

	
3GPP TSG-S4 Meeting # 127	S4-240063
Sophia-Antipolis, FR, 29th January - 2nd February 2024
	CR-Form-v12.2

	PSEUDO CHANGE REQUEST

	

	
	26.565
	CR
	
	rev
	
	Current version:
	1.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	CR on suggested edits to the TS

	
	

	Source to WG:
	Qualcomm Inc.

	Source to TSG:
	S4

	
	

	Work item code:
	SR_MSE
	
	Date:
	23rd January 2024

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	This pCR proposes changes to TS26.565 to address a few issues and to replace redundant sections by references in the target specs.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	First Change

1	Scope
The present document defines a Media Service Enabler for Split Rendering according to the guidelines of TR26.857 [1]. The Split Rendering MSE covers functionality on the UE and on the Media AS. It also defines an API that is exposed to application developers on the UE to start and manage split rendering sessions.

	2nd Change

[bookmark: _Toc152689639]5.1.2	Client Architecture
The client architectural breakdown is based on the client architecture in TS26.119 [4] clause 5.1. The figure depicting the client architecture is replicated here as Figure 5.1.2-1 for convenience.
[image: Une image contenant diagramme

Description générée automatiquement]
Figure 5.1.2-1 - XR Baseline terminal architecture

The split rendering client consists of the following components:
· [bookmark: MCCQCTEMPBM_00000109]The Media Access Functions: allow for fetching and processing of the pre-rendered media in preparation of final display. The MAF is also responsible for the carriage of any metadata or local media to the split rendering server.
· [bookmark: MCCQCTEMPBM_00000110]The scene manager and thin Presentation Engine: is responsible for the negotiation of the split rendering session and the parsing of the description of the rendered media as provided by the SR server. It is also responsible for setting up and managing the XR session with the XR runtime.
· [bookmark: MCCQCTEMPBM_00000111]The XR source management is responsible for gathering timed metadata such as pose and action information and sending it to the SR server.
	3rd Change

[bookmark: _Toc152689645][bookmark: MCCQCTEMPBM_00000035]5.2.1.2	Client-driven procedures and call flows
Figure 5.2.1.2-1 demonstrates a call flow for setting up the split rendering by the client.

Figure 5.2.1.2-1: High-level call flow for initiating a split
Steps:
1. [bookmark: MCCQCTEMPBM_00000115]The Application Service Provider requests the SRF the provisioning a split management session.
2. [bookmark: MCCQCTEMPBM_00000116]The split management session is announced to the Application as part of the Service Access Information.
3. [bookmark: MCCQCTEMPBM_00000117]The Application requests a split of the client media functions from the SRC.
4. [bookmark: MCCQCTEMPBM_00000118]The SRC inquires the Media Session Handler about the client’s media capabilities.
5. [bookmark: MCCQCTEMPBM_00000119]The SRC and SRS negotiate on the acceptable capabilities for the device and agree on the split option.
6. [bookmark: MCCQCTEMPBM_00000120]The SRS starts the split rendering process.
7. The SRC provides the session information via the RTC-6 interface and requests the application of dynamic policy and subscription to network assistance.
8. [bookmark: MCCQCTEMPBM_00000121]The SRC establishes the WebRTC session.
89. The SRC informs the application that the split-rendering on edge is running.
910. The SRC sends uplink metadata, such as pose and action information.
101. The SRS sends the rendered media to the SRC.

	4th Change

[bookmark: _Toc152689653]7.3	Dynamic Policy and Network Assistance
Dynamic policy and network assistance may be provisioned by the Application Provider with the RTC AF. The allowed dynamic policies for the split rendering sessions of the application provider are communicated to the MSH in the client using the Configuration procedure.
Upon the creation of a new split rendering session and upon eligibility, the MSH shall use the Dynamic Policy API to request the allocation of network resources and charging policy to the session based on the information in the corresponding Provisioning session.
A policy template that is provisioned for split rendering should be associated with the split rendering configuration.
When Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following QoS specifications, one for each of the components of the downlink streams:
· [bookmark: MCCQCTEMPBM_00000133]2 QoS specifications corresponding to for left and right eye buffer streams.
· [bookmark: MCCQCTEMPBM_00000134]1 QoS specification corresponding to a depth buffer stream.
· [bookmark: MCCQCTEMPBM_00000135]1 QoS specification corresponding to an occupancy/transparency buffer stream.
· [bookmark: MCCQCTEMPBM_00000136]1 QoS specification corresponding to an audio stream.
The MSH And the WebRTC Signaling Server shall support the dynamic policy API as defined in TS26.113.
The Application Provider may provision support for PDU Set marking. The SRS shall support the PDU Set marking and should support the End of Burst marking for the RTP streams that are generated by the Split Rendering Server.

