTS) is a set of successive pitch period values P[n], log energy values logE[n] and voicing class values VC[n]. (Zero pitch period indicates either an unvoiced frame or non-speech frame.) The outputs are the corrected values pfixed [n] of pitch period and vcfixed [n] of voicing class.

Pitch processing is done in three stages. Then the voicing class value correction is performed.

The three stages of pitch processing require three working buffers to hold the pitch values of successive frames and possibly the log-energy of the frames (for the first stage only). Each stage introduces further delay (look-ahead) in the output pitch value. The buffer length L (an integer number of frames) is the sum of the number of look-ahead frames (the delay) D, the number of backward frames (the history) H, plus one, which is the current output frame at that stage (i.e. L=D+H+1). Each stage produces a new output value, which is pushed at the top (at the end) of the next stage buffer. All other values in the buffer are pushed one frame backwards, with the oldest value discarded. This configuration is described in figure 10.2.
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Figure 10.2: Buffers of the three-stage pitch tracking and smoothing algorithm

The total look-ahead (in frames) required for the correction of current pitch value, and therefore the delay introduced by the PTS block is: D = D1 + D2 + D3. The delay and history values used are:

First stage:
D1 = 8, H1 = 10 (therefore L1 = 19);
Second stage:
D2 = H2 = 1 (therefore L2 = 3);
Third stage:
D3 = H3 = 2 (therefore L3 = 5).

And the total delay is 11 frames.

All the three stage buffers are initialized by zero values. Each coordinate of the energy buffer used at the first stage is initialized by -50.

In the description of the three-stage pitch tracking algorithm the terms "voiced frame" and "unvoiced frame" are redefined. A frame is referred to as voiced frame if it is either of "fully voiced" or of "mixed-voiced" class. A frame is referred to as unvoiced if it is of "unvoiced" or "non-speech" class.

10.2.2.1
First stage - gross pitch error correction

Let p[n], n=0,1,...,L1-1 be the pitch period values of the first stage buffer, such that p[L1-1] is the most recent value (the new input pitch), and p[0] is the oldest value. A pitch value of zero indicates an unvoiced frame. Similarly, there is a buffer of the same length holding the energy values.

The output pitch of the first stage has a delay of D1 frames compared to the most recent frame in the buffer. The processed frame has D1 frames look-ahead and H1 backwards frames. A new pitch value Pout associated with the location n=H1 in the buffer has to be calculated and pushed to the second stage pitch tracking.

If the frame is unvoiced (i.e. p[H1]==0) then Pout=0 as well.

If the frame is voiced, but there are unvoiced frame at both sides (i.e. p[H1]!=0, p[H1-1]==p[H1+1]==0), then Pout=0.
If the frame is voiced, and is a member of a voiced segment of only two frames, then the similarity between the pitch values of the two voiced frames is examined as described below. If they are similar, then no change is made to the pitch value, i.e. Pout=p[H1]. Otherwise, the frame is reclassified as unvoiced, Pout=0.

In the remaining cases, the output pitch value Pout will be assigned the value p[H1], or it may be assigned an integer multiplication or integer divide of p[H1]. To do this, first the voiced segment in which the frame H1 is located in is identified. This voiced segment can extend D1 frames ahead and H1 frames backwards at the most. It will be shorter if there are unvoiced frames in the buffer. Then, a reference pitch value is extracted using the information from the neighbouring frames in the voiced segment. Finally, the output pitch value of the first stage is identified.

Similarity measure
Two (positive) pitch periods P1 and P2 are declared as similar if for a given similarity factor
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A similarity factor of 1,28 is used to check the similarity of two pitch periods of successive frames (i.e. 10 ms apart). A factor of 1,4 is used for pitch periods that are two frames apart (20 ms).

Relevant frames identification.

The voiced segment in which the current frame (in position H1) is located and its pitch and energy values are copied to a temporary buffer. The pitch values of this segment are notified by q[n], n = 0, 1, …, N - 1 and the corresponding log‑energy values as e[n], n = 0, 1, …, N - 1. Here N is the number of frames in the voiced segment. (Note that 
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). Figure 10.3 describes the indexing of the voiced segment. "U" represents an unvoiced frame, and "V" a voiced frame. Location K in the voiced segment now represents the current examined frame (p[H1], for which a first stage output pitch value must be calculated):
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Figure 10.3: Location of a voiced segment within the first stage buffer

The purpose of the following process is to identify the set of frames that have similar pitch values, and their total energy is the greatest. To do that, the N pitch values are sorted according to ascending pitch values. The sorted pitch values are then divided into groups. A group contains one or more consecutive sorted pitch periods, such that neighbouring pitch values are similar (with the similarity factor 1,28) in the sense defined above. The pitch values are processed from the smallest to the largest. When the similarity is violated between the consecutive sorted pitch values, the previous group is closed and a new group is opened.

For each group, the total energy of all frames in the group is calculated. The group that has the biggest total energy is selected. All other frames that are not within the selected group are marked as deleted in the original (unsorted) voiced segment temporary buffer q.

Reference pitch value calculation
One or more pitch tracks are identified in the voiced segment (represented by the buffers q and e). The tracking is done only on the frames that were not deleted by the relevant frames identification process. If frame K (examined frame of the stage 1) was not deleted, it will be included in one of the pitch tracks. A pitch track is defined as a set of successive undeleted voiced frames, whose neighbouring pitch values are similar in the above specified sense. The energy of each pitch track is the sum of the log-energy of all its frames

After all the pitch tracks are identified, the one with the biggest energy is examined. The reference pitch Pref is defined as the pitch value in the selected track that is closest to position K. If the selected pitch track includes frame K, it means that the reference pitch is exactly the pitch value of the examined frame (meaning it will not change at the first stage of processing).

First stage output calculation

Let p1 and p2 be two positive numbers. We define the distance measure Dist(p1,p2) in the following way:
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Given a reference pitch value Pref and the pitch value of the current examined frame p[H1], the new pitch value Pout is calculated as specified by the following pseudo code:

INTEGER SCALING
{


[image: image453.wmf]])

1

[

(

H

p

P

if

ref

==





[image: image454.wmf]])

1

[

H

p

P

out

==

;

[image: image455.wmf]])

1

[

(

H

p

P

elseif

ref

>



{



[image: image456.wmf]])

1

[

(

H

p

P

ceil

Q

ref

=

;



[image: image457.wmf](

)

]

1

[

,

min

arg

,...,

1

H

p

m

P

Dist

M

ref

Q

m

´

=

=

;



[image: image458.wmf]]

1

[

H

p

M

P

out

´

=

;

}

[image: image459.wmf]else



{



[image: image460.wmf])

]

1

[

(

ref

P

H

p

ceil

Q

=

;



[image: image461.wmf](

)

]

