3GPP TR 26.812 V1.1.2 (2024-01)
23
Release 18

	[bookmark: page1][bookmark: _GoBack][bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TR 26.812 V1.1.2 (2024-01)

	[bookmark: spectype2]Technical Report

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Study on QoE Metrics for AR/MR Services
[bookmark: specRelease](Release 18)

	

	[bookmark: _Hlk99699974][image: Logo, company name

Description automatically generated]
	[image: Logo

Description automatically generated]

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[bookmark: _MON_1684549432]
	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
https://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© 2023, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	9
3.1	Abbreviations	9
4	Current state of AR/MR QoE metrics outside 3GPP	9
4.1	AR/MR QoE related work in ITU-T	9
4.2	AR/MR QoE related work in IEEE	12
4.3	AR/MR QoE related work in MPEG	12
5	Relevant AR/MR metrics	13
5.1	Head-motion aware viewport quality metric (HMAVQ)	13
5.1.1	Background	13
5.1.2	Metric description	13
6	Identification of AR/MR QoE Metrics for 3GPP	14
6.1	General	14
6.2	AR/MR QoE reference model	15
6.2.1	General	15
6.2.2	Observation Point 1	15
6.2.2.1	General	15
6.2.2.2	Viewer pose and Projection parameters	16
6.2.2.3	Camera information	16
6.2.2.4	Gesture	17
6.2.2.5	Body action	17
6.2.2.6	Tracking pose prediction parameters	17
6.2.2.7	Pose prediction parameters	18
6.2.2.8	Eye gaze pose prediction parameters	18
6.2.2.9	Parameters monitored by OP1	21
6.2.3	Observation Point 2	21
6.2.4	Observation Point 3	21
6.2.5	Observation Point 4	21
6.3	Introduction of AR/MR QoE metrics	22
6.3.1	General	22
6.3.2	Registration latency	22
6.3.3	Scene startup latency and Interaction latency	22
6.3.4	Tracking pose prediction error	23
6.3.5	One-way delay and RTT	24
6.3.5.1	Background	24
6.3.5.2	Metric description	24
6.3.6	Pose error and time error	24
6.3.6.1	Background	24
6.3.6.2	Metric description	24
6.3.6.3	Measurement procedure	25
6.3.7	Device related QoE metrics	29
6.3.7.1	Background	29
6.3.7.2	Metric description	31
6.3.8	Spatial Anchors and Trackables	31
6.3.8.1	Background	31
6.3.8.2	Impact on latencies	32
6.3.8.3	Retrieval of the AR anchoring information	32
6.3.8.4	Anchor Creation Delay (ACD)	33
6.3.8.4.1	General	33
6.3.8.4.2	Measurement of the local Anchor Creation Delay	33
6.3.8.4.3	Measurement of the remote Anchor Creation Delay	33
6.3.8.5	Anchor Detection to Render to Photon QoE	34
6.3.8.5.1	General	34
6.3.8.5.2	Measurement of the Anchor Detection to Render to Photon (ADRP)	34
6.3.8.6	Trackable Untracked Ratio QoE	36
6.3.8.6.1	General	36
6.3.8.6.2	Measurement of the Trackable Untracked Ratio (TUR)	36
6.3.9	Pose Correction Error	37
6.3.9.1	Background	37
6.3.9.2	Image similarity between reprojected frame and rendered frame	37
7	Other QoE metrics and collaborations with other 3GPP groups	37
7.1	NWDAF based metrics configuration and collection	37
7.2	RRC based metrics configuration and collection	38
7.3	Summary	38
8	Evaluations on AR/MR QoE metrics	38
9	Conclusions and Recommendations	40
Annex <X> (informative): Change history	41

[bookmark: foreword][bookmark: _Toc119408418][bookmark: _Toc128059538][bookmark: _Toc143815922][bookmark: _Toc157702397][bookmark: _Toc157768975][bookmark: _Toc157770314][bookmark: _Toc157777663]Foreword
[bookmark: spectype3]This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall		indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should		indicates a recommendation to do something
should not	indicates a recommendation not to do something
may		indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can		indicates that something is possible
cannot		indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will		indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not		indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc119408419][bookmark: _Toc128059539][bookmark: _Toc143815923][bookmark: _Toc157702398][bookmark: _Toc157768976][bookmark: _Toc157770315][bookmark: _Toc157777664]Introduction
In Rel-18, simple QoE Metrics for AR media will be specified in MeCar WI, which focus on which VR QoE metrics can be reused and enhanced for AR media. This study intends to complement MeCar WI by studying additional and new information related to QoE metrics which are different from VR QoE metrics. QoE metrics typically reflect the expected user experience based on measurable parameters. XR (e.g. AR/MR) user experience is impacted by different aspects, such as the media quality, the rendering capabilities of the device, the tracking capabilities of the devices, etc. In order to identify the impact of different QoE factors, as well as in order to identify how QoE related parameters can be measured in devices, additional detailed study is necessary.
Based on this, the present document collects available information in other organizations such as the ITU-T, MPEG-I groups, and provides recommendation on normative work for new XR QoE metrics in such that XR (e.g. AR/MR) user experience can be enhanced with the complete defined QoE metrics.
[bookmark: scope][bookmark: _Toc119408420][bookmark: _Toc128059540][bookmark: _Toc143815924][bookmark: _Toc157702399][bookmark: _Toc157768977][bookmark: _Toc157770316][bookmark: _Toc157777665]
1	Scope
This document addresses information collection and QoE metrics definition aspects when the XR (e.g. AR/MR) devices are based on the architecture defined in MeCAR WI. The following details are in scope:
-	Collect relevant external information on QoE Metrics for AR and XR services, for example taking into account information in ITU-T, MPEG or other groups dealing with quality measurements, include device related QoE metrics, network transmission related QoE metrics, content handling related QoE metrics, and other immersiveness/presence related QoE metrics.
-	Documentation of subjective tests results on XR QoE metrics, if considered relevant.
-	Identification of relevant XR QoE Metrics and their impacts on the user experience.
-	Identification of relevant observation points and define the measurement and derivation of relevant XR QoE metrics in the device architecture based on MeCAR WI.
-	Collaboration with relevant groups or specifications on NWDAF, RRC-based metrics configuration and collection.
-	Provide recommendation on normative work for new XR QoE metrics based on the findings in this study.
[bookmark: references][bookmark: _Toc119408421][bookmark: _Toc128059541][bookmark: _Toc143815925][bookmark: _Toc157702400][bookmark: _Toc157768978][bookmark: _Toc157770317][bookmark: _Toc157777666]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 26.998: "Support of 5G glass-type Augmented Reality / Mixed Reality (AR/MR) devices".
[3]	3GPP TR 26.928: "Extended Reality (XR) in 5G".
[4]	3GPP TR 26.926: "Traffic Models and Quality Evaluation Methods for Media and XR Services in 5G Systems".
[5]	3GPP TS 26.119: "Media Capabilities for Augmented Reality".
[6]	ITU-T G.1036, “Quality of experience (QoE) influencing factors for augmented reality (AR) services”.
[7]	ITU-T P.1320, “QoE assessment of extended reality (XR) meetings”.
[8]	Technical Report ITU-T GSTR-5GQoE, QoE requirements for real-time multimedia services over 5G networks.
[9]	ITU-T H.430.1 Recommendation ITU-T H.430.3 (2018), Service scenario of immersive live experience (ILE).
[10]	ITU-T RGM-Q8-DOC10-R2 (2022-06)	H.IIS-reqts: “Requirements of Interactive Immersive Services”	
[11]	IEEE P3333.1.1/D2, May 2022 - IEEE Draft Standard for Quality of Experience (QoE) and Visual-Comfort Assessments of Three-Dimensional (3D) Contents Based on Psychophysical Studies
[12]	IEEE P3333.1.2/D3, Apr 2022 - IEEE Draft Standard for the Perceptual Quality Assessment of Three Dimensional (3D), Ultra High Definition (UHD) and High Dynamic Range (HDR) Contents
[13]	IEEE Std 3333.1.3-2022 “IEEE Standard for the Deep Learning-Based Assessment of Visual Experience Based on Human Factors”
[14]	ISO/IEC 23090-6:2021 Information technology — Coded representation of immersive media — Part 6: Immersive media metrics
[15]	ISO/IEC JTC 1/SC 29/WG 03 N0777	Technologies under Consideration for ISO/IEC 23090-6	WG 03, MPEG Systems
[16]	ISO/IEC JTC 1/SC 29/WG 03 N00710. “Text of ISO/IEC 23090-6 FDAM 1 Immersive Media Metrics for V3C data and OMAF”.
[17]	ISO/IEC JTC 1/SC 29/WG 03 N00826. “Preliminary WD of ISO/IEC 23090-6 AMD 2 Additional latencies and Other Improvements”.
[18]	Kara, B., Akcay, M. N., Begen, A. C., Ahsan, S., Curcio, I. D., & Aksu, E. B. (2022). Could Head Motions Affect Quality When Viewing 360-Degree Videos?. IEEE MultiMedia.
[19]	Van der Hooft, J., Vega, M. T., Petrangeli, S., Wauters, T., & De Turck, F. (2019). Quality assessment for adaptive virtual reality video streaming: A probabilistic approach on the user’s gaze. In 2019 22nd conference on Innovation in Clouds, Internet and Networks (ICIN) (pp. 19-24). IEEE.
[20]	Hu, Z., Bulling, A., Li, S., & Wang, G. (2021). Ehtask: Recognizing user tasks from eye and head movements in immersive virtual reality. IEEE Transactions on Visualization and Computer Graphics.
[21]	Rai, Y., Le Callet, P., & Guillotel, P. (2017, May). Which saliency weighting for omni directional image quality assessment?. In 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1-6). IEEE.
[22]	The OpenXR Specification, Copyright (c) 2017-2023, The Khronos Group Inc., Version 1.0.27: from git ref release-1.0.27
[23]	ETSI GS ARF 004-2 V1.1.1(2021-08) - Augmented Reality Framework (ARF) Interoperability Requirements for AR components, systems and services Part 2: World Storage and AR Authoring functions
[24]	ISO/IEC 23090-14 AMD 2, Information technology — Coded representation of immersive media — Part 14: Scene description — Amendment 2: Support for haptics, augmented reality, avatars, Interactivity, MPEG-I audio, and lighting
[25]	3GPP TS 23.288: "Architecture enhancements for 5G System (5GS) to support network data analytics services".
[26]	3GPP TS 25.331 "Radio Resource Control (RRC); Protocol specification".
[27]	3GPP TS 36.331: "Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification".
[28]	3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification".3	Definitions, abbreviations and conventions.
[29]	3GPP TS 38.300: "NR Overall Description; Stage 2".
[30]	3GPP TS 26.522: "5G Real-time Media Transport Protocol Configurations".