	5th Change

[bookmark: _Toc152689654]7.4	Edge Resources
A split rendering application may use the procedures defined in TS26.512 [7] clause 7.10 to define an edge resource configuration to be used for split-rendering sessions. In this case:
· [bookmark: MCCQCTEMPBM_00000137]The eligibilityCriteria shall be present and shall have appRequest set to true.
· [bookmark: MCCQCTEMPBM_00000138]The easRequirements shall indicate “SR” as the easType and shall include “3gpp-sr” among the easFeatures. The serviceKpi shall be present and indicate the SRS processing and networking capabilities and requirements.
· [bookmark: MCCQCTEMPBM_00000139]The easRelocationRequirements shall indicate “RELOCATION_INTOLERANT” in the tolerance field.
	6th Change

[bookmark: _Toc152689656][bookmark: MCCQCTEMPBM_00000037]8	Split Rendering User Plane
8.1	General
The user plane for split rendering covers all traffic between the SRC and SRS, or the SRC and any other RTC AS. The common formats for split rendering are defined in this clause. Split rendering profiles may define additional user plane formats.
This clause illustrates the protocol stack for the User plane transport related to the signalling as well as the media delivery between SRC and SRS though RTC-4.
[image:]
[bookmark: MCCQCTEMPBM_00000095][image:]
Figure 8.1-1 Split rendering protocol Stack

	7th Change

[bookmark: _Toc152689660]8.3.2	Metadata Formats
[bookmark: _Toc132968723][bookmark: _Toc152689661]8.3.2.1	General
Both SRC and SRS shall support the usage of the WebRTC data channel for the exchange of split rendering metadata. The WebRTC data channel shall declare “3gpp-sr” as the data channel sub-protocol. The message content format depends on the type of the message. The data channel sub-protocol is defined in clause X8.3.3.
Message types shall be unique identifiers in the URN format. This clause defines a set of message types and their formats. The messages are derived from the OpenXR API to ensure smooth operation with AR devices that support OpenXR. In case other XR APIs are used, mapping the message payload to the appropriate XR API structures shall be performed by the split rendering client.
Editor’s Note: This following sections will potentially reference the corresponding formats in 26.119.
[bookmark: _Toc132968724][bookmark: _Toc152689662][bookmark: _Hlk156901915]8.3.2.2	Pose Format
The pose format that is used by all split rendering profiles defined by this specification shall comply with the format defined in TS26.119 clause 6.2.2. The pose information shall be carried as part of the data channel messaging mechanism defined in clause 8.3.3 and shall be provided in JSON format. The message type shall be “urn:3gpp:split-rendering:v1:pose”.
The split rendering client on the XR device periodically transmits a set of pose predictions to the split rendering server using the WebRTC data channel. The type of the message shall be set to “urn:3gpp:split-rendering:v1:pose”.
Each predicted pose shall contain the associated predicted display time and an identifier of the XR space that was used for that pose.
Depending on the view configuration of the XR session, there could be different pose information for each view.
The payload of the message shall be as follows:
[bookmark: MCCQCTEMPBM_00000076]Table 8.3.2-1 - Pose Prediction Format
	Name
	Type
	Cardinality
	Description

	poseInfo
	Object
	1..n
	An array of pose information objects, each corresponding to a target display time and XR space.

	 displayTime
	number
	1..1
	The time for which the current view poses are predicted. This time is expressed in XR system time clock.
In OpenXR, this timestamp is the one used for the xrViewLocateInfo structure of the xrLocateViews call.
The SRS shall not make any assumptions on the accuracy or time sync of this displayTime.