1

[

,

min

arg

,...,

1

H

p

P

m

Dist

M

ref

Q

m

´

=

=

;



[image: image462.wmf]M

H

p

P

out

/

]

1

[

=

;

}


[image: image463.wmf])

2

(

==

M

if



{



[image: image464.wmf]])

1

[

(

H

p

P

if

ref

>




{




[image: image465.wmf](

)

(

)

)

]

1

[

,

]

1

[

2

,

4

,

1

(

H

p

P

Dist

H

p

P

Dist

if

ref

ref

>

´






[image: image466.wmf]]

1

[

H

p

P

out

=

;


}


[image: image467.wmf]])

1

[

(

H

p

P

if

ref

<




{




[image: image468.wmf](

)

(

)

)

]

1

[

,

]

1

[

,

2

4

,

1

(

H

p

P

Dist

H

p

P

Dist

if

ref

ref

>

´






[image: image469.wmf]]

1

[

H

p

P

out

=

;


}

}
}
10.2.2.2
Second stage - voiced/unvoiced decision and other corrections

Let p[n], n = 0, 1, 2 (L2 = 3) be the pitch period values of the second stage buffer, such that p[2] is the most recent value (the new output of the first stage), and p[0] is the oldest value. An output value will be associated with the middle location n=1 in the buffer, and will be marked Pout.

Pout will be assigned the value of p[1], unless one of the following occurs:

If all three frames are voiced, and p[2] is similar to p[0], then we examine the middle value p[1]. If it is not similar (with 
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) to the average of p[2] and p[0], the output value Pout will receive this average value instead of p[1].

If p[0] and p[2] are voiced and similar, and if p[1] is unvoiced, then the output frame will be voiced with a pitch Pout equal to average of p[0] and p[2]. Here the similarity is evaluated using a similarity factor of 
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 instead of 1,4, even though the pitch values to be compared are two frames apart.
1) If the oldest frame in the buffer is unvoiced (p[0]==0) and the two other frames are voiced, or if the most recent frame is unvoiced (p[2]==0) and the two other frames are voiced, then the similarity between the two voiced frames is examined. If they are not similar, then the output frame will be unvoiced, i.e. Pout=0.

10.2.2.3
Third stage - smoothing

Let p[n], n = 0, 1, ..., L3 - 1 be the pitch period values of the third stage buffer, such that p[L3-1] is the most recent value (the new output of the second stage), and p[0] is the oldest value. L3 is odd. An output value will be associated with the middle location (L3-1)/2 in the buffer, and will be marked pfixed.

If there is an unvoiced frame in the middle location (i.e. p[(L3-1)/2]==0) then the output frame is also unvoiced and pfixed=0. Otherwise, a filtering operation is performed by weighting a modified version of all the pitch values in the buffer as described below.

A new set of pitch values q[n], n = 0, 1, …, L3 - 1 is derived from the current values p[n] in the third stage buffer, according to the following rules:

2) q[(L3-1)/2] = p[(L3-1)/2].

3) For each n, if p[n]==0 (unvoiced frame) then q[n] = p[(L3-1)/2].

4) All other pitch values are multiplied by an integer or divided by an integer, such that they become as close as possible to the value of the middle frame p[(L3-1)/2]. That is, q[n] = M×p[n] or q[n]=p[n]/M where M is an integer greater or equal one. The exact calculation of the new value is done as is described by the pseudo code titled INTEGER SCALING in the clause 10.2.2.1 above wherein the variables substitution should be done as: Pref by p[(L3-1)/2], p[H1] by p[n], and Pout by q[n].

The final output pitch is calculated in the following way:
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where:


h[0]=1/9, h[1]=2/9, h[2]=3/9, h[3]=2/9, h[4]=1/9, (L3 = 5).

10.2.2.4
Voicing class correction

The input for the voicing class correction are three voicing class values VC[n-1], VC[n] and VC[n+1] associated with three consecutive frames, and pitch values before and after the tracking procedure associated with the middle frame n and marked as P and pfixed correspondingly. The output of this processing step is a corrected voicing class value vcfixed associated with the middle frame n. VC[n-1] is initialized by zero when the very first frame is processed. The processing is described by the following pseudo code:

{

if (VC[n-1]=="mixed-voiced" AND VC[n]=="fully-voiced" AND VC[n+1] != "fully-voiced") 


vcfixed = "mixed-voiced";

else


vcfixed = VC[n];

if (P == 0  AND  pfixed != 0)


vcfixed = "mixed-voiced";

elseif (P != 0  AND  pfixed == 0)


vcfixed = "unvoiced";
}

10.2.3
Harmonic Structure Initialization

Inputs for the Harmonic Structure Initialization (HSI) block are the pitch value p=pfixed and the voicing class value vcfixed corresponding to the current frame being synthesized. The HSI block produces modified values of the input parameters and array(s) of harmonic-elements.

The reconstruction algorithm treats non-speech frames and unvoiced frames in the same way. Consequently the voicing class value is modified as:

if (vcfixed == "non-speech")
(10.1)

vc = "unvoiced";
else

vc = vcfixed;

The modified voicing class vc has one of the three possible values: "fully-voiced", "mixed-voiced", and "unvoiced". Accordingly we refer to the frame being synthesized as fully-voiced, mixed-voiced or unvoiced.

For a fully-voiced frame an array VH = {Hk, k=1,…,Nv} of harmonics is allocated. Each harmonic 
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is represented by a normalized frequency fk, magnitude Ak and phase (k values. The number of harmonics Nv is:

[image: image474.wmf])

2

(

p

floor

N

v

=


(10.2)
The normalized frequency fk associated with k-th harmonic is set to:
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For an unvoiced frame an array UH = {Hk, k=1,…,Nu} of harmonics is allocated. The number of harmonics Nu is:
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The normalized frequency associated with k-th harmonic is set to:
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For a mixed-voiced frame both VH and UH arrays are allocated.

The HSI block does not set values of the harmonic magnitudes and phases. This is a subject of the further processing.

The elements of the VH-array will be henceforth referred to as voiced harmonics, and the elements of the VU-array as unvoiced harmonics.

10.2.4
Unvoiced phase synthesis

The input for the Unvoiced Phase synthesis (UPH) block is the UH array of unvoiced harmonics. Thus the block is entered only if the vc_variable value is either "unvoiced" or "mixed-voiced". The block sets phase values {(k,k=1,…,Nu} associated with the array elements (unvoiced harmonics). The phase values are obtained by a generator of pseudo random uniformly distributed numbers, and they are scaled to fit into the interval [0(, 2(]. A new vector of phase values is generated each time the UPH block is entered.