[bookmark: definitions][bookmark: _Toc119408422][bookmark: _Toc128059542][bookmark: _Toc143815926][bookmark: _Toc157702401][bookmark: _Toc157768979][bookmark: _Toc157770318][bookmark: _Toc157777667]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc119408425][bookmark: _Toc128059545][bookmark: _Toc143815929][bookmark: _Toc157702402][bookmark: _Toc157768980][bookmark: _Toc157770319][bookmark: _Toc157777668]3.1	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
ACD	Anchor Creation Delay
ADRP	Anchor Detection to Render to Photon
AR	Augmented Reality
TUR	Trackable Untracked Ratio
DSSIM	Structural Dissimilarity index
EAS	Edge Application Server
HMAVQ	Head-Motion Aware Viewport Quality metric
HVS	Human Visual System
ML	Machine Learning
MR 	Mixed Reality
MSE	Mean Square Error
NWDAF	Network Data Analytics Function
PSNR	Peak Signal to Noise Ration
QMC	QoE Measurement Collection
QoE	Quality of Experience
ROI	Region-of-Interest
RTP	Real-Time Protocol
RTT	Round-Trip Time
SRTP	Secure Real-time Transport Protocol
SSIM	Structural Similarity Index
VR	Virtual Reality
XR	Extended Reality

[bookmark: clause4][bookmark: _Toc119408426][bookmark: _Toc128059546][bookmark: _Toc143815930][bookmark: _Toc157702403][bookmark: _Toc157768981][bookmark: _Toc157770320][bookmark: _Toc157777669]4	Current state of AR/MR QoE metrics outside 3GPP
[bookmark: _Toc119408427][bookmark: _Toc128059547][bookmark: _Toc143815931][bookmark: _Toc157702404][bookmark: _Toc157768982][bookmark: _Toc157770321][bookmark: _Toc157777670]4.1	AR/MR QoE related work in ITU-T
In ITU-T, there are many study groups focusing on the quality of experience (QoE) for XR services, e.g. Study Group 12 (SG12), Study Group 16 (SG16). Typically, Study Group 12 (SG12) majoring in the P​erformance, QoS & QoE​ is quite relevant to the study of AR/MR QoE in SA4.
In SG12, there are several ongoing or completed work about the AR/MR QoE.
1) ITU-T G.1036 “Quality of experience (QoE) influencing factors for augmented reality (AR) services” [6].
This Recommendation has been consented by the recent ITU-T Study Group 12 meeting, June 2022. It lists typical use cases of augmented reality services and identifies the key QoE factors in it, and also gives a suggested scheme for AR QoE assessment in future works.
Different from Virtual Reality, which aims to completely replace the user’s real world environment with a simulated one, Augmented Reality keeps the real world and puts additional information to the natural environment.
Due to addition of new ways to locate the self-position of users and new display mode of perceptual information, a set of new requirements to QoE assessment to characterize AR’s immersive video, spatial audio, and interactivity are emerging. Besides, it’s important to address the requirements and basic factors affecting the VR QoE before benchmarking work is executed. This document identifies the key factors affecting user-perceived experience.
The identified AR QoE metrics can be shown as following:

Figure 4.1-1: AR QoE assessment scheme [6]
Table 4.1-1: Identified QoE factors for AR services [6]
	[bookmark: MCCQCTEMPBM_00000033][bookmark: MCCQCTEMPBM_00000030]Human Factors
	Vision
	myopia, hyperopia, astigmatism, and amblyopia.

	
	Hearing
	the audio perceptibility

	
	Touch/Force Sensation
	tactile/force and other types of perceptual enhancement.

	System Influence Factors
	Content Related
	Real Environment, virtual content, Superimposition of Real Environment and Virtual Content

	
	Media and Coding Related
	Codec, Bitrate, Resolutionl, Framerate, coding delay, streaming quality, stordage and transport.

	
	Network and Transmission related
	Bandwidth, latency, packet loss, jitter.

	
	Recognition related
	Marker attributes, Recognition response.

	
	Consistency
	Geometry consistency, Lighting consistency, Time consistency

	
	Harware Related
	Comfortableness, FoV, stereo, depth range

	
	Interaction Related
	Hand Gesture, Speech, Body Posture, Tangible Interface, Eye/head based interfaces, Brain-computer interfaces

	Content Influence Factors
	Physical context
	physical environment condition

	
	Colloboration context
	collaborative environment for multi-person AR services.

	
	Task context
	tasks and goals users are aiming to in their minds.

	
	Temporal context
	the frequency and duration is to use AR services.

	General factors
	Human factors
	Olfactory, Multisensory integration, Simulator sickness, Static and Dynamic Human Factor

	
	Hardware related factors
	Colour Space, Dynamic Range, Refresh Rate

2) ITU-T P.1320 “QoE assessment of extended reality (XR) meetings” [7].
This Recommendation has been consent by the recent ITU-T Study Group 12 meeting, June 2022. It advises on aspects of importance for QoE assessment of telemeetings with extended reality elements. The goal is to define the human, context, and system factors that affect the choice of the QoE assessment procedure and metrics when extended reality telemeeting systems are under evaluation.
This Recommendation focuses on aspects of importance for the assessment of Quality of Experience (QoE) of different types of eXtended Reality (XR) telemeetings, which may comprise a combination of telemeetings taking place in virtual reality (VR), augmented reality (AR), or mixed reality (MR) environments. It targets XR services aiming to immerse the user and augment the exchange of information by delivering interactive real-time uni- or multimodal sensory information for two-party and multiparty communication. The services include telemeetings taking place in a virtual location or a combination of virtual and real locations; telemeetings with mixtures of real and virtual participants; telemeetings with augmented elements for collaboration; virtual conferences; and joint teleoperation of equipment.
While multiple QoE evaluation methodologies for telemeetings have been developed, novel XR telemeeting services may result in cognitive effects that are not covered by the existing Recommendations. These effects may include simulator sickness, fatigue, immersion, or presence, for example. This document advises on the key QoE factors affecting the user experience of an XR telemeeting service.
The identified QoE metrics for XR meetings can be found as the following.
Table 4.1-2: Factors influencing QoE of XR telemeetings [7]
	[bookmark: MCCQCTEMPBM_00000034][bookmark: MCCQCTEMPBM_00000031]Human Influence Factors
	Perceptual and congnitive characteristics
	Visual, audio, olfactory, tactile acuity.

	
	Internal state of individual participants
	Simulator sickness, immersion, level of expertise, spatial intelligence and introversion, etc.

	
	Conversation behaviour
	Conversation behaviour, degrees of involvement.

	
	Relations between participants
	A closer (e.g., romantic) relationship may be preferred for this kind of tactile stimulation.

	
	Language and body language aspects
	linguistic social cues and body language.

	Content Influence Factors
	Communication environment
	Real Environment, virtual content, Superimposition of Real Environment and Virtual Content

	
	Communication scenarios
	Codec, Bitrate, Resolution, Framerate, coding delay, streaming quality, storage and transport.

	
	Time aspects
	Bandwidth, latency, packet loss, jitter.

	System Influence Factors
	Human/world-related factors
	Degree of freedom, representation of users, realism/style, locamotion, position, proxemics

	
	Rendering
	Rendering per client, multi-party effects on rendering, redering errors, resolutions, foveated rendering, overlaying rendering images.

	
	Network and compression
	Media encoding/decoding, latency, bandwidth, synchronization

	
	Temporal context
	the frequency and duration is to use AR services.