	 xrSpace
	number
	0..1
	An identifier for the XR space in which the view poses are expressed. The set of XR spaces are agreed on between the split rendering client and the split rendering server at the setup of the split rendering session.
The set of XR spaces is negotiated as part of the split rendering configuration as defined in clause 8.4.2.2.

	 viewPoses
	Object
	0..n
	An array that provides a list of the poses associated with every view. The number of views is determined during the split rendering session setup between the split rendering client and server, depending on the view configuration of the XR session.

	 pose
	Object
	1..1
	An object that carries the pose information for a particular view.

	 orientation
	Object
	1..1
	Represents the orientation of the view pose as a quaternion based on the reference XR space.

	 x
	number
	1..1
	Provides the x coordinate of the quaternion.

	 y
	number
	1..1
	Provides the y coordinate of the quaternion.

	 z
	number
	1..1
	Provides the z coordinate of the quaternion.

	 w
	number
	1..1
	Provides the w coordinate of the quaternion.

	 position
	Object
	0..1
	Represents the location in 3D space of the pose based on the reference XR space.
For eye gaze poses, the position is not required.

	 x
	number
	1..1
	Provides the x coordinate of the position vector.

	 y
	number
	1..1
	Provides the y coordinate of the position vector.

	 z
	number
	1..1
	Provides the z coordinate of the position vector.

	 confidence
	number
	0..1
	This optional parameter provides a confidence score that reflects the probability for this pose prediction to be correct. For the current pose or a pose in the past, the confidence value would be 1. The confidence can take a value between 0 and 1.
If not provided by the XR runtime, this field may be estimated by the SRC or omitted.

	 estimatedAtTime (ref. T1)
	number
	0..1
	The time when the pose estimation was made.
The SRS may use that information to select the most recent predicted pose in the group of poses for a target display time.

	 fov
	Object
	0..1
	Indicates the four sides of the field of view used for the projection of the corresponding XR view. This field is only present if these field of view values have changed from the last sent values.

	 angleLeft
	number
	1..1
	The angle of the left side of the field of view. For a symmetric field of view this value is negative.

	 angleRight
	number
	1..1
	The angle of the right side of the field of view.

	 angleUp
	number
	1..1
	The angle of the top part of the field of view.

	 angleDown
	number
	1..1
	The angle of the bottom part of the field of view. For a symmetric field of view this value is negative.

[bookmark: _Toc132968725][bookmark: _Toc152689663]8.3.2.3	Action Format
The action information format that is used by all split rendering profiles defined by this specification shall comply with the format defined in TS26.119 clause 6.2.3. The action information shall be carried as part of the data channel messaging mechanism defined in clause 8.3.3 and shall be provided in JSON format. The message type shall be “urn:3gpp:split-rendering:v1:action”.
Actions are grouped into action sets, which may be activated and deactivated during the lifetime of an XR session. The action sets and actions are negotiated at the start of the split rendering session.
The split rendering client reports any changes to action state as soon as it occurs by sending a message of the type “urn:3gpp:split-rendering:v1:action”.
The content of the action message type shall follow the following format:
[bookmark: MCCQCTEMPBM_00000077]Table SEQ Table * ARABIC 9 - Action Format
	Name
	Type
	Cardinality
	Description

	actionSets
	Object
	1..n
	An array of active action sets, for which there is at least an action that has a state change.

	 actions
	Object
	1..n
	An array of objects that conveys information about the actions of the parent action set.

	 identifier
	number
	1..1
	A unique identifier of the action that was agreed upon during split rendering session setup.

	 subactionPath
	string
	1..1
	The sub-action path for which the state has changed. It abstracts a binding between an action and the hardware input associated to it by the XR runtime.

	 state
	object
	1..1
	The state of the action that had a change in state.

	 lastChangeTime
	number
	1..1
	The timestamp of the last change to the state of this action.

	 currentStateBool
	Bool
	0..1
	The current Boolean state of the action

	 currentStateNum
	number
	0..1
	The current numerical state of the action.

	 currentStateVec2
	Array
	0..1
	An array of numerical state values for the action.