10.2.5
Cepstra de-equalization

This block inverts the blind equalization transform (clause 5.4) performed at front-end. Twelve cepstra coefficients Ck, k=1, …, 12, are modified as described by the pseudo code shown below:

weightingPar = min(1,max(0, logE - 211/64));
stepSize = 0,0087890625 weightingPar;

new_bias(i) = 0,999 bias(i) + stepSize (Ci - RefCep(i)), i=1,…,12;
Ci += bias(i), i=1,…,12;
bias(i) = new_bias(i), i=1,…,12.

where logE is log-energy value of the current frame from the decoded feature vector; bias and RefCep vectors are initialized as described in clause 5.4.

10.2.6
Transformation of features extracted at 16 kHz

This processing step is performed only if the features have been extracted from the input speech sampled at 16 kHz. The function of this block is to convert the features (cepstra and log-energy) to the ones representing [0 kHz, 4 kHz] frequency band corresponding to the sampling rate of 8 kHz.

First, the vector of cepstra coefficients undergoes 26-dimensional IDCT:
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(10.6)
Then the first 23 obtained values are used to produce a modified cepstra vector by means of 23-dimensional DCT:
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(10.7)

Finally the last three values val24, val25 and val26 are used to modify the log-energy as specified below:
{

del = ln(1.9);

E = exp(logE);

fixE = exp(val24 - del)  + exp(val25 - del) + exp(val26 - del);

if (E > fixE) 

{


E = E - fixE;


logE =  max(-50, ln(E));

}
}

10.2.7
Harmonic magnitudes reconstruction

Harmonic magnitudes reconstruction is done in three major steps. An estimate AE of the magnitudes vector is obtained in the SFEQ block. Another estimate AI of the magnitudes vector is obtained in the CTM block. Then a final estimate A is calculated in the COMB block by combining AE with AI.

10.2.7.1
High order cepstra recovery

The harmonic magnitudes are estimated from the mel-frequency cepstral coefficients (MFCC) and the pitch period value (clauses 10.2.7.2 to 10.2.7.4). At the front-end, only 13 of the 23 possible MFCC's are computed (clause 5.3.7), compressed, and transmitted to the back-end. The remaining 10 values, C13 through C22, referred to as high order cepstra here, are simply discarded, i.e. not computed. Clearly, if these missing values are available, the harmonic magnitudes can be estimated more accurately. The HOCR block attempts to at least partially recover the missing high order cepstral information for voiced frames (both mixed and fully voiced). This recovery process continues further within the Solving Front-Equation (SFEQ) block as described below in clause 10.2.7.2. For unvoiced frames, the high order cepstra are not recovered.

The recovery of high order cepstra is achieved through lookup table (table 10.1) using the pitch period as a parameter. Table 10.1 was generated by analysing a large speech database and computing the average value of (uncompressed) high order cepstra over all frames with pitch values falling in the appropriate range.

Table 10.1: High order cepstra for different pitch ranges

	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22
	Pitch

range
	C13 thru C22
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	-5,111350E-01

-1,682880E+00

-3,716587E-01

-7,956616E-01

-7,253695E-03

-5,274537E-01

9,280691E-04

-2,563041E-01

-1,049254E-01

-9,817168E-02

-1,323581E+00

-1,247226E+00

8,918094E-01

6,301045E-01

2,640953E-01

-6,120602E-01

-1,029995E+00

-1,210108E+00

-7,136748E-01

-2,458055E-01

-3,166838E+00

-3,976374E+00

-2,099192E+00

-5,804268E-01

4,614631E-01

4,824880E-01

7,639357E-01

-3,386363E-02

-6,201262E-01

-7,372425E-01

-3,018169E+00

-3,911408E+00

-2,720349E+00

-1,107410E+00

2,002102E-01

7,917436E-011,441889E+00

7,677763E-01

-3,245252E-02

-7,143410E-01

 -2,260784E+00

 -3,289034E+00

 -2,556978E+00

 -1,653956E+00

-1,588058E-01

3,966002E-01

1,494472E+00

8,604176E-01

1,893507E-01

-3,483856E-01

-1,802585E+00

-2,144211E+00

-2,228024E+00

-1,802318E+00

-1,032504E+00

5,535706E-03

9,357433E-01

6,810726E-01

3,568225E-01

1,610291E-01

-1,227172E+00

-1,603199E+00

-1,504956E+00

-1,772818E+00

-1,395420E+00

-6,263873E-01

3,036422E-01

1,871070E-01

4,406141E-01

5,066580E-01
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	-1,031216E+00

-1,387326E+00

-1,014192E+00

-1,288828E+00

-1,319227E+00

-1,078165E+00

-3,695266E-01

-1,856345E-01

4,743951E-01

5,453367E-01

-7,697338E-01

-1,251034E+00

-1,135184E+00

-1,052677E+00

-1,081295E+00

-1,276117E+00

-8,835811E-01

-4,264293E-01

2,759056E-01

3,279340E-01

-2,970808E-01

-1,177779E+00

-7,915491E-01

-1,044372E+00

-8,211824E-01

-1,355624E+00

-1,054223E+00

-6,738636E-01

1,521423E-02

9,342021E-02

-1,576688E-01

-1,062970E+00

-6,441808E-01

-6,141125E-01

-7,753426E-01

-1,160622E+00

-1,042945E+00

-7,988926E-01

-3,823192E-01

-1,765679E-01

-2,594792E-01

-9,725035E-01

-4,955449E-01

-3,837078E-01

-5,113737E-01
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10.2.7.2
Solving front-end equation

The inputs for the SFEQ block are the MFCC vector C, an array HA={Hk, k=1,…,Nh} of harmonics and a boolean indicator voiced_flag. If current frame is of fully-voiced class then VH array is fed into the block (HA=VH) and the indicator is set to voiced_flag = TRUE. If current frame is of unvoiced class then UH array is passed to the block (HA=UH) and the indicator is set to voiced_flag = FALSE. If the frame is of mixed-voiced class then the block is entered twice, one time with (HA=VH, voiced_flag=TRUE ) and another time with (HA=UH, voiced_flag=FALSE ). The SFEQ block outputs an estimate 
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A sequence of processing steps is carried out as described below.

Step 1. Original bins calculation
23-dimensional Inverse Discrete Cosine Transform (IDCT) followed by the exponent operation is applied to the low order cepstra vector LOC = {Ck, k=0,…,12} resulting in an original bins vector 
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(10.8)

If the features have been extracted from the input speech signal sampled at 16 kHz the original bins are modified as follows:
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(10.9)
where MFSk is a sum of the weights of k-th Mel-filter given by (5.58), (5.59).

Step 2. Basis vectors calculation
For each harmonic, the (normalized) frequency fk value is converted to the nearest FFT index fidxk 
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A binary grid vector 
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 is computed in two steps:

1)
gn = 0, n=0,…,FFTL/2
(10.11a)

2)
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(10.11b)
23 prototype basis vectors PBVk, k=1,23, are calculated. A prototype basis vector 
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 is derived from the triangular weighting window associated with k-th frequency channel of the Mel-filters bank given by (5.58), (5.59), clause 5.3.5.
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(10.12)
cbink is a shortcut notation for bincenter(k) given by (5.57).

