3GPP TSG-SA4 Meeting #26
Tdoc S4-030303
Paris, France, 5–9 May 2003

Title:
Complexity Assessment of PSS and MMS Audio Codec Candidates
Source:
VoiceAge

Document for:
Discussion and Approval

Agenda Item:
6.7.2.1
1. Summary

This contribution presents a complexity assessment method to be used in the PSS and MMS audio codec selection, aiming to provide more details and clarify the issues left open in earlier meetings. In addition, the required deliverables for codec evaluation and selection are listed. It is proposed to incorporate the process and methodology proposed in Section 2 in the permanent document on PSS and MMS audio codec selection criteria. The objective of the contribution is to ensure that the complexity can be assessed in a systematic and consistent manner to permit meaningful comparisons of the candidate codecs by SA4.
The complexity assessment methodology in Section 2 was presented originally in document S4-030155 of 3GPP SA4#25bis meeting held February 24–28, 2003. The methodology was adopted as the working assumption to be used in the PSS and MMS audio codec selection by the 3GPP SA4 Audio Codec Ad-hoc meeting held April 7–9, 2003. VoiceAge agreed to produce a common tool that can be used by all codec proponents to measure computational and program ROM complexity of algorithms in accordance with the methodology in S4-030155. This tool is available for the codec proponents and was distributed on April 16, 2003. An example program was included in the package to give guidelines on the use of the complexity counters. The tool is introduced in document S4-030301 with the example program.
The SA4 Audio Codec Ad-hoc agreed on two complexity figures of merit and outlined a framework for calculating them for four different use cases as presented in the meeting report S4-030316. The current input contribution is meant to build upon this framework, proposing solutions for the remaining open issues and clarifying the details related to the complexity assessment. For example, based on the discussions that took place at the S4 Audio Ad-hoc meeting, the description in S4-030155 is still ambiguous and should be detailed to ensure that the submitting organizations can apply the methodology consistently.

2. Complexity Assessment
This section lists responsibilities of submitting organizations related to the complexity assessment of a candidate codec. In addition, it details the complexity evaluation methodology.

2.1. Responsibilities of Submitting Organizations

[Editor’s note: This subsection is intended to specify the deliverables and procedures related to the complexity assessment. The content in this subsection is novel and has not been discussed earlier.]

The complexity of a candidate codec algorithm is characterized by computational complexity and memory requirements. The computational complexity is expressed in weighted MOPS (wMOPS), and the memory requirements as RAM, Table ROM and Program ROM required by the codec algorithm. In the selection phase, the complexity assessment is based on a floating-point ANSI-C source code of a codec algorithm and the methodology to be specified in this section.

To be able to verify the codec complexity, the submitting organization prepare two bit-exact ANSI-C source code versions of a candidate codec, one for the selection tests and one for the complexity assessment. The source code used in complexity assessment is equipped with complexity counters available in a common ANSI-C library. This complexity estimation tool produces an estimate for the computational complexity and Program ROM of a candidate codec. In order to obtain comparable results, the estimation is conducted using a common complexity assessment audio database that will be made available by TBD for the submitting organizations. The RAM and Table ROM of a candidate codec are estimated using the rules specified later in this section.
The complexity counters are disabled or removed in the source code version used in the selection test.
In the event a codec algorithm of the submit organization is selected, the submitting organization will provide the test vectors and the source code of the selected codec used in complexity assessment for independent verification. The test vectors are used to verify the bit-exactness between the codec algorithms submitted to the selection tests and used in the complexity assessment.
2.2. Reporting

[Editor’s note: This subsection is meant to clarify and specify the derivation of the complexity figures for a codec candidate to enable calculation of the figures of merit and verification of design constraints. The content is in the current form novel and has not been discussed earlier. The values to be reported have been derived from the current design constraints of the AMR-WB+ and PSS/MMS audio codecs, and the figures of merit defined at the S4 Audio Codec Ad-hoc meeting.]
To permit calculation of the figures of merit and verification of the design constraints, the submitting organization has to estimate and report the complexity in terms of wMOPS, RAM, Table ROM, and Program ROM in accordance with the following general principles:

· The wMOPS and RAM of the PSS encoder are reported individually in all test cases of the selection tests. The wMOPS and RAM of the MMS encoder are reported correspondingly.