	8th Change

[bookmark: _Toc152689674]9.2	Client API
[bookmark: MCCQCTEMPBM_00000081]As described in clause 5.1.3, the SRC exposes an API over RTC-7 interface to the application. The SRC defines the following interface:
	[bookmark: MCCQCTEMPBM_00000101]Method
	Parameters
	State after Success
	Description

	
	in
	out
	
	

	SplitRenderer()
	- appId
- aspId?
- settings?
	- session handle
	STATE_READY
	Creates a SplitRenderer object, which can subsequently be used to connect to an SRS and perform split rendering.

	connect()
	- settings?
- criteria?
	- connection handler
	STATE_CONNECTED
	Instructs the SRC to discover and connect to an SRS.

	request()
	- media configuration
	-confirmation, notifications
	N/A
	Used by the client to request the application of dynamic policy to the split rendering media streams as described by the flow descriptors. It also requests the MSH to subscribe and relay any notifications about network assistance associated with this session.

	disconnect()
	- reason?
	
	STATE_DISCONNECTED
	Terminates the connection to the SRS.

	getMetrics()
	- metrics
	- metrics report
	N/A
	Retrieves a set of metric reports for the split rendering session that describe the quality of experience of the session.

The application is able to subscribe to events related to the split rendering session by setting the corresponding event handler. The supported events are:
· [bookmark: MCCQCTEMPBM_00000165]State change: the state of the SR session has changed
· [bookmark: MCCQCTEMPBM_00000166]Error: an error has occurred during the split rendering session. The error is not severe enough to cause a state change to the STATE_ERROR state.
· [bookmark: MCCQCTEMPBM_00000167]Quality change: the SRC has observed a change in the quality of the split rendering session. This may involve one or more SR metrics.

The Settings object shall contain the following information:
· Information about the desired rendering, e.g. choose to render on 2D device or on one of the available connected XR devices.
The criteria object may contain the following information:
· Requirements for latency and bitrate that are different from the ones in the provisioning,
· KPIs for the SRS instance, such as its graphics capabilities or current load.

	9th Change

[bookmark: _Toc152689676]9.3.1	General
Editor’s Note: to be updated once the AR/MR QoE metrics are specified.
[
Relevant metrices related to split rendering depend upon the sepcific application category, that is, VR, AR and/or MR.
Split rendering QoE metrics may include, but is not limited to:
· [bookmark: MCCQCTEMPBM_00000168]QoE metrics related with device information, e.g. Eye Relief, lifetime, gaze-based metrics and head-motion-based metrics, etc.
· [bookmark: MCCQCTEMPBM_00000169]QoE metrics related to the network transmission quality.
· [bookmark: MCCQCTEMPBM_00000170]metrics describing the characteristics of the AR/MR content creation, content rendering and content encoding (e.g. the quality for the generated or rendered AR/MR content, the motion-to-render-to-photon latency, etc).
· [bookmark: MCCQCTEMPBM_00000171]metrics describing the characteristics of immersiveness and presence for AR/MR, such as tracking (e.g. tracking errors), world-scale experience (map world-scale experience to QoE metrics), persistence (map persistence to QoE metrics) etc.
For specific use cases of VR, Split Rendering QoE metrices may be based on the TR TR 26.928 [2] and TR 26.929 [3].
For specific use cases AR and MR, Split Rendering QoE metrices may be based on the TR 26.812 [4].

RTCP Extended Reports messages discussed in the 5G_RTP permanent document (PD) may be used to transmit the metadata information required to calculated QoE metrics from split rendering server to the split rendering client.
The SRS may use the “QoE timing information” RTCP Extended Reports messages to transmit the timing information required for measuring the QoE metrics to an SRC. The RTCP report block formats for transmitting the QoE timing information is specified in 5G_RTP document. SDP signalling required for negotiating the transmission of QoE metrics between the UE and the SRS is documented in 5G_RTP PD.
]
This clause defines a set of metrics that are relevant to the operation of a split rendering session.
	10th Change