(Note that in k-th prototype basis vector only coordinates 
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 may have non-zero values.) A basis vector 
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is derived from each prototype basis vector PBVk by selecting only those coordinates having the indexes fidxn as follows:
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Step 3. Basis bin vectors and matrix calculation
Each basis vector BVk is converted to a (in general) complex valued vector 
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as specified by the following pseudo code:

{
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 if (voiced_flag == FALSE)
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where:
(n is a phase associated with n-th unvoiced harmonic as described in clause 10.2.4; and
peph is phase frequency characteristic of the preemphasis operator:
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Note that if voiced_flag is TRUE the coordinates of the LS-vectors have real values.

Each LSk vector is further converted to a synthetic magnitude spectrum vector
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 by convolution with Fourier transformed Hamming window function followed by absolute value operation as follows:
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where:
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N =200 is frame length.

Mel-filtering operation given by formula (5.60) is applied to each synthetic magnitude spectrum vector
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A 23-by-23 basis bins matrix BB which has the vectors BBk as its columns is constructed:
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Step 4. Equation matrix calculation
A 23-by-23 symmetric equation matrix EM is computed as follows.
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where 
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 is an average of the main diagonal elements of the matrix BBTBB and E is unit 23 by 23 matrix.

In order to reduce the computational complexity of the further processing in the reference implementation, the LU‑decomposition is applied to the equation matrix EM, and the LU representation is stored.

Step 5. Initialization of iterative process
Iteration counter is set:

it_count = 1
Step 6. High bins calculation.
This step is carried out only if voiced_flag = TRUE, and is skipped otherwise.
23-dimensional IDCT followed by the exponent operation is applied to the high order cepstra vector HOC = {Ck, k=13,…,22} output from the HOCR block. The transform results in a high bins vector 
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If the features have been extracted from an input speech signal sampled at 16 kHz and the first iteration is being performed (it_count ==1) then the transform given by 10.9 (Step 1) is applied to the high bin values.

Step 7. Reference bins calculation
A 23-dimensional reference bins vector 
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 is computed as follows.

if (voiced_flag == TRUE)
{

/* coordinatewise multiplication of Borg and Bhigh vectors */
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else
{

/* Borg is taken as Bref */

Bref = Borg ;
}

Step 8. Basis coefficients calculation
A right side vector is computed by multiplication of the transposed basis bins matrix by the reference bins vector:
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A set of linear equations specified in matrix notation as:
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is solved and a basis coefficients vector 
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In the reference implementation the equations (10.23) are solved using the LU-decomposition representation of the EM matrix computed at step 4.

Negative basis coefficients if any are replaced by zero:
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Step 9. Control branching
The control branching step is described by the following pseudo code:

if (voiced_flag == FALSE  OR  it_count == 3)
{

go to Step 12;
}
/* Otherwise the processing proceeds with the next step 10. */ 

Step 10. Output bins calculation
First, an output bins vector 
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is calculated by the multiplication of the transposed basis bins matrix with the basis coefficients vector:
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Then each zero-valued coordinate of this vector (if any) is replaced by a regularization value:
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as shown by the following pseudo code instructions being performed for k=1,…,23:


if 
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Step 11. High order cepstra refinement
Truncated logarithm operation described in clause 5.3.6 is applied to the coordinates of the output bins vector:
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Discrete Cosine Transform (DCT) is applied to the lBout vector, besides only 10 last values are calculated out of 23:
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which are considered as new estimate of the high order cepstra (HOC). Current high order cepstra values are replaced by these ten coefficients:
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The iteration counter it_count is incremented and control is passed to Step 6.

Step 12. Harmonic magnitude estimates calculation
The vector 
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of harmonic magnitude estimates is computed as a linear combination of the basis vectors (computed at step 2) weighted by the basis coefficients (computed at step 8):
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Finally, the obtained vector is modified in order to cancel the effect of the high frequency preemphasis done in the front-end:
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(fk are harmonic normalized frequencies)

10.2.7.3
Cepstra to magnitudes transformation

From the pitch period and voicing class parameters, the frequencies fk, k=1,…,Nv of voiced harmonics and the frequencies fk, k=1,…,Nu of unvoiced harmonics are computed in clause 10.2.3. One method to estimate the magnitudes at these frequencies from the mel-frequency cepstral coefficients C0, C1,…, C12 is described in clause 10.2.7.2. In this clause, a second method for transforming cepstra to magnitudes is specified.

As a first step, the high order cepstra are recovered as described in clause 10.2.7.1 for voiced frames to form the complete cepstra C0, C1,…, C22. For unvoiced frames, the high order cepstra are not recovered. From the cepstra of each frame, a fixed cepstra are subtracted as follows: Di = Ci - Fi, i = 0, 1,…, 12 for unvoiced frames and i = 0, 1,…, 22 for voiced frames. The fixed Cepstral values Fi are shown in table 10.2. The modified cepstra Di, i = 0, 1,…, 12 (or 22) are used in the estimation of the harmonic magnitudes as described below. To estimate the harmonic magnitude AIk at harmonic frequency fk , the harmonic frequency fk is first transformed to a corresponding mel-frequency mk using equation (5.55a) as follows:
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The mel-frequency mk is then transformed to an index jk with the help of table 10.3. In the table, (integer) index values from 0 to 24 and corresponding mel-frequencies are shown. Let the mel-frequencies given in the table 10.3 be denoted by M0,…,MJ,…,M24. Given a harmonic mel-frequency mk, it is first bounded so that it does not exceed M24. Then, the index J (in the range from 1 to 24) is found such that mk ( MJ. The (possibly non-integer) index value jk corresponding to mk is then calculated as:
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From the index jk, another index lk is computed as follows:
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From the modified cepstra Di, i = 0, 1,…, 12 (or 22), and the index lk, the log-magnitude estimate ak is obtained as
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where, Max_i is 12 or 22 depending on whether the frame is unvoiced or voiced respectively. From ak, the harmonic magnitude estimate AIk is obtained as follows:
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The above method (10.33 through 10.36) is applied to each harmonic frequency to estimate the harmonic magnitudes AIk for k = 1, 2,…, Nu (or Nv).