· The wMOPS of the decoder are reported individually in all test cases of the selection tests. A separate analysis is conducted in all stereo test cases for a decoder that renders a stereo bit stream to a mono audio output. The RAM of the decoder is reported individually in all stereo test cases of the selection tests for a decoder algorithm that implements frame loss concealment. This is expected to be the worst case for the RAM size.
· The Program ROM and Table ROM of the encoder are estimated and reported in four cases,

E1. Low bit-rate MMS (mono),

E2. Low bit-rate MMS (stereo),

E3. High bit-rate MMS,

E4. PSS,

from a complete encoder algorithm that is capable of producing mono and stereo streams at all bit rates and sampling frequencies relevant in the particular use case. Values E1, E2, and E4 are used to verify the design constraints of AMR-WB+. Values E2 and E3 are for the verification of the design constraints given in the permanent document on PSS and MMS audio codec selection criteria and for calculating the figures of merit. The value E4 of PSS and MMS audio codec candidates is for information only. This breakdown gives service providers and implementers a detailed view on the resource requirements of the encoder in the identified use cases given a complete encoder may not be supported in all terminals or applications.

· The Program ROM and Table ROM of the decoder are estimated from a complete decoder algorithm that is able to decode mono and stereo streams at all bit rates and sampling frequencies supported by the candidate codec, is capable of rendering a stereo bit stream into a mono audio output, and implements frame erasure concealment. Thus only one value is reported for the Program ROM and Table ROM of the decoder in all test cases.

· Stereo to mono downmixing algorithm and downsampling possibly included in the PSS encoder of a candidate codec are excluded from all estimates reported for the PSS use case.

· In the complexity assessment of an AMR-WB+ candidate codec, the VAD/DTX functionality is enabled and taken into account in all estimates.

2.3. Figures of Merit

[Editor’s note: The content of this subsection is based on the decisions taken at Audio Codec Ad-hoc. Please see below an excerpt from the draft report of Audio Codec Ad-hoc. Some details left open at the Ad-hoc are detailed here based on the interpretation of the editor.
Two complexity figures of merit are used to quantify the implementation costs and the battery consumption of a codec algorithm:

FOMC = Worst-case wMOPS + 2(RAM + (2/5)(Table ROM + 2(Program ROM

FOMB = Average wMOPS

This definition of FOMC is adopted from the standardization of the noise suppression algorithm of the AMR codec. The figures of merit are calculated in the four cases identified by the 3GPP SA4 Audio Codec Ad-hoc:

C1. MMS encoder, low bit-rate range
over all test cases at (24 kb/s

C2. MMS encoder, high bit-rate range
over all test cases at (24 kb/s

C3. Decoder, low bit-rate range

over all test cases at (24 kb/s

C4. Decoder, high bit-rate range

over all test cases at (24 kb/s

Hence eight figures of merit are available for a candidate codec that has been submitted for both the low and high-bit range and includes an MMS encoder.
The test cases are 14 kb/s mono, 18 kb/s stereo, 24 kb/s mono, 24 kb/s stereo, 32 kb/s stereo and 48 kb/s in clean channel conditions; and 14 kb/s mono, 24 kb/s mono and 24 kb/s stereo in impaired channel conditions. [Editor’s note: These test cases are the current working assumption.]
When calculating the figures of merit, RAM and Table ROM are measured in kilobytes (1 kilobyte = 500 16-bit words) and Program ROM in thousands of weighted instructions. Worst-case wMOPS is defined based on the worst frame observed when processing the complexity assessment audio database in all specified test cases. Average wMOPS is the average of all frames calculated over all specified test cases using the complexity assessment audio database. The means for estimating the required values are presented in more detail in Section 2.4 with the complexity and memory weights of arithmetic operations and instructions.