[bookmark: _Toc152689682]10.2	Privacy
Editor’s Note: Privacy considerations are FFS.
Users of the split rendering MSE shall be aware that the application data and traffic are fully accessible to the SRS. The SRC shall ensure that the SRS used is trusted by the application provider, for example through the validation of the SRS’s X.509 certificates.
	11th Change

[bookmark: _Toc152689690][bookmark: MCCQCTEMPBM_00000045] C.1	Pixel Streaming Profiles
[bookmark: _Toc152689691][bookmark: MCCQCTEMPBM_00000046]C.1.1	Introduction
This Annex defines split rendering profiles to define requirements for SRC and SRS for different scenarios. At this stage the following two profiles are defined:
· [bookmark: MCCQCTEMPBM_00000172]2D Pixel Streaming Profile in clause C.2 to support split rendering to 2D screens, devices of type 3 in TS 26.119 [4].
· [bookmark: MCCQCTEMPBM_00000173]3D Pixel Streaming Profile in clause C.3 to support split rendering to MeCAR glasses to devices of type 1, 2, and 4 in TS 26.119 [4].
[bookmark: _Toc152689692][bookmark: MCCQCTEMPBM_00000047]C.1.2	2D Pixel Streaming Profile
[bookmark: _Toc130977743][bookmark: _Toc152689693][bookmark: MCCQCTEMPBM_00000048]C.1.2.1	Introduction
This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support split rendering to 2D screens.
[bookmark: _Toc152689694][bookmark: MCCQCTEMPBM_00000049]C. 1.2.2	SRC Capabilities
[bookmark: _Toc152689695][bookmark: MCCQCTEMPBM_00000050]C. 1.2.2.1	Overview
Requirements for UE-based SRC functionalities for following functions are defined in this clause:
-	Media Decoding
-	Media Encoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study. For example, it would indicate that the output device is an HMD that supports 2 views and stereo audio.
[bookmark: _Toc152689696][bookmark: MCCQCTEMPBM_00000051][bookmark: _Toc143758582][bookmark: _Toc130977744]C. 1.2.2.2	Media Capabilities
The SRC shall support the media capabilities of a device type 3 as defined in TS 26.119 [4], clause 10.4.
[bookmark: _Toc152689697][bookmark: MCCQCTEMPBM_00000052][bookmark: _Toc130977747]C. 1.2.2.3	Metadata Formats
XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be rendered. The pose predication shall be formatted according to clause 8.2.2.2.
XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time interval. The action information shall be formatted according to clause 8.2.2.3.
[bookmark: _Toc152689698][bookmark: MCCQCTEMPBM_00000053]C.1.2.3	SRS Capabilities
[bookmark: _Toc152689699][bookmark: MCCQCTEMPBM_00000054]C.1.2.3.1	Overview
Requirements for network-based SRS functionalities for following functions are defined in this clause:
-	Media Encoding
-	Media Decoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the SRC are shared with the SRC prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study.
[bookmark: _Toc152689700][bookmark: MCCQCTEMPBM_00000055]C.1.2.3.2	Video encoding
Editor’s Note: Video Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc152689701][bookmark: MCCQCTEMPBM_00000056]C.1.2.3.3	Audio and Speech encoding
Editor’s Note: Audio and Speech Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc152689702][bookmark: MCCQCTEMPBM_00000057]C.1.2.3.4	Video decoding
Editor’s Note: Video Decoding Capabilities are for further study
[bookmark: _Toc152689703][bookmark: MCCQCTEMPBM_00000058]C.1.2.3.5	Audio and Speech decoding
Editor’s Note: Audio and Video Decoding Capabilities are for further study
[bookmark: _Toc152689704][bookmark: MCCQCTEMPBM_00000059]C.1.2.3.6	Metadata Formats
Editor’s Note: Metadata capabilities are for further study to match the SRC capabilities.
[bookmark: _Toc152689705][bookmark: MCCQCTEMPBM_00000060]C.1.3	3D Pixel Streaming Profile
[bookmark: _Toc152689706][bookmark: MCCQCTEMPBM_00000061]C.1.3.1	Introduction
This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support MeCAR devices.
[bookmark: _Toc152689707][bookmark: MCCQCTEMPBM_00000062]C.1.3.2	SRC Capabilities
[bookmark: _Toc152689708][bookmark: MCCQCTEMPBM_00000063]C.1.3.2.1	Overview
Requirements for UE-based SRC functionalities for following functions are defined in this clause:
-	Media Decoding