Table 10.2: Fixed cepstral values
	Fixed Cepstral values F0 through F22

	2,5245156e+01

-3,1339415e+01

-5,0421652e+00

-3,9743845e+00

-1,5154464e+00

-1,3563063e+00

-5,6955354e-01

-7,1809975e-01

-5,5995365e-01

-6,2237629e-01

-5,3362716e-02

-1,6299096e-01

-2,5138527e-01

-8,1102386e-02

-2,1767279e-01

9,1988824e-02

1,8607947e-01

9,6931091e-02

9,9251014e-02

4,1572605e-02

2,6646199e-02

-7,0223354e-02

-2,2043307e-02


Table 10.3: Index values and corresponding mel-frequencies

	Index value
	Mel-Frequencies

	0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
	9,6383e+01

1,8517e+02

2,6747e+02

3,4416e+02

4,5023e+02

5,1577e+02

6,0745e+02

6,9222e+02

7,7107e+02

8,6828e+02

9,5777e+02

1,0407e+03

1,1179e+03

1,2075e+03

1,2906e+03

1,3827e+03

1,4679e+03

1,5472e+03

1,6330e+03

1,7238e+03

1,8078e+03

1,8859e+03

1,9766e+03

2,0605e+03

2,1461e+03


10.2.7.4
Combined magnitudes estimate calculation

This block calculates a final combined estimate 
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obtained in SFEQ block (clause 10.2.7.2) and CTM block (clause 10.2.7.3) correspondingly. Voiced and unvoiced harmonic arrays are treated slightly differently.

10.2.7.4.1
Combined magnitude estimate for unvoiced harmonics

Vector AE is scaled so that its squared norm is equal to the squared norm of the AI vector as is specified by the pseudo code:
{
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}

The magnitudes AE and AI are mixed:
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10.2.7.4.2
Combined magnitude estimate for voiced harmonics

Vector AE is scaled and then mixed with the AI vector using a pitch dependent mixing proportion. 

Scaling
Scaling is performed differently for long and short pitch period values.
If the pitch value p is less than 55 samples then AE vector is scaled exactly as is described in clause 10.2.7.4.1. Otherwise (if 
[image: image541.wmf]55
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p

) the scaling procedure described below is carried out.

Two scaling factors sclow and schigh are calculated in frequency bands [0, 1 200 Hz] and [1 200 Hz,FNyquist] respectively.
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where 
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. A scaling factor is set to 0 if the denominator of the corresponding expression is equal to zero.

Then the harmonic magnitudes 
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are modified as specified by the following pseudo code section being executed for:


n=1,…,Hh.

{
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Mixing
Mixture parameter values
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as a function of p n values are specified by table 10.4.

Table 10.4: Magnitude mixture parameter vs. pitch

	N
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	1
	22,5
	0,0459
	14
	87,5
	0,8740

	2
	27,5
	0,0765
	15
	92,5
	0,8586

	3
	32,5
	0,1124
	16
	97,5
	0,8306

	4
	37,5
	0,1384
	17
	102,5
	0,8299

	5
	42,5
	0,1869
	18
	107,5
	0,8496

	6
	47,5
	0,2858
	19
	112,5
	0,8346

	7
	52,5
	0,4309
	20
	117,5
	0,7617

	8
	57,5
	0,5676
	21
	122,5
	0,7336

	9
	62,5
	0,6458
	22
	127,5
	0,6321

	10
	67,5
	0,6779
	23
	132,5
	0,5522

	11
	72,5
	0,7009
	24
	137,5
	0,4016

	12
	77,5
	0,7646
	25
	142,5
	0,3306

	12
	82,5
	0,8347
	26
	147,5
	0,2909


The mixture parameter value 
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to be used for mixing the magnitude vectors is determined by linear interpolation between the values given by the table as described by the following pseudo code:
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10.2.8
All-pole spectral envelope modelling

Given the harmonic magnitudes estimate, Ak, k = 1, 2,…, Nv , of a voiced frame, an all-pole model is derived from the magnitudes as specified in this clause. The all-pole model parameters aj, j = 1, 2,…, J are used for postfiltering (clause 10.2.9) and harmonic phase synthesis (clause 10.2.10). The model order J is 10.

The magnitudes are first normalized as specified by the pseudo-code below so that the largest normalized value is 1.


if (max(Ak) > 0)



Bk = Ak / max(Ak);  k = 1, 2,…, Nv

else



aj = 0;  j = 1, 2,…, J

From the normalized magnitudes, a set of interpolated magnitudes is derived. The size of the interpolated vector is given by K = (Nv - 1) ( F + 1, where the interpolation factor F is a function of Nv as shown in table 10.5. The interpolated vector is obtained by introducing (F - 1) additional magnitudes through linear interpolation between each consecutive pair of the original magnitudes. When F = 1, i.e. when Nv ( 25, there is no interpolation and K = Nv. The interpolated vector is specified as follows:
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where, Gk, k = 1, 2,…, K = (Nv - 1) ( F + 1 represent the interpolated magnitude vector. Each of the interpolated magnitudes is then assigned a normalized frequency in the range from 0 to (, viz., k = k ( ( / (K+1), k = 1, 2,…, K. The interpolated vector is next augmented by two additional magnitude values corresponding to k = 0 (DC) and k = (. The length of the augmented, interpolated vector is thus K + 2. This vector is still denoted by Gk, but the subscript k now ranges from 0 to K + 1 = (Nv - 1) ( F + 2. The values of G0 and GK+1 are obtained as shown in the pseudo-code below.


if (F == 1)

{


GK+1 = GK;

if (G2 > 1.2 G1)



G0 = 0.8 G1;


else if (G2 < 0.8 G1)



G0 = 1.2 G1;


else



G0 = G1;

}

else

{


GK+1 = 2.0 (GK - GK-1);


G0 = 2.0 (G1 - G2);

}

Table 10.5: Interpolation factor vs. number of harmonics

	Number of voiced harmonics
	Interpolation factor

	Nv < 12
	4

	12 ( Nv < 16
	3

	16 ( Nv < 25
	2

	25 ( Nv
	1


From the augmented, interpolated vector Gk, k = 0, 1,…, K+1, a pseudo-autocorrelation function Rj is computed using the cosine transform as follows:
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From the pseudo-autocorrelation coefficients Rj, j = 0, 1,…, J, the all-pole model parameters aj, j = 1, 2,…, J are obtained through the well known Levinson-Durbin recursion as the solution of the normal equations:



[image: image569.wmf]å

=

-

£

£

=

´

J

j

i

j

i

j

J

i

R

R

a

1

1

;


(10.41)

For the case when F = 1, i.e. when Nv ( 25, the all-pole model parameters derived as above represent the final values. For other cases when F > 1, the model parameters are further refined as specified below. The spectral envelope defined by the all-pole model parameters is given by:
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where, the 
[image: image571.wmf]w

j

e

represents a complex exponential at frequency (. The spectral envelope given by (10.42) is sampled at all the frequencies (k = k( / (K+1), k = 0, 1,..., K+1 to obtain the modelled magnitudes Hk, k = 0, 1,…, K+1. The maximum of the modelled magnitudes at frequencies corresponding to the original estimated magnitudes is then used to normalize the modelled magnitudes as follows:
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Next, scale factors Sk , k = 0, 1,…, K + 1 are computed as follows:
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The normalized, modelled magnitudes are then multiplied by the appropriate scale factors to obtain a new set of magnitudes Mk = Lk × Sk, k = 0, 1,…, K+1. This set of magnitudes is used to compute a new pseudo-autocorrelation function using (10.40) and subsequently a new set of all-pole model parameters as a solution (10.41) as the final values. 