3) Technical Report ITU-T GSTR-5GQoE, QoE requirements for real-time multimedia services over 5G networks [8]
This report has been produced by the 5G-KPI working group of the Video Quality Experts Group (VQEG) and defines a scope for the analysis of QoE in 5G services and several use cases where this scope is applicable.
This Technical Report defines a scope for the analysis of QoE in 5G services and several use cases where this scope is applicable. Such use cases are: Tele-operated Driving, Wireless Content Production, Mixed Reality Offloading, and First Responder Networks. For all the targeted use cases, the work item aims to study the specific QoE requirements, as well as the required performance and features from the network. By addressing them in parallel, it is possible to find synergies between them and, more relevantly, extract the common information that can be used to also analyse other use cases that may arise outside the scope of this work item.
Specially, the MR Offloading case assumes that the immersive environment where the application takes place is either the real world around the user (AR) or a completely virtual environment (VR). 5G-network capabilities (i.e. Edge Computing) are used to enable running state-of-the-art MR algorithms while wearing a lightweight HMD.
The identified QoE factors for MR Offloading can be found in the following:
-	Motion-to-photon latency
-	Responsiveness in human-virtual interaction
-	Embodiment feeling
-	RTT time
-	Peak uplink/downlink throughputs
-	Coding/processing delay
-	Mean network throughput
-	Type of MR application
-	Temporal context
Study Group 16 (SG16) majoring in the “immersive live experience (ILE) ” and “interactive immersive services (IIS)” shares some views on the requirements of immersive services, e.g. extended reality service. The related details are listed as below:
1) ITU-T H.430.1 “Requirements for immersive live experience (ILE) services” [9] provide some requirements of ILE as follows:
General requirements: Displaying real-sized objects, Direction of sounds, Reconstruction of stage effects, Spatial environment, Synchronous media representation of multiple assets, Augmented information attachment ability.
High-level requirements: Real-time object extraction, Synchronous transmission of multiple media streams, Media processing, High-realistic auditory lateralization, Video stitching.
2) ITU-T H.430.6 H.IIS-reqts: “Requirements of Interactive Immersive Services (IIS)” work item is under study [10]. The baseline text provides some service and capability requirements of IIS service as follows:
Service and capability requirements: Support for interactive capabilities, Support for synchronous transmission of concurrent streams, Intelligent distribution of massive multimedia data, Media processing, Network status awareness and QoS scheduling, Multimedia stream embellishing.
Both the ILE and IIS work item in ITU-T SG 16 are mainly focusing on the requirements of immersive service without any information related to how to map the requirements to the AR/MR QoE metrics or factors.
[bookmark: _Toc119408428][bookmark: _Toc128059548][bookmark: _Toc143815932][bookmark: _Toc157702405][bookmark: _Toc157768983][bookmark: _Toc157770322][bookmark: _Toc157777671]4.2	AR/MR QoE related work in IEEE
In IEEE, P3333.1 series standards focus on the experience assessment of 3D contents, and visual experience assessment based on human factors. The details are listed as below.
1) IEEE P3333.1.1/D2, May 2022 - IEEE Draft Standard for Quality of Experience (QoE) and Visual-Comfort Assessments of Three-Dimensional (3D) Contents Based on Psychophysical Studies [11] captures the subjective assessment for quantifying the visual discomfort and quality of experience (QoE) of 3D image and video.
2) IEEE P3333.1.2/D3, Apr 2022 - IEEE Draft Standard for the Perceptual Quality Assessment of Three Dimensional (3D), Ultra High Definition (UHD) and High Dynamic Range (HDR) Contents [12] defines quality metrics for 3D, UHD and HDR quality assessment.
3) IEEE Std 3333.1.3-2022 “IEEE Standard for the Deep Learning-Based Assessment of Visual Experience Based on Human Factors” [13] defines deep learning-based metrics of content analysis and quality of experience (QoE) assessment for visual contents. The standards mainly cover quality assessment of visual contents and cybersickness assessment of visual contents for VR.
The above IEEE standards firstly provide the methods of video quality assessment (e.g. 3D contents quality), and then cover deep learning models considering human factors for various QoE assessments from an objective point of view. However, those information are not related to AR/MR QoE metrics definition, and even the IEEE Std 3333.1.3 only covers QoE assessment for VR cybersickness.
[bookmark: _Toc119408429][bookmark: _Toc128059549][bookmark: _Toc143815933][bookmark: _Toc157702406][bookmark: _Toc157768984][bookmark: _Toc157770323][bookmark: _Toc157777672]4.3	AR/MR QoE related work in MPEG
MPEG has defined a series of standards for immersive media with a project of MPEG-I (ISO/IEC 23090 Coded Representation of Immersive Media). It contains 26 parts related with immersive media components. In the part 6, the immersive media metrics and the measurement framework are specified in ISO/IEC 23090-6:2021 [14]. This standard also includes a VR client reference model with observation and measurement points for collection of the metrics. The immersive media metrics in [14] are listed as below:
-	Rendered FOV set metric
-	Display information set metric
-	Rendered viewports metric
-	Comparable quality viewport switching latency metric
In addition, Viewpoint Mismatch Duration Metric is also agreed to be added into the specification ISO/IEC 23090-6 [15].
Furthermore, the following metrics are defined in ISO/IEC 23090-6 AMD1 [16] and proposed in ISO/IEC 23090-6 AMD2 [17]:
-	Omnidirectional Viewpoint Switching Latency metric [16]
-	V3C Viewpoint Switching Latency [16]
-	Viewpoint Switching Latency [17]
All the 8 immersive media metrics are defined for the VR service based on VR client model, not relevant to AR/MR QoE metrics.
[bookmark: _Toc128059550][bookmark: _Toc143815934][bookmark: _Toc157702407][bookmark: _Toc157768985][bookmark: _Toc157770324][bookmark: _Toc157777673]5	Relevant AR/MR metrics
[bookmark: _Toc128059551][bookmark: _Toc143815935][bookmark: _Toc157702408][bookmark: _Toc157768986][bookmark: _Toc157770325][bookmark: _Toc157777674]5.1	Head-motion aware viewport quality metric (HMAVQ)
[bookmark: _Toc128059552][bookmark: _Toc143815936][bookmark: _Toc157702409][bookmark: _Toc157768987][bookmark: _Toc157770326][bookmark: _Toc157777675]5.1.1	Background
Perceptual quality is defined as a user’s degree of satisfaction while viewing a video. Various objective quality metrics (e.g. average viewport quality, motion-to-high-quality delay) were proposed to estimate the quality of a 360-degree video. TS 26.118 specified a metric where the viewport quality is calculated by multiplying the quality ranking of each tile in the viewport by the percentage of the viewport it covers.
According to some studies [19, 20], the methods that best estimate the actual user experience are the ones that take into account the human visual system (HVS). While these studies considered user’s eye gaze, they largely ignored the effects of the head motion velocity, direction and duration. For instance, the content rendered in the viewport may be unfocused, or even blurry, to a human eye if the head is turning too fast (that is, the user can’t focus on the content during a fast head motion). In this case, this individual viewport’s quality may have only a slight, if any, effect on the overall user experience since the low-quality video is shown to the user only for a brief amount of time.
Also, the head motion may affect the region-of-interest (ROI) the user is paying attention to inside the viewport. Since the head and eye gaze mainly move in the same direction [20], the ROI shifts from the viewport center to the edges of the viewport, in the direction of the head motion. Consequently, the quality of the tiles in the opposite direction are expected to matter less and have a smaller effect on the overall user experience. Studies also show that users tend to view the content with little focus during a fast head motion and the actual quality of the viewport during this motion is not as relevant [20, 21]. This implies that not every viewport a user has viewed has an equal weight in determining the user’s overall experience.
A QoE metric that takes into account the above considerations can facilitate more advanced algorithms for viewport-dependent streaming of XR experiences by evaluating these algorithms more accurately. In the next section, a metric that brings “head motion awareness” in quality assessment is described. Inclusion of head motion exemplified in this metric can be useful for development of more effective AR/MR metrics.
[bookmark: _Toc128059553][bookmark: _Toc143815937][bookmark: _Toc157702410][bookmark: _Toc157768988][bookmark: _Toc157770327][bookmark: _Toc157777676]5.1.2	Metric description
Computation of the head-motion aware viewport quality metric (HMVAQ) comprises two steps. In the first step, the quality of an individual viewport is calculated during head motion. In the second step, the overall viewport quality over a period of time is calculated from the individual viewport qualities. Details of these two steps are described below.
Individual viewport qualities
Quality of the individual viewports is calculated using sampled points that are shifted and weighted based on head motion speed and direction. Each viewport is sampled with n circles, where each circle has m sample points. The circles are indexed from 1 to n, and each circle’s diameter grows from the viewport center towards the viewport edges. Depending on head movements, the circles are shifted by degrees horizontally and degrees vertically, where these shift amounts depend on the radius of each circle, head motion velocities in horizontal and vertical axes and a speed threshold beyond which the viewport starts becoming unfocused (blurry). The shift amounts are calculated as:

where w and h are the width and height of the viewport, respectively. The circle weights are assigned linearly in descending order from viewport center towards the edges. The weight of circle i ([image:] is calculated by dividing its reversed order by the sum of the circle indexes:

Subsequently, the points on each circle are distributed with an angular distance of . The coordinates of each point are calculated using the parametric equation of the circle. These coordinates are then used to find the tile T with the projection of the point. The quality of the tile T, on which a point is projected, is recorded as the quality of that point. The same operation is applied for all points, and the average across all points determines the quality of the circle i. The circle quality is then multiplied by the weight of the circle , and the weighted sum of all weight circle qualities yields the individual viewport quality.
Example sampled viewports at different head motion velocities are shown in Figure 5.1.2-1, where vertical and horizontal lines represent the tile boundaries. Fig. 5.1.2-1 (a) shows the case here the viewport is stationary (no head movement). Figures 5.1.2-1 (b) and 5.1.2-1 (c) show the shifted circles for slow and fast head movements, respectively. Fig. 5.1.2-1 (d) shows the case where the head movement is faster than the speed threshold () in the horizontal axis.

[image: Chart, diagram, radar chart

Description automatically generated] [image: Chart, radar chart

Description automatically generated] [image: Chart, radar chart

Description automatically generated] [image: Chart

Description automatically generated]
Figure 5.1.2-1: Sampled viewports at different head motion speeds
Overall viewport quality
Overall viewport quality is calculated as the weighted average of the individual viewport qualities over a period of time. The weights are assigned based on head motion velocity. The idea is to assign smaller weights to the viewports viewed at faster head motions, whereas those viewed in stationary head positions or at slower head motions are assigned a larger weight. Weight assignment is not a trivial task and the best one can do is to find a good method empirically. After tests, a thresholding approach is adopted such that a weight equal to 1 is used for viewports where [image:] is reached or exceeded, and 2 for the other viewports. More sophisticated weight assignment functions might perform better, and this deserves further testing and validation.
For further details on the metric, please refer to [18].
[bookmark: _Toc119408430][bookmark: _Toc128059554][bookmark: _Toc143815938][bookmark: _Toc157702411][bookmark: _Toc157768989][bookmark: _Toc157770328][bookmark: _Toc157777677]6	Identification of AR/MR QoE Metrics for 3GPP
[bookmark: _Toc128059555][bookmark: _Toc143815939][bookmark: _Toc157702412][bookmark: _Toc157768990][bookmark: _Toc157770329][bookmark: _Toc157777678]6.1	General
There are 22 core use cases identified for AR/MR devices in TR 26.998 [2] and they are further clarified into the several categories based on the similar requirements for media flow and device functional structure:
-	Immersive media downlink streaming
-	5G interactive immersive service
-	5G cognitive immersive service
-	AR conversational service
-	Shared AR conversational service
The AR/MR QoE metrics can be studied based on the following aspects:
1)	Content part: study needs to be conducted on factors of content part which would help analyse user experience.
2)	Delivery part: changing network conditions may lead to problems in user experience, especially the impact of transmission latency on user experience.
3)	Device part: device capabilities also have impact on user experience.
QoE metrics relevant with the above aspects need to be studied under this study item, and based on the result of this study, user experience of AR/MR service could be evaluated.
[bookmark: _Toc128059556][bookmark: _Toc143815940][bookmark: _Toc157702413][bookmark: _Toc157768991][bookmark: _Toc157770330][bookmark: _Toc157777679]6.2	AR/MR QoE reference model
[bookmark: _Toc157768992][bookmark: _Toc157770331][bookmark: _Toc157777680]6.2.1	General
The defined AR/MR QoE framework and the observation points defined in clause 11.1 of TS 26.119 [5] can be reused as baseline for the AR QoE reference model, which is illustrated in Figure 6.2.1-1.
NOTE:	The observation points can also be used to identify the advanced AR/MR QoE metrics.