-	Media Encoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study. For example, it would indicate that the output device is an HMD that supports 2 views and stereo audio.
[bookmark: _Toc152689709][bookmark: MCCQCTEMPBM_00000064][bookmark: _Toc143758598]C.1.3.2.2	Media Capabilities
The SRC shall support the media capabilities of a device type 1 as defined in TS 26.119 [4], clause 10.2.
If the device is a device type 2 as defined in TS 26.119 [4], clause 10.4, it shall also support the media capabilities of a device type 2 as defined in TS 26.119 [4], clause 10.3.
If the device is a device type 4 as defined in TS 26.119 [4], clause 10.5, it shall also support the media capabilities of a device type 2 as defined in TS 26.119 [4], clause 10.5.
[bookmark: _Toc152689710][bookmark: MCCQCTEMPBM_00000065]C.1.3.2.3	Metadata Formats
XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be rendered. The pose predication shall be formatted according to clause 8.2.2.2.
XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time interval. The action information shall be formatted according to clause 8.2.2.3.
[bookmark: _Toc152689711][bookmark: MCCQCTEMPBM_00000066]C.1.3.3	SRS Capabilities
[bookmark: _Toc152689712][bookmark: MCCQCTEMPBM_00000067]C.1.3.3.1	Overview
Requirements for network-based SRS functionalities for following functions are defined in this clause:
-	Media Encoding
-	Media Decoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the SRC are shared with the SRC prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study.
[bookmark: _Toc152689713][bookmark: MCCQCTEMPBM_00000068]C.1.3.3.2	Video encoding
Editor’s Note: Video Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc152689714][bookmark: MCCQCTEMPBM_00000069]C.1.3.3.3	Audio and Speech encoding
Editor’s Note: Audio and Speech Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc152689715][bookmark: MCCQCTEMPBM_00000070]C.1.3.3.4	Video decoding
Editor’s Note: Video Decoding Capabilities are for further study
[bookmark: _Toc152689716][bookmark: MCCQCTEMPBM_00000071]C.1.3.3.5	Audio and Speech decoding
Editor’s Note: Audio and Speech Decoding Capabilities are for further study
[bookmark: _Toc152689717][bookmark: MCCQCTEMPBM_00000072]C.1.3.3.6	Metadata Formats
Editor’s Note: Metadata capabilities are for further study to match the SRC capabilities.
[bookmark: _Toc152689718][bookmark: MCCQCTEMPBM_00000073]C.1.4	Description of the Rendering Format for Pixel Streaming Profiles
[bookmark: _Toc152689719][bookmark: MCCQCTEMPBM_00000074]C.1.4.1	General
In response to the Split Rendering Configuration message, the SRS shall reply with a description of the rendering format.
The rendering format description shall be a compliant glTF 2.0 [2] file. The file may include references to the buffer streams that contain the components of the rendered media.
Both SRS and SRC shall comply with the SD-Rendering-Ext1 capability as defined in TS26.119 [4].
In addition, both SRS and SRC shall support for referencing WebRTC RTP streams and data channels as described in [3].
An SRC that complies with the 3D Pixel Streaming profile shall support the 3GPP_node_prerendered extension as defined in C.4.2.
[bookmark: _Toc152689720][bookmark: MCCQCTEMPBM_00000075]C.1.4.2	3D Pixel Streaming Profile-specific glTF Extension
The 3GPP_node_prerendered extension is an extension at the node level to describe that the corresponding node is accessible as a prerendered content. The 3GPP_node_prerendered extension should be associated with the root node of the scene. It constitutes an alternative representation of the node and all its children. As such, if present, if the client decides to use the pre-rendered representation, it shall completely ignore the mesh description of the node and its children nodes.
The 3GPP_node_prerendered supports multiple 2D video textures and audio sources that correspond to the rendered views and audio content.
[bookmark: MCCQCTEMPBM_00000086]The semantics of the 3GPP_node_prerendered are provided by the following table:
	Name
	Type
	Usage
	Default
	Description

	visual
	Object
	O
	N/A
	An object that describes the rendered visual components of the content.

	audio
	Object
	O
	N/A
	An object that describes the rendered audio components of the content.