10.2.9
Postfiltering

Postfiltering is applied to the harmonic magnitudes Ak , k = 1, 2,…, Nv of a voiced frame to emphasize the formants in the speech signal using the all-pole model parameters aj, j = 1, 2,…, J as specified below.

From the number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size K = (Nv - 1) × F + 1 are first determined. Then, a weighting factor Uk is computed for each harmonic as follows:
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The values of (, (, and ( are respectively 0,95, 0,75 and 0,5. The weights are then normalized and bounded as follows:
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Postfiltering is applied to the harmonic magnitudes as follows. It is ensured that the energy in the harmonics before and after postfiltering remains the same.
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where Pk, k = 1, 2,…, Nv represent the postfiltered harmonic magnitudes.

10.2.10
Voiced phase synthesis

The harmonic phases (k, k = 1, 2,…, Nv of a voiced frame with harmonic cyclic frequencies (k = 2(fk, k = 1, 2,…, Nv are specified as follows. Each harmonic phase (k is made up of three components: a linear phase component (k,lin, an excitation phase component (k,exc, and an envelope phase component (k,env.

The linear phase component is computed as follows:
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where:
· (1,lin,prev represents the linear phase component of the fundamental phase of the previous frame;
RF represents a rational factor of the R1/R2, where R1,R2 ( {1,2,3,4}, such that the jump given by 
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(1,ave is the weighted sum of the fundamental (cyclic) frequency of the previous and current frames given by 
[image: image589.wmf]2

/

)

(

1

,

1

,

1

w

w

w

+

´

=

RF

prev

ave

, and M is the frame shift in samples.

Note that pprev and (1,lin,prev are initialized to 0 (meaning the previous frame is unvoiced) when the very first frame is being processed.

The excitation phase component is determined using table 10.6 as follows. Given a harmonic frequency (k, it is first transformed into an integer index 
[image: image590.wmf])

256

(

p

w

k

k

round

I

´

=

, the corresponding value T[Ik] from table 10.6 is looked up, and un-normalized to obtain (k,exc = T[Ik] × (.

The envelope phase component is computed using the all-pole mode parameters, aj, j = 1, 2,…, J, as follows. From the number of voiced harmonics Nv, the interpolation factor F from table 10.5 and the interpolated vector size K = (Nv - 1) ( F + 1 are first determined. Then the envelope phase component is computed as:
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The excitation and envelope components of the phases are added and any linear component is removed as follows:
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The linear phase component and the additional phase component are added to obtain the harmonic phases for the voiced frame as follows:
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Table 10.6: Normalized excitation phases

	Index
	Normalized phase
	Index
	Normalized phase
	Index
	Normalized phase
	Index
	Normalized phase

	0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63


	0,000000

0,577271

0,471039

0,402039

0,341461

0,282104

0,221069

0,157074

0,089905

0,019989

-0,051819

-0,124237

-0,195770

-0,264679

-0,328705

-0,385162

-0,430573

-0,460846

-0,472351

-0,464783

-0,444977

-0,425323

-0,415466

-0,418579

-0,433502

-0,457764

-0,488617

-0,523315

-0,559174

-0,593689

-0,625031

-0,652130

-0,674835

-0,693390

-0,707428

-0,715729

-0,717133

-0,713837

-0,713104

-0,723785

-0,750366

-0,791931

-0,845093

-0,905945

-0,970825

0,963654

0,901123

0,846222

0,805481

0,788788

0,807312

0,857269

0,904724

0,922668

0,913757

0,888916

0,856750

0,823730

0,796082

0,781250

0,786346

0,809631

0,831787

0,831818
	64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127


	0,806122

0,761841

0,707184

0,649353

0,595245

0,553375

0,535004

0,551025

0,593689

0,629669

0,641205

0,637146

0,630432

0,626068

0,618439

0,597534

0,558716

0,504242

0,439545

0,371796

0,314423

0,322479

0,692352

0,820557

0,775940

0,703735

0,625885

0,549744

0,479889

0,420258

0,374023

0,341888

0,319366

0,297546

0,268768

0,230896

0,186066

0,137939

0,090027

0,045288

0,005859

-0,026398

-0,049316

-0,059448

-0,052521

-0,028687

-0,000732

0,012024

0,001312

-0,028900

-0,070801

-0,117004

-0,160583

-0,194824

-0,214020

-0,217743

-0,215424

-0,221161

-0,241730

-0,274475

-0,313202

-0,351440

-0,384247

-0,409363
	128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191


	-0,428986

-0,449249

-0,476257

-0,512085

-0,555054

-0,601379

-0,646881

-0,687469

-0,720123

-0,743896

-0,760712

-0,774292

-0,786865

-0,796417

-0,797058

-0,782288

-0,753052

-0,723755

-0,710052

-0,714722

-0,731720

-0,753998

-0,776672

-0,797760

-0,817749

-0,838562

-0,861664

-0,887115

-0,913971

-0,941437

-0,969849

0,999176

0,963562

0,922089

0,875092

0,824432

0,773285

0,726074

0,688934

0,669617

0,674377

0,698090

0,719421

0,721069

0,702698

0,671631

0,634674

0,596527

0,559784

0,525757

0,494995

0,468231

0,446991

0,433105

0,427216

0,426483

0,424225

0,414124

0,393951

0,365723

0,333374

0,301086

0,272278

0,249054
	192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256
	0,231750

0,219360

0,211182

0,207703

0,209747

0,215332

0,217590

0,208527

0,184631

0,147583

0,101593

0,051697

0,002960

-0,039154

-0,068756

-0,080597

-0,073730

-0,055573

-0,038666

-0,030792

-0,033630

-0,047180

-0,072174

-0,109039

-0,156860

-0,213318

-0,275146

-0,338562

-0,398956

-0,450836

-0,487793

-0,505707

-0,510162

-0,518524

-0,545410

-0,592499

-0,654510

-0,725586

-0,801025

-0,877136

-0,950897

0,980316

0,918762

0,866211

0,824219

0,795319

0,786377

0,810913

0,872406

0,925385

0,926483

0,882111

0,808807

0,716248

0,608063

0,480927

0,310974

-0,054810

-0,554077

-0,763275

-0,904968

0,977448

0,884125

0,849152

0,999969


10.2.11
Line spectrum to time-domain transformation

This block transforms a line spectrum of the frame represented by an array 
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 of harmonics to a time-domain speech signal segment. If the frame is of fully-voiced class as indicated by vc =="fully‑voiced" the array H is set to VH. In case of unvoiced frame (vc =="unvoiced") H is set to UH. In the case of mixed-voiced frame the arrays of voiced and unvoiced harmonics are combined as described in the following clause.
10.2.11.1
Mixed-voiced frames processing