[Editor’s note: The related text from the meeting report of the SA4 Audio Codec Ad-hoc:

“For the audio codec selection, complexity FOM (as defined below) will be calculated for every combination of the following aspects:

· Sampling frequency

· Encoder-decoder

· Mono-stereo

· Bitrate

The FOM (figure of merit) used for complexity monitoring will have the structure in each above case:

FOM = WMOPS + x*RAM(Kbytes) + y*DROM(Kbytes) + z*K-number of operations (TD S4-030155)

Notes:

· WMOPS will be evaluated based on floating-point code for the selection phase.

· The FOM will be calculated in each case for worst observed frame (peak value) (FOMC) and for average complexity (FOMB), regarding WMOPS.

· This methodology is generic as it will be applied to all audio codec selection (i.e. low and high rates).

(…) After the calculation of FOMB and FOMC for each particular combination of the above mentioned aspects, in addition, complexity FOMs will be aggregated by calculating FOMB and FOMC values for each use case: low-rate MMS, high-rate MMS, low-rate PSS, high-rate PSS (justification: various terminals may support some applications only). By this method, implementers will know the resources needed to support particular applications. In details, the use cases are understood as:

· Low-rate MMS: over all tested cases at <=24kb/s bitrate, encoder only

· High-rate MMS: over all tested cases at >=24kb/s bitrate, encoder only

· Low-rate PSS: over all tested cases at <=24kb/s bitrate, decoder only

· High-rate PSS: over all tested cases at >=24kb/s bitrate, decoder only

In result, 12 aggregated FOMs will be available for each candidate. This principle was agreed. Next the group addressed the definition of the weighting factors again. (…) In a following discussion, the FOMs were specified as follows:

Complexity FOMC = peak-WMOPS+ 2*RAM + (2/5)*DROM + 2*PROM

Complexity FOMB = average-WMOPS

where RAM and DROM are measured in Kbytes (1kbyte=1000 bytes), PROM as number of K (1000) - floating-point instructions (according to TD S4-030155). This was agreed.”]

2.4. Assessment Methology

[Editor’s note: This subsection is meant to give more details on the complexity assessment methology introduced originally in S4-030155. No changes are introduced to the complexity or memory weights of instructions.]
2.4.1. Weighted MOPS (wMOPS)
The computational complexity associated with a candidate codec is specified in terms of the number of weighted operations required per second (wMOPS). This can be derived given the number of operations per frame and the number of frames per second. Certain arithmetic operations require several instructions in order to be computed. Thus all operations have associated with them a weight given in Table 1. The weights assigned with arithmetic operations reflect those of the ETSI basic operator set. It should be noted, however, that the method cannot give an exact correspondence with the complexity of the fixed-point implementation. This is among other reasons because the complexity overhead resulting from a higher accuracy required by some variables in fixed-point arithmetic cannot be taken into account. On the other hand, Table 1 includes weights for loops, some address pointer operations and function calls that are excluded in complexity analysis conducted using the ETSI basic operators.
It should be noted that free arithmetic operations with address pointers are limited to increment, decrement, and increment by a constant. Other, more complex pointer operations require arithmetic instructions, that is, an accumulator and are charged accordingly.
Both the worst-case and average wMOPS are measured using the complexity assessment audio database in the test cases specified in Section 2.3. Worst-case wMOPS is defined as the number of millions of weighted operations in the worst observed frame multiplied by the number of frames per second. Average wMOPS is the number of millions of weighted operations per frame calculated over all frames divided by the number of frames.