Figure 6.2.1-1: AR/MR QoE reference model and Metrics Observation Points
It’s also noted that the above observation points may be further updated based on the agreements of the AR/MR QoE metrics identification and definition.
[bookmark: _Toc92713719][bookmark: _Toc67919022][bookmark: _Toc128059557][bookmark: _Toc143815941][bookmark: _Toc157702414][bookmark: _Toc157768993][bookmark: _Toc157770332][bookmark: _Toc157777681]6.2.2	Observation Point 1
[bookmark: _Toc157768994][bookmark: _Toc157770333][bookmark: _Toc157777682]6.2.2.1	General
XR Runtime is a set of functions that interface with a platform to perform commonly required operations, such as accessing the controller/peripheral state, getting current and/or predicted tracking positions, performing spatial computing, and submitting rendered frames to the display processing unit. The XR Runtime provides the viewer pose and projection parameters needed to render each view for use in a composition projection layer.
XR Source Management addresses the management of data sources provided through the XR runtime such as microphones, cameras, trackers, etc. The XR Source Management may expose information to the application or may provide a subset to the media access function to be sent remote.
Presentation Engine is a set of composite renderers, rendering the component of the scenes, based on the input from the Scene Manager. The Scene Manager together with the Presentation Engine that includes functions such as scene composition and possible complex audio or visual rendering.
Observation point 1 is derived from the XR Runtime API which exchanges information between XR Runtime and XR Source Management/Presentation Engine. In addition,TS 26.119 clarify that the OP1 (can also called IF1) is implemented as an API-1 that exposes functions provided by the XR Runtime. An example of this API is the Khronos OpenXR API. So the key is to define parameters that may be exposed (or monitored) through the runtime.
[bookmark: _Toc143815942][bookmark: _Toc157702415][bookmark: _Toc157768995][bookmark: _Toc157770334][bookmark: _Toc157777683]6.2.2.2	Viewer pose and Projection parameters
Viewer pose is to present the user position and orientation, which can be defined as quaternion (X, Y, Z, W) for orientation and three vectors (X, Y, Z in cartesian coordinate system) for position. Projection parameters are parameters associated to the perspective/orthogonal/omnidirectional projection to the 3D scene.
It’s noted that OpenXR is the interface between an application and an in-process or out-of-process "XR runtime system", or just "runtime" hereafter [22]. In OpenXR [22], an XR application uses xrLocateViews to retrieve the viewer pose and projection parameters needed to render each view for use in a composition projection layer. xrLocateViews returns an array of XrView elements and the XrView data structure is defined as below [22]:
typedef struct XrView {
 XrStructureType	type;
 void*				next;
 XrPosef			pose;
 XrFovf				fov;
} XrView;
In XrView structure, it’s defined that pose is an XrPosef indicating the location and orientation of the view in the space specified by the xrLocateViews function, fov is the XrFovf for the four sides of the projection. And it also clarifies the XrView structure contains view pose and projection state necessary to render a single projection view in the view configuration.
Viewer pose and projection parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815943][bookmark: _Toc157702416][bookmark: _Toc157768996][bookmark: _Toc157770335][bookmark: _Toc157777684]6.2.2.3	Camera information
Camera information including the attribute of the camera and everything external to the camera, such as resolution, FOV, relative pose, attached to,etc [22].
The section 12.117 of XR_OCULUS_external_camera in OpenXR [22] clarifies this extension enables the querying of external camera information for a session. This extension is intended to enable mixed reality capture support for applications. For details,
XR_OCULUS_external_camera API supports returning camera intrinsics and extrinsics.
The intrinsic parameters are the attributes of the camera and include [22]:
-	fov is the XrFovf for this camera’s viewport.
-	virtualNearPlaneDistance is the near plane distance of the virtual camera used to match the external camera
-	virtualFarPlaneDistance is the far plane distance of the virtual camera used to match the external camera
-	imageSensorPixelResolution is the XrExtent2Di specifying the camera’s resolution (in pixels).
The extrinsic parameters are everything external to the camera: relative pose, attached to, etc.
Camera information parameter, including the camera intrinsic and extrinsic, may be monitored or observed via the OP1.
[bookmark: _Toc143815944][bookmark: _Toc157702417][bookmark: _Toc157768997][bookmark: _Toc157770336][bookmark: _Toc157777685]6.2.2.4	Gesture
Gesture can trigger specific actions during an AR experience, it can be provided as a list of hand joint poses which represent the current configuration of the tracked hands.
Clause 12.30, XR_EXT_hand_tracking in OpenXR [22] enables applications to locate the individual joints of hand tracking inputs. It enables applications to render hands in XR experiences and interact with virtual objects using hand joints.
The section 12.57, XR_FB_hand_tracking_aim in OpenXR [22], clarifies that the XR_EXT_hand_tracking extension provides a list of hand joint poses which represent the current configuration of the tracked hands. This extension adds a layer of gesture recognition that is used by the system. That means an application is allowed to get a set of basic gesture states for the hand when using the XR_EXT_hand_tracking extension. Hand gesture parameter may be monitored or observed via the OP1.
[bookmark: _Toc143815945][bookmark: _Toc157702418][bookmark: _Toc157768998][bookmark: _Toc157770337][bookmark: _Toc157777686]6.2.2.5	Body action
Body action parameters includes body joints and joint locations. The section 12.44 of XR_FB_body_tracking in OpenXR [22] clarifies that this extension enables applications to locate the individual body joints that represent the estimated position of the user of the device. It enables applications to render the upper body in XR experiences. When create a body tracker handle, this handle can be used to locate body joints using xrLocateBodyJointsFB function, and a body tracker provides joint locations with an unobstructed range of human body motion.
Body action parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815946][bookmark: _Toc157702419][bookmark: _Toc157768999][bookmark: _Toc157770338][bookmark: _Toc157777687]6.2.2.6	Tracking pose prediction parameters
Tracking pose prediction parameters includes space location information.
Section 7.4 of Locating Spaces in OpenXR [22] clarifies that applications use the xrLocateSpace function to find the pose of an XrSpace’s origin within a base XrSpace at a given historical or predicted time.
The structure of xrLocateSpace is describe as below [22]:
XrResult xrLocateSpace(
 XrSpace space,
 XrSpace baseSpace,
 XrTime time,
 XrSpaceLocation* location);
The detailed parameters description are listed as below:
-	space identifies the target space to locate.
-	baseSpace identifies the underlying space in which to locate space.
-	time is the time for which the location should be provided.
-	location provides the location of space in baseSpace.
It also described that for a time in the past, the runtime should locate the spaces based on the runtime’s most accurate current understanding of how the world was at that historical time. For a time in the future, the runtime should locate the spaces based on the runtime’s most up-to-date prediction of how the world will be at that future time. The minimum valid range of values for time are described in Prediction Time Limits. With respect to backward prediction, the application can pass a prediction time equivalent to the timestamp of the most recently received pose plus as much as 50 milliseconds in the past to retrieve accurate historical data.
Tracking pose prediction parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815947][bookmark: _Toc157702420][bookmark: _Toc157769000][bookmark: _Toc157770339][bookmark: _Toc157777688]6.2.2.7	Pose prediction parameters
Pose prediction parameters include viewer pose information and the target display time and XR space.
In clause 6.2.2.2, it’s described that xrLocateViews function defined in the OpenXR can retrieve the viewer pose and projection parameters needed to render each view for use in a composition projection layer. The data structure of xrLocateViews function is defined as below in section 10.2 of View and Projection State in OpenXR [22].
The structure of xrLocateViews is describe as below [22]:
XrResult xrLocateViews(
 XrSession 						session,
 const XrViewLocateInfo* 	viewLocateInfo,
 XrViewState* 					viewState,
 uint32_t						viewCapacityInput,
 uint32_t* 						viewCountOutput,
 XrView* 						views);
The XrViewLocateInfo data structure is defined as below [22]:
typedef struct XrViewLocateInfo {
 XrStructureType 				type;
 const void* 					next;
 XrViewConfigurationType 	viewConfigurationType;
 XrTime 						displayTime;
 XrSpace 						space;
} XrViewLocateInfo;
In XrViewLocateInfo structure, it contains the display time and space used to locate the view XrView function. The displayTime is the time for which the view poses are predicted, and space is the XrSpace in which the pose in each XrView is expressed. So pose information corresponding to each view can be predicated based on the target display time for a given frame.
Pose prediction parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815948][bookmark: _Toc157702421][bookmark: _Toc157769001][bookmark: _Toc157770340][bookmark: _Toc157777689]6.2.2.8	Eye gaze pose prediction parameters
Eye gaze typically consists of a gaze origin (a point positioned between the user’s eyes) and a gaze direction (a ray pointing towards where the user is looking at), and gaze point (a three-dimensional position where the user is looking at). There are two different cases to use eye gaze information, e.g. for eye interacting and for eyes rendering in XR experience.
It’s noted that AR/MR QoE metrics collection is sensitive to user privacy, e.g. eye gaze related QoE metrics.
In the eye interaction case, it’s described in the OpenXR [22] that applications can get eye gaze input from an eye tracker to enable eye gaze interactions by XR_EXT_eye_gaze_interaction extension. With this extension, an application can discover if the XR runtime has access to an eye tracker, bind the eye gaze pose to the action system, determine if the eye tracker is actively tracking the users eye gaze, and use the eye gaze pose as an input signal to build eye gaze interactions [22]. In this case, eye gaze pose information is directly got by the application, not used in the rendering.
The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned. The eye gaze pose may originate from a point positioned between the user’s eyes. At the time both the position and direction of the eye pose is tracked. The runtime must set both XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT. To allow for an application to reason about high accuracy eye tracking, the application can chain in an XrEyeGazeSampleTimeEXT to the next pointer of the XrSpaceLocation structure passed into the xrLocateSpace call. The XrEyeGazeSampleTimeEXT structure is defined as below:
typedef struct XrEyeGazeSampleTimeEXT {
 XrStructureType				type;
 void*							next;
 XrTime							time;
} XrEyeGazeSampleTimeEXT;
In XrEyeGazeSampleTimeEXT structure, it’s defined that time is when in time the eye gaze pose is expressed. The time in the XrEyeGazeSampleTimeEXT structure can be set to the clamped, predicted or interpolated time. The application may inspect the time field to understand when in time the pose is expressed. The time field may be in the future if a runtime can predict gaze poses. So eye gaze poses can be predicated based on the future time.
In eye interaction case, eye gaze pose prediction parameters may be monitored or observed via the OP1.
In the case that applications needs to render eyes in XR experience and obtain position and orientation of the user’s eyes, such as driving the animation of avatar eyes. In this case, eye gaze information may be used for foveated rendering.
The XrEyeTrackerFB handle can be used to represent the resources for eye tracking. This handle is used for getting eye gaze using xrGetEyeGazesFB function. The xrGetEyeGazesFB function is defined as below:
XrResult xrGetEyeGazesFB(
 XrEyeTrackerFB				eyeTracker,
 const XrEyeGazesInfoFB*	gazeInfo,
 XrEyeGazesFB*				eyeGazes);
In the xrGetEyeGazesFB function, gazeInfo is the information to get eye gaze, and eyeTracker is a pointer to XrEyeGazesFB receiving the returned eye poses and confidence. The XrEyeGazesInfoFB structure describes the information to get eye gaze directions, whose structure is defined as below:
typedef struct XrEyeGazesInfoFB {
 XrStructureType				type;
 const void*						next;
 XrSpace						baseSpace;
 XrTime							time;
} XrEyeGazesInfoFB;
In the xrGetEyeGazesFB function, baseSpace is an XrSpace within which the returned eye poses will be represented. The time is an XrTime at which the eye gaze information is requested.
The application should request a time equal to the predicted display time for the rendered frame. The system will employ appropriate modeling to provide eye gaze at this time.
The XrEyeGazesFB structure returns the state of the eye gaze directions, which structure is defined as below:
typedef struct XrEyeGazesFB {
 XrStructureType				type;
 void*							next;
 XrEyeGazeFB					gaze[XR_EYE_POSITION_COUNT_FB];
 XrTime							time;
} XrEyeGazesFB;
The gaze is an array of XrEyeGazeFB receiving the returned eye gaze directions, and the time is an XrTime time at which the returned eye gaze is tracked or extrapolated to.
XrEyeGazeFB structure describes the validity, direction, and confidence of a social eye gaze observation, which structure is defined as below:
typedef struct XrEyeGazeFB {
 XrBool32						isValid;
 XrPosef						gazePose;
 Float							gazeConfidence;
} XrEyeGazeFB;
The gazePose is an XrPosef describing the position and orientation of the user’s eye. XrPosef structure is defined as below:
typedef struct XrPosef {
 XrQuaternionf					orientation;
 XrVector3f						position;
} XrPosef;
The pose is represented in the coordinate system provided by XrEyeGazesInfoFB::baseSpace. The gazeConfidence is a float value between 0 and 1 that represents the confidence for eye pose. A value of 0 represents no confidence in the pose returned, and a value of 1 means maximum confidence in the returned eye pose. The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned, similar to the XR_REFERENCE_SPACE_TYPE_VIEW in [22].
Eye gaze pose parameters, such as user’s eye position and orientation parameter can be predicted at a future time base on the field of XrTime in XrEyeGazesFB structure.
In the eye rendering in XR experience cases, eye gaze pose prediction parameters may be monitored or observed via the OP1.
In summary, for either eye interaction or eye rendering cases, the eye gaze pose prediction parameters may be monitored or observed via the OP1.
Gaze pose parameters may be used to be identified as two potential QoE metrics. Firstly, the eye gaze pose prediction error can be derived by calculating the deviations between the actual gaze position/orientation information and the predicated gaze position/orientation information. The eye gaze pose prediction error affects user's experience of looking at an XR world area or content. e.g. in the foveated rendering scenario, eye tracked foveated rendering renders lower pixel density in the periphery of the user’s gaze, taking advantage of low peripheral acuity. If the eye gaze pose prediction error is a lot, it may happen that people will see low-pixel density content in the center of the gaze, this will reduce the user's perception of the experience.
Secondly, the eye gaze interaction latency may be also derived to indicate the time from the eye gaze information is requested until the eye gaze pose is displayed (i.e., the content reflecting the eye gaze information is displayed). e.g. in the foveated rendering scenario, if the eye gaze interaction latency is large and when the user's gaze changes, people will find that the content he is looking at is still low pixelated for a longer period of time, which will degrade user experience.
NOTE:	Eye gaze parameters monitoring and potential eye gaze related QoE metrics are for further studies.
[bookmark: _Toc143815949][bookmark: _Toc157702422][bookmark: _Toc157769002][bookmark: _Toc157770341][bookmark: _Toc157777690]6.2.2.9	Parameters monitored by OP1
To summarize, observation point 1 is defined to monitor:
-	Viewer pose
-	Projection parameters
-	Camera information
-	Gesture
-	Body action
-	Tracking pose prediction parameters
-	Pose prediction parameters
-	Registration latency
[bookmark: _Toc128059558][bookmark: _Toc143815950][bookmark: _Toc157702423][bookmark: _Toc157769003][bookmark: _Toc157770342][bookmark: _Toc157777691]6.2.3	Observation Point 2
Scene Manager is a set of functions that supports the application in arranging the logical and spatial representation of a multisensorial scene based on support from the XR Runtime. XR Scene Manager has access to the latest pose and tracking information from the XR Runtime which is then provided. Based on this information, the Scene Manager may for example determine the objects visible to the user at a given point in time or more generally the objects that may be needed to be rendered in the next rendering cycles.
Media Access Function is a set of functions that enables access to media and other XR-related data that is needed in the Scene manager or XR Runtime to provide an XR experience. The media access function accesses the network resources or sends data to the network using the established media pipelines.
Observation point 2 observes information at the input of the Scene Manager from the Media Access Function or application. For the first case, OP2 is derived from the API which exchanges scene description information and primitive buffers formats between Scene Manager and Media Access Function. Scene description information may be generated from the application or in a scene description delivery document. The primitive buffers are defined via this API for different media types that can be rendered by the Visual and Audio renderer. The combination of the scene description information and the primitive buffers provide sufficient information to the presentation engine in order create an immersive audio-visual experience.
NOTE:	Parameters that can be observed in observation point 2 are for further studies.
[bookmark: _Toc157702424][bookmark: _Toc157769004][bookmark: _Toc157770343][bookmark: _Toc157777692]6.2.4	Observation Point 3
Observation point 3 is derived from the API which exchanges information between XR Source Management and Metrics Access Functions. Information collected from XR Runtime may be serialized, time stamped, and compressed via this API, including: Viewer pose and projection parameters needed to render using the xrLocateViews function to render each view for use in a composition projection layer, camera and microphone output, etc. For XR metadata to be possibly delivered over a network interface, the raw formats including information on timing needs to be defined in order to permit serialization of the data in metadata delivery. Information includes viewer pose, triggers and actions, etc.
OP3 is defined to monitor:
-	Viewer pose
[bookmark: _Toc128059559][bookmark: _Toc143815951][bookmark: _Toc157702425][bookmark: _Toc157769005][bookmark: _Toc157770344][bookmark: _Toc157777693]6.2.5	Observation Point 4
Observation point 4 is derived from the API which exchanges information between Media Access Function and 5G System. The information delivered from this API includes: Scene Description, Audio and video formats for parallel decoding of multiple buffers, pose information, metadata, etc. This API is equivalent to the 3GPP VR Operation Point as defined in TS 26.118, which includes spatial and temporal resolutions, and the encoding format, etc.
OP4 is defined to monitor:
-	Spatial and temporal resolutions
[bookmark: _Toc143815953][bookmark: _Toc157702426][bookmark: _Toc157769006][bookmark: _Toc157770345][bookmark: _Toc157777694]6.3	Introduction of AR/MR QoE metrics
[bookmark: _Toc157769007][bookmark: _Toc157770346][bookmark: _Toc157777695]6.3.1	General
The typical procedures can be shown as below [2].
1.	Application Started
2.	Initial AR/MR object retrieval
3.	XR Spatial Mapping
4.	The AR/MR objects are rendered and displayed at the right place based on the reconstructed 3D map.
Based on the above typical procedures, the following QoE metrics can be introduced and measured.
[bookmark: _Toc143815954][bookmark: _Toc157702427][bookmark: _Toc157769008][bookmark: _Toc157770347][bookmark: _Toc157777696]6.3.2	Registration latency
Registration latency indicates the time from the application is started until the 3D reconstructed map is obtained by the XR runtime and it can be observed in the OP-1. The whole 3D map reconstruction includes following aspects:

Figure 6.3.2-1: Functional diagram for XR Spatial computing with network/cloud support [2]
1)	Surrounding sensing latency;
2)	Sensor information delivery from the MAF to the XR Spatial Computing Server;
3)	3D Map reconstruction and Spatial Description generation;
4)	Spatial Description delivery from the XR Spatial Computing Server to the MAF;
5)	Spatial Description parsing and the local/remote AR object displaying;
This metric is also available for the local AR/MR experience without network assistance.
[bookmark: _Toc143815955][bookmark: _Toc157702428][bookmark: _Toc157769009][bookmark: _Toc157770348][bookmark: _Toc157777697]6.3.3	Scene startup latency and Interaction latency
Scene startup latency indicates the time from the application is started until the remote initial AR scene is displayed in the right place of the reconstructed 3D space. For instance, once the AR application is started, an initial AR scene is requested by the client and further sent back to the AR runtime.
The interaction latency indicates the time from the new AR scene is requested until the remote new AR scene is displayed. For example, when user clicks to request a specific AR object in the front, the AR scene is then requested by the client and further sent back to the AR runtime for rendering and display. Render to photon time is calculated using predicted displayTime minus startRenderTime. Predicted displayTime can be monitored by the observation point 1, and startRenderTime is defined as the time when the renderer starts to render the scene according to the viewer pose.
These can be observed in the OP-1. This can include following aspects:

Figure 6.3.3-1: Functional structure for AR UE
1)	Optionally, AR scene request sent from the MAF to the remote scene server;
2)	AR scene generation and rendering the remote scene server;
3)	AR scene delivery from the scene server to the MAF;
4)	AR scene rendering and display.
This metric is also available for the local AR/MR experience without network assistance.
[bookmark: _Toc143815956][bookmark: _Toc157702429][bookmark: _Toc157769010][bookmark: _Toc157770349][bookmark: _Toc157777698]6.3.4	Tracking pose prediction error
This metric belongs to the device part, which mainly depends on the tracking pose prediction accuracy.
Tracking pose prediction error mainly refers to the relative pose error which indicates the deviation of the relative pose in the real world and the predicted pose. This can be observed at OP-1 and derived by comparing the predicated spaces locations and real space locations, and detailed QoE metric is defined in the Table 6.3.4-1.
Table 6.3.4-1: Tracking pose prediction error
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000025]TrackingPosePredictionErrorSet
	Set
	Set of tracking pose prediction error.

	
	Entry
	Object
	

	
	
	Time
	Integer
	The time for which the location should be provided.

	
	
	SpacePredictionError
	Set
	The deviation between the actual and predicted space location.

Note that the actual location may not be known in an XR session.