[bookmark: MCCQCTEMPBM_00000087]The description of the visual object is provided in the following table:
	Name
	Type
	Usage
	Default
	Description

	visual_configuration
	enum
	O
	VIEW_STEREO
	An indication of the view configuration for the pre-rendered media. It can either be VIEW_MONO or VIEW_MONO.

	Views
	array(Object)
	M
	
	An array that describes the views of the prerendered content.

	 eye_visibility
	enum
	M
	
	The visibility of the current view. This can take one of the following values: “EYE_LEFT”, EYE_RIGHT”, “EYE_BOTH”, or “EYE_NONE”. EYE_NONE is used for depth and transparency components.

	 composition_layers
	array(number)
	M
	
	An array of accessors identifiers that each corresponds to a composition layer of the parent view.

	 composition_layer_type
	array(enum)
	M
	
	For each of the composition layers of the parent view, this indicates the type of that composition layer. The values should be provided in the same order as the composition_layers. The allowed values are: “COMPOSITION_LAYER_PROJECTION”, “COMPOSITION_LAYER_QUAD”, “COMPOSITION_LAYER_EQUIRECTANGULAR”, “COMPOSITION_LAYER_CUBEMAP”, “COMPOSITION_LAYER_DEPTH”, and “COMPOSITION_LAYER_OCCUPANCY”.

[bookmark: MCCQCTEMPBM_00000088]The description of the audio object in the prerendered media extension is provided in the following table:
	Name
	Type
	Usage
	Default
	Description

	type
	enum
	O
	AUDIO_STEREO
	describes the format of the prerendered audio content. The type can take one of the following values: “AUDIO_MONO”, “AUDIO_STEREO”, and “AUDIO_HOA”.

	Components
	array(number)
	M
	
	provides a list of the accessors that point to the media streams associated with rendered audio content.

[bookmark: MCCQCTEMPBM_00000089]The JSON scheme for the 3GPP_node_prerendered is as follows:
	{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered",
 "type" : "object",
 "description": "glTF extension to described pre-rendered content",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "visual": {
 "$ref": "3GPP_node_rendered.visual.schema.json",
 "description": "visual streamed buffers"
 },
 "audio": {
 "$ref": "3GPP_node_rendered.audio.schema.json",
 "description": "audio streamed buffers"
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["visual"]
}
{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.visual",
 "type" : "object",
 "description": "Object representing the visual rendered media",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "view_configuration": {
 "type": "string",
 "description": "the view configuration used for the session",
 "gltf_detailedDescription": "the view configuration used for the session",
 "enum": ["VIEW_MONO", "VIEW_STEREO"]
 },
 "views": {
 "type": "array",
 "description": "array of layer view objects",
 "gltf_detailedDescription": "",
 "items": {
 "$ref": "3GPP_node_rendered.visual.view.schema.json"
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["views"]
}

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.visual.view",
 "type" : "object",
 "description": "A representation of a rendered view",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "eye_visibility": {
 "type": "string",
 "description": "the visibility of the current view",
 "enum": ["EYE_LEFT", "EYE_RIGHT", "EYE_BOTH", "EYE_NONE"]
 },
 "composition_layers": {
 "type": "array",
 "description": "array of timed accessors that carry the streamed buffers for each composition layer of the view",
 "items": {
 "type": "integer"
 },
 "minItems": 1
 },
 "composition_layer_type": {
 "type": "array",
 "items": {
 "type": "string",
 "description": "the type of composition layer in the array of composition layers with the same array index",
 "gltf_detailedDescription": "the type of composition layer in the array of composition layers with the same array index",
 "enum": ["COMPOSITION_LAYER_PROJECTION", "COMPOSITION_LAYER_QUAD", "COMPOSITION_LAYER_EQUIRECTANGULAR", "COMPOSITION_LAYER_CUBEMAP", "COMPOSITION_LAYER_DEPTH", "COMPOSITION_LAYER_OCCUPANCY"]
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["views"]
}