Table 1: Complexity and memory weights of operations.
[Editor’s note: Table from S4-030155 with editorial changes.]
	Operation
	Example
	Complexity Weight
	Memory Weight

	Addition
	a = b + c
	1
	1

	Multiplication
	a = b * c
	1
	1

	Multiplication-

Addition
	a += b * c
	1
	1

	Move
	a = b, a[i] = b[i]
	1
	1

	Storing Arithmetic
Result in Array
	a[i] = b[i] + c[i]
	1 (for move only)
	0

	Logical
	 AND, OR
	1
	1

	Shift
	a = b >> c
	1
	1

	Test with zero, Branch
	if, if ... then ... else...
	2
	2

	Divisions
	a = b / c, a = b % c
	18
	2

	Square-root
	a = sqrt(b)
	25
	2

	Transcendental
	a = sin(b), a = log(b)
	25
	2

	Function call
	a = func(b, c, d)
	2 + # arguments
passed and returned
	2

	Double Precision
Floating Point
	as above
	2 x corresponding single precision operation
	as above

	Loop initialization
	for (i = 0; i < n; i++)
	1
	1

	Indirect addressing
	a = b.c, a = b[c]
	2
	2

	Pointer initialization
	a[i]
	1 (charged outside of loop)
	1

The computational complexity of a codec algorithm is estimated using a common tool. This tool consists of an ANSI-C library that implements counters with the complexity and memory weights of Table 1. It is the responsibility of the submitting organization to prepare an ANSI-C source code of a candidate codec including the complexity counters. An example program is provided in S4-030301 to give guidelines on the use of the counters and depict an output provided by the tool.
2.4.2. RAM
RAM is counted in 16-bit words. This is based on the assumption that a 16-bit integer representation provides a sufficient accuracy for all variables when implemented in fixed-point arithmetic on a 16-bit DSP regardless of the data types used in the floating-point source code. Exceptions are those variables and arrays that by construction require a 32-bit integer representation, such as variables containing over 16-bit codewords. In this exceptional case, each variable and array entry is counted as two 16-bit words.

The total size of RAM is a sum of Static and Scratch RAM. Static RAM includes only those variables and arrays that are defined with the static declaration, excluding as an exception the static RAM arrays that are used like constant tables. These static RAM arrays are included in Table ROM. Scratch memory which can be shared by different routines is counted only once.

Example. Each of these arrays count as 100 16-bit words or 200 bytes:

double x0[100]; // the use of double not recommended

float x1[100];

long x2[100];

short x3[100];

char x4[100];

Since the estimation method does not take into account the overhead of variables and arrays that require a 32-bit integer representation in fixed-point arithmetic, the RAM estimate should be regarded as a lower bound for the codec algorithm implemented on a 16-bit DSP.

2.4.3. Table ROM
Table ROM is counted in 16-bit words. This is based on the assumption that a 16-bit integer representation provides a sufficient accuracy for tables when implemented in fixed-point arithmetic on a 16-bit DSP regardless of the data types used in the floating-point source code. Exceptions are those tables that by construction require a 32-bit integer representation, such over 16-bit codewords. In this exceptional case, each variable and array entry is counted as two 16-bit words.

Tables used in multiple codec modes should only be counted only once.

2.4.4. Program ROM
Arithmetic operations and instructions are assigned with memory weights according to Table 1 to produce a memory word for each operation in the source code. Note that each operation in the source code is counted only once. The common tool used for the estimation of the computational complexity produces also an estimate for the program memory required by a codec algorithm. One caveat with this program memory counter is that the instructions need to be executed to be counted. Therefore the candidate codec should be executed such that the broadest possible coverage of the source code is obtained.

[Editor’s note: Detailed instructions should be given for obtaining meaningful estimates for an encoder and decoder. This is not trivial as a codec algorithm should be run over a broad set of test cases possibly switching bit rate in order to cover the source code thoroughly.]
� Contact: Vesa Ruoppila

VoiceAge Corporation

750 chemin Lucerne Suite 250, Montreal (QC) H3R 2H6, Canada

+1 514 7374940 x269 tel, +1 514 9082037 fax

vesar@voiceage.com

5(6)