[bookmark: _Toc143815957][bookmark: _Toc157702430][bookmark: _Toc157769011][bookmark: _Toc157770350][bookmark: _Toc157777699]6.3.5	One-way delay and RTT
[bookmark: _Toc143815958][bookmark: _Toc157702431][bookmark: _Toc157769012][bookmark: _Toc157770351][bookmark: _Toc157777700]6.3.5.1	Background
The motion-to-render-to-photon delay has a significant impact on the QoE. The delay consists of the uplink one-way delay, the downlink one-way delay, or the round-trip time (RTT). One of the issues of measuring these delays is that the measurements may not be representative of the delays experienced by the media. The issue has been considered in SmarTAR [23], and an in-band delay measurement method with real-time protocol (RTP) header extensions including the definitions of the RTP header extensions and the associated SDP signalling has been agreed in TS 26.522 [30]. The method is beneficial to improving the accuracy of the measured the one-way delays and the RTT.
[bookmark: _Toc143815959][bookmark: _Toc157702432][bookmark: _Toc157769013][bookmark: _Toc157770352][bookmark: _Toc157777701]6.3.5.2	Metric description
Each delay of the uplink one-way delay, the downlink one-way delay and RTT includes the delays in the communication networks as well as the processing delay such as encryption (e.g., in the case of SRTP) and the queueing delay in the processing pipeline.
[bookmark: _Toc143815960][bookmark: _Toc157702433][bookmark: _Toc157769014][bookmark: _Toc157770353][bookmark: _Toc157777702]6.3.6	Pose error and time error
[bookmark: _Toc143815961][bookmark: _Toc157702434][bookmark: _Toc157769015][bookmark: _Toc157770354][bookmark: _Toc157777703]6.3.6.1	Background
The rendering process may use a predicted pose for rendering. The pose error (the difference between the pose used for rendering and the pose at the actual display time) affects the match can cause motion sickness, although the XR Runtime can mitigate the impact of pose errors to some extent by reprojection. Thus the pose error is a relevant metric for QoE.
The pose error depends on the time error (for a rendered frame, how much the predicted display time is off from the actual display time). The time error can be used as a control knob by the rendering process and the communication network to adjust the respective delays in optimizing the QoE. Therefore, the time error is a relevant metric for QoE optimization.
Viewer pose error has position error and orientation error components. If the XR runtime provides appropriate information, the position and orientation error values may optionally have an associated confidence value.
[bookmark: _Toc143815962][bookmark: _Toc157702435][bookmark: _Toc157769016][bookmark: _Toc157770355][bookmark: _Toc157777704]6.3.6.2	Metric description
As described in clause 6.2.2.2, a pose can be described by a position and an orientation in space relative to an XR Space. Viewer Pose Prediction Error QoE metric is defined in the below table 6.3.6.2-1, with optional values for confidence in position and confidence in orientation error.
Table 6.3.6.2-1: Viewer Pose Prediction Error
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000026]ViewerPosePredictionErrorSet
	Set
	Set of viewer pose prediction errors.

	
	Entry
	Object
	

	
	
	Time
	Integer
	The time when the predicted viewer pose is used for.

	
	
	
	view
	Integer
	The view index (0 for left eye and 1 for right eye)

	
	
	
	
	Pose prediction error
	Set
	The deviation between the actual and predicted pose.

	
	
	
	
	
	Position prediction error
	Vector
	Vector distance between the actual and predicted position

	
	
	
	
	
	Orientation prediction
error
	Vector
	Quaternion distance between the actual and predicted position

	
	
	
	
	
	Confidence in Position prediction error
	enum
	Confidence status on the position predicted error.
(NOT_VALID, UNCERTAIN, OK)

	
	
	
	
	
	Confidence in Orientation prediction
error
	enum
	Confidence status on the orientation predicted error.
(NOT_VALID, UNCERTAIN, OK)

	
	
	
	
	FoV prediction error
	Set
	The deviation between the actual and predicted FoV.

	
	
	
	
	
	Left error
	float
	Difference between the actual and predicted left angle of FoV

	
	
	
	
	
	Right error
	float
	Difference between the actual and predicted right angle of FoV

	
	
	
	
	
	Up error
	float
	Difference between the actual and predicted Up angle of FoV

	
	
	
	
	
	Down error
	float
	Difference between the actual and predicted Down angle of FOV

An example of Confidence status in the position, respectively orientation, component of the Viewer Pose Prediction Error is listed in table 6.3.6.3-1, respectively 6.3.6.3-2.
The view is an integer value specifying left or right eye. In OpenXR this corresponds to view index in XrViewConfigurationProperties and XrCompositionLayerProjection. As an example, the deviation of actual and predicated pose information can be summarized into a single metirc as formula 6.3-1. In this formula, DevposPredError means the deviation of actual and predicated pose information. α and β represent the weights of the deviation of position and orientation respectively, the weights may be set based on the implementation or application. PA, PP refer to the actual position and the predicted position respectively, with (x,y,z) indicating their respective Cartesian coordinates , and QA ,QP refer to the actual orientation and the predicted orientation respectively, expressed as unit quaternions and Q-1 indicates the quaternion conjugation operation.
6.3-1
Note that the actual pose may not be known during an XR session.

[bookmark: _Toc143815963][bookmark: _Toc157702436][bookmark: _Toc157769017][bookmark: _Toc157770356][bookmark: _Toc157777705]6.3.6.3	Measurement procedure
A measurement procedure for the scenario of cloud-based rendering is shown in Figure 6.3.6.3-1. The XR Runtime and the XR Application may be on a same device such as a UE, or on difference devices such as an AR glasses (which hosts the XR Runtime) and a UE (which hosts the XR Application). The steps are as follows:
1)	The XR Application estimates the round-trip time (RTT) between the XR application and the Edge Application Server (EAS).
2)	The XR Application queries for the next display time. This (and step 3) can be achieved by calling the xrWaitFrame function in OpenXR.
3)	The XR Runtime replies with the next display time.
4)	The XR application predicts a display time – an initial prediction – and the use of initial is because a second prediction/estimation will be made later. This predicted display time is called T2.predicted1.
5)	The XR application queries for a predicted pose at the initial predicted display time T2.predicted1. Calling the function xrLocateViews in OpenXR can achieve this step and step 7.
6)	The XR Runtime predicts the pose, and the prediction occurs at time T1.
7)	The XR Runtime returns the predicted pose (P.predicted1) including status flags information.
7bis)	The XR application checks the status flags information (F.predicted1) related to the predicted pose. If the pose is not valid on position and/or orientation, the XR application may need to go to step 5 to query for a new predicted pose.
8)	The XR application sends the predicted pose (P.predicted1) and the associated initial predicted display time (T2.predicted1) to the EAS with the status flags .
9)	The EAS renders for the predicted pose (P.predicted1), and compresses the rendered frame.
10)	The EAS returns the rendered frame along with the initial predicted display time (T2.predicted1) to the XR Application.
11)	The XR Application sends the rendered frame to the XR Runtine, e.g., via swapchain. This can be achieved by calling the xrReleaseSwapchainImage function in OpenXR. The XR Application passes the display time used for the rendering the frame, and this can be achieved by calling the xrEndFrame function in OpenXR.
12)	The XR Application queries for the predicted display time. This is intended to get a more accurate prediction of the display time than the one in step 4, because there is less time to predict into the future at this moment.
13)	The XR Runtime returns an updated prediction of the display time (T2.predicted2).
14)	The XR Runtime performs reprojection for pose correction. The actual display play time is called T2.actual.
15)	The XR Application queries for the pose associated with the updated prediction of the display time (T2.predicted2). This can be achieved by calling the xrLocateViews function in OpenXR.
16)	The XR Runtime does pose estimation.
17)	The XR Runtime returns a pose estimate (P.predicted2) including status flags information.
18)	The XR Application checks the status flags information (F.predicted2) related to the pose (P.predicted2) in step 17 and the status flags information (F.predicted1) in step 7bis. Then the XR Application computes a pose error estimate (P.predicted1 – P.predicte2) and a time error estimate(T2.predicted1 – T2.predicted2) and a confidence status based on (F.predicted1) and (F.predicted2).

Figure 6.3.6.3-1: The procedure for measuring the pose error and time error in pose prediction
Note that two queries are used to predict the display time of a same frame. The first query occurs in step 2, and the query result is used to determine a target display time for the rendering process in step 4. The second query occurs much closer to the actual display time, as shown in steps 12-13, and thus provides higher accuracy. This is shown in Figure 6.3.6.3-2.

Figure 6.3.6.3-2: The use of a second prediction (T2.predicted2) of the display time for better accuracy
Note: to derive the confidence status in step 18 with the Khronos OpenXR API [22], the xrLocateViews function returns the status flags related to the predicted/estimated pose in the XrViewState structure. XrViewStateFlags in the XrViewState are flags that give information validity and tracking of position and orientation.
-	XR_VIEW_STATE_ORIENTATION_VALID_BIT
-	XR_VIEW_STATE_POSITION_VALID_BIT
-	XR_VIEW_STATE_POSITION_TRACKED_BIT
-	XR_VIEW_STATE_ORIENTATION_TRACKED_BIT
XrViewStateFlags should be checked in steps 7bis and 18 of the measurement procedure before using the predicted/estimated pose.
XrViewStateFlags of the two predicted poses may be combined to derive the confidence status of the position and/or orientation error. The XrViewStateFlags can be independently checked on the two pose components (position and orientation) to get a confidence status on the error per component.
Combining the XrViewStateFlags of the two predicted poses (P.predicted1, P.predicte2) give the confidence status of the position and/or orientation error. The Confidence may be reported with the Viewer Pose Prediction Error in table 6.3.6.2-1
An example of Confidence status in the position, respectively orientation, component of the Viewer Pose Prediction Error is listed in table 6.3.6.3-1, respectively 6.3.6.3-2.
Table 6.3.6.3-1: Example of Confidence status in the Position of the Pose prediction error.
	First Pose (P.predicted1)
	Second Pose (P.predicted2)
	Confidence status in the Position of the Pose prediction Error

	Position status
	Position status
	

	VALID_BIT
	TRACKED_BIT
	VALID_BIT
	TRACKED_BIT
	

	0
	X
	X
	X
	NOT_VALID
	The Pose prediction Error for the Position component cannot be estimated.

	X
	X
	0
	X
	NOT_VALID
	The Pose prediction Error for the Position component cannot be estimated.

	1
	0
	1
	0
	UNCERTAIN
	The Pose prediction Error for the Position component is uncertain.

	1
	0
	1
	1
	UNCERTAIN
	The Pose prediction Error for the Position component is uncertain.

	1
	1
	1
	0
	UNCERTAIN
	The Pose prediction Error for the Position component is uncertain.