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.audio",
 "type" : "object",
 "description": "Object representing the audio rendered media",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "type": {
 "type": "string",
 "description": "the type of the rendered audio",
 "gltf_detailedDescription": "the type of the rendered audio",
 "enum": ["AUDIO_MONO", "AUDIO_STEREO", "AUDIO_HOA"],
 "default": "AUDIO_STEREO"
 },
 "components": {
 "type": "array",
 "description": "array of timed accessors to audio component buffers",
 "items": {
 "type": "integer"
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["components"]
}

	12th Change

C.1.5	Profile Restrictions and Requirements
All Pixel Streaming profile are expected to be relocation intolerant and if using the 5G edge procedure shall set he easRelocationRequirements to “RELOCATION_INTOLERANT” in the tolerance field.
When the 2D Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following QoS specifications, one for each of the components of the downlink streams:
· 1 QoS specification corresponding to the mono view.
· 1 QoS specification corresponding to one depth buffer stream associated with the mono view.
· 1 QoS specification corresponding to an occupancy/transparency buffer stream associated with the mono view.
· 1 QoS specification corresponding to an audio stream.
When the 3D Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following QoS specifications, one for each of the components of the downlink streams:
· 2 QoS specifications corresponding to for left and right eye buffer streams.
· 2 QoS specifications corresponding to one depth buffer stream associated with the left and/or the right views.
· 2 QoS specification corresponding to an occupancy/transparency buffer stream associated with the left and/or the right views.
· 1 QoS specification corresponding to an audio stream.

image1.png

image2.wmf
A

p

p

l

i

c

a

t

i

o

n

M

e

d

i

a

S

e

s

s

i

o

n

H

a

n

d

l

e

r

/

D

e

v

i

c

e

F

u

n

c

t

i

o

n

s

S

p

l

i

t

-

R

e

n

d

e

r

i

n

g

C

l

i

e

n

t

(

S

R

C

)

S

p

l

i

t

-

R

e

n

d

e

r

i

n

g

S

e

r

v

e

r

(

S

R

S

)

M

e

d

i

a

A

F

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

R

T

C

-

1

:

P

r

o

v

i

s

i

o

n

i

n

g

2

:

R

T

C

-

8

:

A

p

p

l

i

c

a

t

i

o

n

i

n

f

o

r

m

a

t

i

o

n

a

c

q

u

i

s

i

t

i

o

n

(

n

o

t

i

n

s

c

o

p

e

)

3

:

R

T

C

-

6

:

R

e

q

u

e

s

t

f

o

r

s

p

l

i

t

r

e

n

d

e

r

i

n

g

4

:

R

T

C

-

7

:

D

i

s

c

o

v

e

r

S

R

S

5

:

R

T

C

-

4

s

:

N

e

g

o

t

i

a

t

e

s

p

l

i

t

r

e

n

d

e

r

i

n

g

s

e

s

s

i

o

n

N

e

g

o

t

i

a

t

i

o

n

6

:

S

t

a

r

t

s

p

l

i

t

-

r

e

n

d

e

r

i

n

g

p

r

o

c

e

s

s

7

:

A

p

p

l

y

d

y

n

a

m

i

c

p

o

l

i

c

y

a

n

d

n

e

t

w

o

r

k

a

s

s

i

t

a

n

c

e

8

:

R

T

C

-

4

s

:

E

s

t

a

b

l

i

s

h

W

e

b

R

T

C

s

e

s

s

i

o

n

f

o

r

s

p

l

i

t

r

e

n

d

e

r

i

n

g

9

:

R

T

C

-

6

:

i

n

f

o

r

m

a

p

p

l

i

c

a

t

i

o

n

a

b

o

u

t

s

t

a

t

e

c

h

a

n

g

e

1

0

:

R

T

C

-

4

m

:

s

e

n

d

u

p

l

i

n

k

m

e

t

a

d

a

t

a

1

1

:

R

T

C

-

4

m

:

s

e

n

d

r

e

n

d

e

r

e

d

m

e

d

i

a

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

8

.

4

oleObject1.bin

image3.png

image4.emf