This step is performed for the mixed-voiced frames only as indicated by vc == "mixed_voiced". The input to the step are the array 
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of voiced harmonics and the array 
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of unvoiced harmonics. The output is a combined array 
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of harmonics. The combined array contains the voiced harmonics associated with frequencies lower than 1 200 Hz and the unvoiced harmonics associated with frequencies higher than 1 200 Hz. The processing is described by the following pseudo code:

{
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; /* index of the first unvoiced harmonic to be taken */


[image: image604.wmf]å

å

=

+

=

=

u

v

N

first

u

n

u

n

N

last

v

n

v

n

A

A

sc

_

1

_

2

; /* compute magnitude scaling factor */


[image: image605.wmf]last

v

n

H

H

v

n

n

_

,...,

1

,

=

=

;


[image: image606.wmf]u

u

n

first

u

n

last

v

u

n

first

u

n

last

v

N

first

u

n

f

f

,...,

_

,

,

1

_

_

1

_

_

=

=

=

+

-

+

+

-

+

j

j

;


[image: image607.wmf]u

u

n

first

u

n

last

v

N

first

u

n

A

sc

A

,...,

_

,

1

_

_

=

´

=

+

-

+

;


[image: image608.wmf]1

_

_

+

-

+

=

first

u

N

last

v

N

u

h

;
}

10.2.11.2
Filtering very high-frequency harmonics

At this step the harmonics associated with the frequencies close enough to the Nyquist frequency (if any) are filtered out. Those elements of the harmonics array which satisfy the condition:
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(10.52)
are eliminated and the number Nh of harmonics is updated appropriately.

10.2.11.3
Energy normalization

A synthetic complex discrete spectrum is calculated:
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(10.53)
by convolution of the line spectrum with truncated Dirichlet kernel:
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where WT_BW is given by (10.18). Then the frame energy estimate Ee is calculated:
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(10.55)
If the energy estimate is nonzero a normalization factor NF is computed using the logE parameter extracted from the decoded feature vector:
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otherwise the normalization factor is set to zero NF = 0.
The harmonic magnitudes are scaled:
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10.2.11.4
STFT spectrum synthesis

A synthetic complex discrete spectrum s_stft is calculated like in (10.53) but Fourier transform of 2M (M = 80 is frame shift) samples long Hann window is used instead of the Dirichlet kernel:
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where 
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is given by (10.17), and WT_BW by (10.18).

10.2.11.5
Inverse FFT

An inverse FFT is applied to the synthetic STFT spectrum resulting in FFTL-dimensional vector 
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with real coordinates which is used as a time-domain representation of current frame:
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In (10.60) 
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10.2.12
Overlap-Add

The input to the Overlap-Add block (OLA) is the synthesized time-domain frame Ssyn . The OLA block outputs an M = 80 samples long segment of speech which is appended to the already synthesized part of the speech signal. The OLA block maintains a pair of M samples long buffers: 
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Each coordinate of BUFola is initialized by zero values when the very first frame is processed. BUFola preserves its contents in between invocations of the OLA block. The procedure performed in the OLA block is specified by the following pseudo code:

{
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; /* prepare for the next frame */

Output BUFout ;
}

Annex A (informative):
Voice Activity Detection (VAD)
A.1
Introduction

The voice activity detector has two stages - a frame-by-frame detection stage consisting of three measurements, and a decision stage in which the pattern of measurements, stored in a circular buffer, is analysed to indicate speech likelihood. The final decision from this second stage is applied retrospectively to the earliest frame in the buffer, so providing a short look-ahead facility. A hangover facility is also provided, with hangover duration related to speech likelihood.

A.2
Stage 1 - Detection

In non-stationary noise, long-term (stationary) energy thresholds based, for example, on initial noise estimates are not a reliable indicator of speech. In addition, in high noise conditions the structure of the speech (e.g. harmonics) cannot be wholly relied upon as an indicator of speech as they may be corrupted by noise, or structured noises may confuse a detector based on this method.

The voice activity detector presented here uses a comparatively noise-robust characteristic of the speech, namely the energy acceleration associated with voice onset. This acceleration is measured in three ways: 

i. from energy values across the whole spectrum of each frame, 

ii. from energy values over a sub-region of the spectrum of each frame considered likely to contain the fundamental pitch, and 

iii. from the "acceleration" of the variance of energy values within the lower half of the spectrum of each frame. 

Due to the presence of the fundamental pitch,  the sub-region (characterised typically as the second third and fourth  Mel-spectum bands as defined within the body of this document) generally experiences higher signal to noise ratios than the full spectum. Consequently the sub-region measurement is potentially more noise robust than the measurement based on the full spectrum. 

However, the sub-region measurement is vulnerable to the effects of high-pass microphones, significant speaker variability and band-limited noise within the sub-region. Consequently it cannot be relied upon in all circumstances and is treated here instead as an augmentation of the whole spectrum measure rather than as a substitute for it. 

The variance measure detects structure within the lower half of the spectrum as harmonic peaks and troughs provide a greater variance than most noise, making it particularly sensitive to voiced speech. This complements the whole spectrum measure, which is better able to detect unvoiced and plosive speech. 

Measurement 1 - Whole spectrum

The whole-spectrum measurement uses the Mel-warped Wiener filter coefficients generated by the first stage of the double Wiener filter (see clause 5.1.7). A single input value is obtained by squaring the sum of the Mel filter banks.

The voice activity detector applies each of the following steps to the input from each frame, as described below:

1. 
If Frame<15 AND Acceleration<2,5, Tracker=MAX(Tracker,Input)

Step one initialises the noise level estimate Tracker. The acceleration measure prevents Tracker being updated if speech commences within the lead-in of Frame < 15 frames.

2. 
If Input<TrackerxUpperBound and Input>TrackerxLowerBound, 

Tracker=axTracker+(1-a)xInput

Step two updates Tracker if the current input is similar to the noise estimate.
3. 
If Input<TrackerxFloor, Tracker=bxTracker+(1-b)xInput

Step three is a failsafe for those instances where there is speech or an uncharacteristically large noise within the first few frames, allowing the resulting erroneously high noise estimate in Tracker to decay. Note there is no update of Tracker if the value is greater than UpperBound, or between LowerBound and Floor.
4. 
If Input>TrackerxThreshold, output TRUE else output FALSE.

Step four returns true if the current input is more than 165 % the size of the value in Tracker. 

Where a = 0,8 and b = 0,97, UpperBound is 150 % and LowerBound 75 %. Floor is 50 % and Threshold is 165 %. Input is obtained by squaring the sum of the Mel filter banks as described above. 