	1
	1
	1
	1
	OK
	The Pose prediction Error for the Position component is OK.

 “X” means “0 or 1”

Table 6.3.6.3-2: Example of Confidence status in the Orientation of the Pose prediction error.
	First Pose (P.predicted1)
	Second Pose (P.predicted2)
	Confidence status in the Orientation of the Pose prediction Error

	Orientation status
	Orientation status
	

	VALID_BIT
	TRACKED_BIT
	VALID_BIT
	TRACKED_BIT
	

	0
	X
	X
	X
	NOT_VALID
	The Pose prediction Error for the Orientation component cannot be estimated.

	X
	X
	0
	X
	NOT_VALID
	The Pose prediction Error for the Orientation component cannot be estimated.

	1
	0
	1
	0
	UNCERTAIN
	The Pose prediction Error for the Orientation component is uncertain.

	1
	0
	1
	1
	UNCERTAIN
	The Pose prediction Error for the Orientation component is uncertain.

	1
	1
	1
	0
	UNCERTAIN
	The Pose prediction Error for the Orientation component is uncertain.

	1
	1
	1
	1
	OK
	The Pose prediction Error for the Orientation component is OK.

 “X” means “0 or 1”

[bookmark: _Toc143815964][bookmark: _Toc157702437][bookmark: _Toc157769018][bookmark: _Toc157770357][bookmark: _Toc157777706]6.3.7	Device related QoE metrics
[bookmark: _Toc143815965][bookmark: _Toc157702438][bookmark: _Toc157769019][bookmark: _Toc157770358][bookmark: _Toc157777707]6.3.7.1	Background
Some property information of AR/MR device have impacts on user experience, e.g. resolution, hand tracking, eye tracking, spatial mapping…, which are the part of AR/MR device-related QoE metrics.
For AR/MR terminals, the UE can get the system properties by xrGetSystemProperties function defined in openXR [22]. The structure of xrGetSystemProperties is defined as below [22]:
XrResult xrGetSystemProperties(
 XrInstance						instance,
 XrSystemId					systemId,
 XrSystemProperties*			properties);
The properties points to an instance of the XrSystemProperties structure, that will be filled with returned information, and the XrSystemProperties structure is defined as [22]:
typedef struct XrSystemProperties {
 XrStructureType 					type;
 void* 				next;
 XrSystemId 			systemId;
 uint32_t 				vendorId;
 char 				systemName[XR_MAX_SYSTEM_NAME_SIZE];
 XrSystemGraphicsProperties 	graphicsProperties;
 XrSystemTrackingProperties 	 trackingProperties;
} XrSystemProperties;
The “next” is NULL or a pointer to the next structure in a structure chain, such as XrSystemEyeTrackingPropertiesFB, XrSystemHandTrackingPropertiesEXT, XrSystemSpatialEntityPropertiesFB…
The XrSystemEyeTrackingPropertiesFB structure is defined as below in [22]:
typedef struct XrSystemEyeTrackingPropertiesFB {
 XrStructureType				type;
 void*							next;
 XrBool32						supportsEyeTracking;
} XrSystemEyeTrackingPropertiesFB;
The “supportsEyeTracking” is an XrBool32, indicating if the current system is capable of receiving eye tracking input. So, eye tracking capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsEyeTracking”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support eye tracking capability.
The XrSystemHandTrackingPropertiesEXT structure is defined as below in [22]:
typedef struct XrSystemHandTrackingPropertiesEXT {
 XrStructureType				type;
 void*							next;
 XrBool32						supportsHandTracking;
} XrSystemHandTrackingPropertiesEXT;
The “supportsHandTracking” is an XrBool32, indicating if the current system is capable of hand tracking input. So, hand tracking capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsHandTracking”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support hand tracking capability.
The XrSystemSpatialEntityPropertiesFB structure is defined as below in [22]:
typedef struct XrSystemSpatialEntityPropertiesFB {
 XrStructureType				type;
 const void*						next;
 XrBool32						supportsSpatialEntity;
} XrSystemSpatialEntityPropertiesFB;
The “supportsSpatialEntity” is an XrBool32, indicating if spatial entities are supported by the system. An application can inspect whether the system is capable of spatial entity operations by extending the XrSystemProperties with XrSystemSpatialEntityPropertiesFB structure when calling xrGetSystemProperties. The XR_FB_spatial_entity can provide the XrSpatialAnchorCreateInfoFB whose structure is defined as in [22]:
typedef struct XrSpatialAnchorCreateInfoFB {
 XrStructureType				type;
 const void*						next;
 XrSpace						space;
 XrPosef						poseInSpace;
 XrTime							time;
} XrSpatialAnchorCreateInfoFB;
The space entity identifies world-locked frames of reference. It enables applications to persist the real world location of content over time and contains definitions. The spatial mapping capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsSpatialEntity”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support spatial mapping capability.
[bookmark: _Toc143815966][bookmark: _Toc157702439][bookmark: _Toc157769020][bookmark: _Toc157770359][bookmark: _Toc157777708]6.3.7.2	Metric description
Base on the above analysis in clause 6.3.7.1, the QoE metrics relevant with AR/MR device as listed in Table 6.3.7.2-1 is necessary for assessment of device impact on user experience.
[bookmark: _Ref502062539]Table 6.3.7.2-1: QoE metrics relevant with AR/MR device
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000027]DeviceInformationList
	List
	A list of device information objects.

	
	Entry
	Object
	A single object containing new device information.

	
	
	resolution
	Object
	Display resolution for each eye

	
	
	
	videowidth
	Integer
	Number of pixels in display width

	
	
	
	videoheight
	Integer
	Number of pixels in display height

	
	
	eyetrackingCapability
	Boolean
	Indication of end device eye tracking capability.

	
	
	handtrackingCapability
	Boolean
	Indication of end device hand tracking capability.

	
	
	spatialmappingCapability
	Boolean
	Indication of end device spatial mapping capability.

[bookmark: _Toc143815967][bookmark: _Toc157702440][bookmark: _Toc157769021][bookmark: _Toc157770360][bookmark: _Toc157777709]6.3.8	Spatial Anchors and Trackables
[bookmark: _Toc143815968][bookmark: _Toc157702441][bookmark: _Toc157769022][bookmark: _Toc157770361][bookmark: _Toc157777710]6.3.8.1	Background
To establish the pose of the virtual objects in the user real environment, the concept of AR anchoring has been defined based on trackable and spatial anchor entities.
The definitions of trackable and anchor is defined in 3GPP TS 26.119 clause §3.1.
Figure 6.3.8.1-1 illustrates an AR anchoring example. A trackable (2D marker type) provides a local reference space. The spatial anchor refers to this trackable, . A virtual asset (virtual chest) is attached to this anchor.
[image:]
[bookmark: _Ref141187151]Figure 6.3.8.1‑1: Spatial relationships between trackable, spatial anchor and virtual asset
[bookmark: _Toc143815969][bookmark: _Toc157702442][bookmark: _Toc157769023][bookmark: _Toc157770362][bookmark: _Toc157777711]6.3.8.2	Impact on latencies
AR anchoring has an impact on the user experience, for example, a virtual object may not be correctly positioned in the user's real environment.
AR anchoring latencies also directly impacts the scene start-up latency and the interaction latency:
-	The initial scene start-up latency corresponds to the sum of the first initialization step delay (fetching content entry point, initialization of the scene manager, retrieval of the scene description file, the Anchor Creation Delay, the delay until the trackable is first detected and the Anchor Detection-to-Render-to-Photon delay in the case of a single spatial anchor for the whole scene.
-	The interaction latency corresponds to the Anchor Detection-to-Render-to-Photon latency metric for the first detection of the trackable. After a first detection, the spatial computing function may predict the pose of the trackable even if it is no more tracked, enabling the anchoring, the positioning, and the display of the virtual content (even if the tracking pose prediction error may increase).
[bookmark: _Toc143815970][bookmark: _Toc157702443][bookmark: _Toc157769024][bookmark: _Toc157770363][bookmark: _Toc157777712]6.3.8.3	Retrieval of the AR anchoring information
Once the Scene description file is received by the UE, the scene manager parses the file and retrieves the AR anchoring information required for that AR experience.
The AR anchoring information consists of:
-	The different types of trackable to be supported.
-	For each trackable, the spatial relationship between the trackable, its related spatial anchor and the virtual content to be anchored.
-	Some optional metadata specifying how to handle the AR anchoring process at runtime. E.g., displaying or not the virtual content at a default location until the trackable is detected, defining a minimum available space in the user’s real environment to allow the anchoring of virtual content.
For example, the MPEG-I Scene Description AMD2 [24] detailed and specified an extension to carry the AR anchoring information in a glTF file.
From a QoE metric perspective, the most relevant AR anchoring information is the type(s) of trackable(s) required for that AR experience as some types of trackable may not be supported locally in the UE, leading to Cloud or Edge delegation for the spatial computing function for that trackable. This delegation has a direct impact on the configuration and the measurement of QoE metric.
Several spatial anchors may be defined in one scene to anchor different virtual content. The QoE metric should be measured for each spatial anchor.
[bookmark: _Toc143815971][bookmark: _Toc157702444][bookmark: _Toc157769025][bookmark: _Toc157770364][bookmark: _Toc157777713]6.3.8.4	Anchor Creation Delay (ACD)
[bookmark: _Toc157777714]6.3.8.4.1	General
This metric corresponds to the delay between the time of the spatial anchor creation request and the time when the related XR space (i.e., the frame of reference in which the 3D coordinates are expressed) is created.
[bookmark: _Toc143815972][bookmark: _Toc157702445][bookmark: _Toc157769026][bookmark: _Toc157770365][bookmark: _Toc157777715]6.3.8.4.2	Measurement of the local Anchor Creation Delay
If the type of trackable is supported locally in the UE, this metric is measured at the interface between the XR runtime and the scene manager. It corresponds to the OP-1 Observation Point.
To measure the ACD with the Khronos OpenXR API [22]:
-	The ACD start time which corresponds to the time of the spatial anchor creation request i.e., when calling the xrCreateReferenceSpace, xrCreateActionSpace, xrCreateSpatialAnchorFB, xrCreateSpatialAnchorMSFT or xrCreateSpatialAnchorFromPersistedNameMSFT function depending on the type of trackable to support.
-	The ACD end time which corresponds to the time when receiving a XR_SUCCESS returned value.
Then the ACD for that spatial anchor = end time - start time.
[bookmark: _Toc143815973][bookmark: _Toc157702446][bookmark: _Toc157769027][bookmark: _Toc157770366][bookmark: _Toc157777716]6.3.8.4.3	Measurement of the remote Anchor Creation Delay
In the case of remote spatial computing (i.e., the type of trackable is not supported locally in the UE), it is relevant to measure the ACD metric.
The measurement procedure of the ACD in case of remote spatial computing is provided in Figure 6.3.8.4-1.