While Acceleration could be calculated using the double-differentiation of successive inputs, it is estimated here by tracking the ratio of two rolling averages of successive inputs. The ratio of fast and slow-adapting rolling averages reflects the acceleration of successive inputs. The contribution rates for the averages used here were (0 x mean + 1 x input) i.e. instantaneous, and ((Frame - 1) x mean + 1 x input) / Frame for fast and slow rolling averages respectively, making the acceleration measure increasingly sensitive over the first 15 frames of step one.

As noted above, the ratio of the instantaneous input value to the short-term mean value Tracker in step 4 is a function of the acceleration of successive inputs.

Measurement 2 - Spectral sub-region

The sub-region measurement uses as its input the average of the second, third and fourth Mel-warped Wiener filter coefficients generated by the first stage of the double Wiener filter (see clause 5.1.7). The detector then applies each of the following steps to the input from each frame, as described below:

1. 
Input=pxCurrentInput+(1-p)xPreviousInput

Step one uses a rolling average to generate a smoothed version of the current input, where p = 0,75.
2. 
If Frame<15, Tracker=MAX(Tracker,Input)

Step two initialises the noise estimate as the maximum of the smoothed input over the first 15 frames. Note that the variables such as ‘Input’ and ‘Tracker’ are distinct for each measurement.

Steps 3 to 5 are functionally the same as steps 2 to 4 of measurement 1, with the exception that Threshold now equals 3,25.
3. 
If Input<TrackerxUpperBound and Input>TrackerxLowerBound, 

Tracker=axTracker+(1-a)xInput

4. 
If Input<TrackerxFloor, Tracker=bxTracker+(1-b)xInput

5. 
If Input>TrackerxThreshold, output TRUE else output FALSE.

Measurement 3 - Spectral Variance

The spectral variance measurement uses as its input the variance of the values comprising the whole frequency range of the linear-frequency Wiener filter coefficients for each frame. This variance is calculated as:
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(A.1)

where 
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 are the values of the linear-frequency Wiener filter coefficients as calculated by equation (5.17) in clause 5.1.5. 

In step 1, the detector takes the maximum input value of the first 15 frames as in step 2 of Measurement 2.

Steps 2 to 4 are then the same as steps 2-4 of Measurement 1, to give a true/false output.

A.3
Stage 2 - VAD Logic

The three measurements discussed above are input to a VAD decision algorithm. The algorithm generates a single 1/0 (true/false or T/F) result based on these measurements, and stores it in a buffer. Successive results populate the buffer, so providing for contextual analysis of the buffer pattern. The VAD decision algorithm does not begin output until the buffer is fully populated with valid results. This process introduces a frame delay equal to the length of the buffer minus one. 

For an N = 7 frame buffer, the most recent result is stored at position N as illustrated below. For subsequent results, the buffer contents shift left. 
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The VAD decision algorithm applies each of the following steps:

Step 1:



VN = Measurement 1 OR Measurement 2 OR Measurement 3

Thus result VN is true if any of the three measurements returns true. Result VN  is then stored at position N on the buffer.

Step 2:



M = MAX
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The decision algorithm then analyses the resulting buffer pattern. It searches for the longest single sequence of 'true' values in the buffer; moving along the buffer, a counter C is incremented if the next buffer value is true, and is reset to 0 if it is false. The maximum value C attains over the whole buffer is then taken as the value of M. For example, the sequence T T F T T T F would generate a value of 3 for M.

Step 3:



If M>=SP AND T<LS, T=LS


Where SP is a ‘speech possible’ threshold, corresponding to a sequence of 3 or more ‘true’ values found in the buffer at step 2. A short hangover timer T of LS = 5 frames is activated if no hangover is already present.

Step 4:



If M>=SL AND F>FS, T=LM else if M>=SL, T=LL

Where SL is a ‘speech likely’ threshold, corresponding to a sequence of 4 or more ‘true’ values found in the buffer at step 2. A medium hangover timer T of LM = 23 frames is activated if the current frame number F is outside an initial lead-in safety period of FS frames. Otherwise, a failsafe long hangover timer T of LL = 40 frames is used in case the early presence of speech in the utterance has caused the initial noise estimates of the detectors to be too high. 

Step 5:



If M<SP AND T>0, T--

If the lesser of the speech likelihood thresholds is not reached, reduce any current hangover time by 1. Thus the hangover timer T only decrements in the likely absence of speech.

Step 6:



If T>0 output TRUE else output FALSE

Unless hangover timer T has reached a value of zero, the algorithm outputs a positive speech decision. Because T is given a value immediately upon speech detection and only decrements in the absence of speech, step 6 provides a ‘true’ output both during speech and for the duration of any hangover. Because the output is applied to the frame about to leave the buffer, it also provides the look-ahead facility.

Step 7:



Frame++, Shift buffer left and return to step 1

In preparation for the next frame, left-shift the buffer to accommodate the next input.
As noted above, the output speech decision is applied to the frame being ejected from the buffer. The look-ahead effect this provides is detailed below.

The figure below illustrates the buffer, labelled with the frame number of the result VN found at that position:
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Thus at time t, seven frames have populated the buffer, and the result VN for frames 6 and 7 was True. Applying the algorithm above, a negative speech decision is applied to frame 1.

At time t+1, left-shifting of the buffer has ejected frame 1, and the result VN from new frame 8 is  True. Applying the algorithm above, a positive speech decision is applied to frame 2.  This will also be the case for frames 3, 4 and 5 as subsequent new frames arrive, so forming a 4-frame look-ahead preceding the possible speech in frames 6, 7 and 8.

Assuming only these three inputs are 'True', the full speech decision sequence will be:

	Frame No.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	…

	VN result

	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Timer value
	0
	5
	5
	5
	5
	5
	4
	3
	2
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	Speech decision
	F
	T
	T
	T
	T
	T
	T
	T
	T
	T
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F
	F


Where frames 2-5 form a look-ahead in anticipation of further incoming speech, whilst frames 9 and 10 provide only a short hangover as this short isolated sequence may not actually be speech. Empirically the value of short hangover duration LS is a compromise between minimising unwanted noise and providing a couple of frames to bridge speech that is broken up by noise or classification error.

To illustrate this, consider a possible alternative subsequent VN sequence, for which the full speech decision sequence will be:

	Frame No.
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	…

	VN result

	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0

	Timer value
	0
	5
	5
	5
	5
	5
	4
	3
	2
	1
	5
	23
	23
	23
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14

	Speech decision
	F
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T
	T


The buffer length and hangover timers can be adjusted to suit needs, although the buffer should always be greater than or equal to the SL threshold value. Once results from all frames in the utterance have been added, the buffer shifts until empty whilst still applying the algorithm.
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