[bookmark: _Ref143679913][bookmark: _Ref139908533]Figure 6.3.8.4‑1: The procedure for measuring the ACD with remote XR spatial computing
1)	The UE and the Server configures the spatial anchor creation QoE. A delegation to a XR Spatial Computing server is established for that spatial anchor as the trackable cannot be supported by the UE.
2)	The request of the spatial anchor creation is sent by the UE Scene Graph Handler to the XR Spatial Computing Server. A unique spatial anchor identifier (anchor-id) and the anchor-creation-request-time are recorded.
3)	The spatial anchor creation request is received by the XR server, and it starts to the creation of the anchor.
4)	Once the XR Server has created the spatial anchor, it transmits the acknowledgement to the UE.
5)	The Scene manager receives the acknowledgment of the anchor creation and records the anchor-creation-end-RX-time.
Based on this ACD measurement call flow, the UE can measure the ACD as follows:
Then the ACD for that spatial anchor = anchor-creation-end-time – anchor-creation-start-time.
The Roundtrip ACD for that spatial anchor = anchor-creation-end-RX-time – anchor-creation-request-time.
[bookmark: _Toc143815974][bookmark: _Toc157702447][bookmark: _Toc157769028][bookmark: _Toc157770367][bookmark: _Toc157777717]6.3.8.5	Anchor Detection to Render to Photon QoE
[bookmark: _Toc157777718]6.3.8.5.1	General
This metric corresponds to the delay between the time of the spatial anchor pose request leading to the detection of the trackable and the time when the virtual content is displayed in the user’s real environment.
[bookmark: _Toc143815975][bookmark: _Toc157702448][bookmark: _Toc157769029][bookmark: _Toc157770368][bookmark: _Toc157777719]6.3.8.5.2	Measurement of the Anchor Detection to Render to Photon (ADRP)
This step occurs each time a detection process of the trackable related to that spatial anchor needs to be launched.
Typically, it occurs:
-	At the beginning, after the spatial anchor creation and after a potential first adjustment of the AR anchoring process
-	When the trackable associated with that spatial anchor was not visible and becomes visible again.
To measure the ADRP with the Khronos OpenXR API [22]:
-	The ADRP start time which corresponds to the time of the spatial anchor pose request leading to the detection of the trackable. The xrLocateSpace() function is used to request a spatial anchor pose at a current or predicted time. The flags XrSpaceLocationFlags in the XrSpaceLocation structure returned by the xrLocateSpace() function are used to check the trackable detection state:
a)	The detection of the trackable corresponds to ((XR_SPACE_LOCATION_POSITION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_POSITION_TRACKED_BIT Flags are changed from unset to set)) AND ((XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT Flags are changed from unset to set))
-	The ADRP end time which corresponds to the actual display time for that frame.
The measurement procedure of the ADRP for UE device with local spatial computing is provided in Figure 6.3.8.5-1.

Figure 6.3.8.5‑1: The procedure for measuring the ADRP with local spatial computing
1)	The Scene Graph Handler requests the pose of the spatial anchor to the XR Spatial Compute function. The UE records the anchor-pose-request-time.
2)	The XR Spatial Computing function detects of the trackable related to that spatial anchor.
3)	The XR Spatial Computing function sends the spatial anchor pose to the Scene Graph Handler. The UE records the anchor-detection-time.
4)	The UE updates the scene by enabling the virtual assets related to that spatial anchor and by placing them with respect to the detected spatial anchor pose.
5)	The UE records the render-start-time when the updated scene is ready to be rendered.
6)	The UE renders the scene with the predicted pose related to the predicted display time provided by the XR Runtime.
7)	The UE records the render-end-time when the rendering task is done. The rendered frame is provided to the XR Runtime.
8)	The XR Runtime performs further post-processing such as late pose correction and final composition.
9)	The rendered frame is presented to the display. The actual display time is called T2.actual.
Based on this ADRP measurement procedure, the UE can measure the ADRP as follows:
ADRP for that spatial anchor = T2.actual – anchor-pose-request-time.
NOTE:	The schema will be revised to match the new definition of anchor.
[bookmark: _Toc143815976][bookmark: _Toc157702449][bookmark: _Toc157769030][bookmark: _Toc157770369][bookmark: _Toc157777720]6.3.8.6	Trackable Untracked Ratio QoE
[bookmark: _Toc157777721]6.3.8.6.1	General
This metric corresponds to the ratio between the number of frames where the trackable is not tracked and the total number of frames during the observation period in which no detection process is launched.
The tracking is lost, so untracked, when the position and/or orientation are no more actively tracked. The XR runtimes may continue to provide valid but untracked position and/or orientation values that are inferred or last-known, so long as it’s still meaningful for the application to use that position and/or orientation.
The Trackable Untracked Ratio (TUR) is measured per trackable, meaning there are as many TUR metrics as trackables. Therefore, a spatial anchor based on several trackables is associated with as many TUR metrics as trackables. All spatial anchors dependent on a trackable are associated with that trackable’s TUR metric.
[bookmark: _Toc143815977][bookmark: _Toc157702450][bookmark: _Toc157769031][bookmark: _Toc157770370][bookmark: _Toc157777722]6.3.8.6.2	Measurement of the Trackable Untracked Ratio (TUR)
This metric is measured at the interface between the XR runtime and the scene manager. It corresponds to the OP-1 Observation Point.
This measurement occurs after the trackable detection. The measurement parameters (e.g., periodicity, observation period) of the TUR metrics have been defined during the configuration step.
Two counters are used to measure the Trackables Untracked Ratio:
-	Nf: length in number of frames of the observation period in which no detection process is launched.
-	Nu: Number of untracked in the observation period. This counter is incremented for each rendered frame where the trackable is not tracked.
The Khronos OpenXR API [22] may be used to know the tracked/untracked status of a trackable with the xrLocateSpace() function. The flags XrSpaceLocationFlags in the XrSpaceLocation structure returned by the xrLocateSpace() function are used to know the tracked/untracked status of a trackable:
-	The trackable is said as untracked and Nu is incremented when the tracking of the position or orientation are lost but the XR runtime still provides valid inferred or last-known position and orientation:
((XR_SPACE_LOCATION_POSITION_TRACKED_BIT Flag is unset) OR (XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT Flag is unset)) AND (XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags is set)
-	The measurement is aborted when the XR runtime stops to provide valid position or orientation:
(XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags toggles from set to unset) OR (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags toggles from set to unset)
-	New observation period is launched when the XR runtime starts to provide valid position and orientation:
(XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags toggles from unset to set) AND (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags toggles from unset to set)
Then the TUR for that trackable = Nu / Nf.
[bookmark: _Toc157702451][bookmark: _Toc157769032][bookmark: _Toc157770371][bookmark: _Toc157777723]6.3.9	Pose Correction Error
[bookmark: _Toc157702452][bookmark: _Toc157769033][bookmark: _Toc157770372][bookmark: _Toc157777724]6.3.9.1	Background
There may be a mismatch between the pose used for rendering a frame and the actual pose at the time the frame is displayed. The device runtime may leverage reprojection techniques to align the rendered image with the actual pose at display time. Reprojection errors may introduce various artifacts which may adversely impact the QoE. If a reference frame rendered for the actual pose at the time of display could be obtained, reprojection or pose correction errors could be detected and measured by comparing the reprojected frame with that rendered frame. Generally, in an XR session it is not feasible to obtain such reference frames. Offline calibration may not be able to take into account diverse operating conditions and content.
[bookmark: _Toc157702453][bookmark: _Toc157769034][bookmark: _Toc157770373][bookmark: _Toc157777725]6.3.9.2	Image similarity between reprojected frame and rendered frame
Comparing the reprojected frame, potentially captured at OP-1 and the rendered frame, captured at OP-4 may capture the cumulative effect of pose prediction errors and reprojection errors. Image similarity metrics like Structural Similarity Index (SSIM), Structural Dissimilarity index (DSSIM), Peak Signal to Noise Ration (PSNR), Mean Square Error (MSE) may be used to optimize QoE in conjunction with metrics like pose prediction accuracy and motion-to-render-to-photon latency. As a very simplified example, given low pose prediction error, a high dissimilarity between a rendered frame and its reprojected counterpart may mean that the reprojection was sub-optimal. Conversely, given high pose-prediction error, a high dissimilarity between a rendered frame and its reprojected counterpart may imply good reprojection performance. More insights may be gleaned by, for example, inspecting the orientation and position prediction errors separately. For example, if there is high position prediction error, high image similarity between the rendered and reprojected frames may indicate low efficacy of pose correction as two frames captured from spatially different positions in a 3D scene would generally capture different content. Similarly with low position prediction error and an average orientation prediction error of a few degrees, effective pose correction should result in a high image similarity between the rendered and reprojected frame.
Analysis of image similarity metrics and other QoE metrics aggregated over time may also provide useful information for QoE optimization.
[bookmark: _Toc119408434][bookmark: _Toc128059562][bookmark: _Toc143815978][bookmark: _Toc157702454][bookmark: _Toc157769035][bookmark: _Toc157770374][bookmark: _Toc157777726]7	Other QoE metrics and collaborations with other 3GPP groups
[bookmark: _Toc143815979][bookmark: _Toc157702455][bookmark: _Toc157769036][bookmark: _Toc157770375][bookmark: _Toc157777727]7.1	NWDAF based metrics configuration and collection
The Network Data Analytics Function (NWDAF) is a core network function performing
-	Inference, derives analytics information (i.e. derives statistics and/or predictions based on Analytics Consumer request) and analytics results exposure.
-	Training Machine Learning (ML) models and new training services (e.g. providing trained ML model) exposure.
The analytics information is either statistical information of the past events, or predictive information. The NWDAF can collect the service experience, e.g. subscribing to the DC-AF for the QoE metrics. Based on the collected QoE metrics, the NWDAF may provide the estimation of the service experience for a specific application, a specific network slice or a specific UE as defined in clause 6.4 of TS 23.288 [25]. The AR/MR QoE metrics in present document also can be used by NWDAF based metrics configuration and collection.
[bookmark: _Toc143815980][bookmark: _Toc157702456][bookmark: _Toc157769037][bookmark: _Toc157770376][bookmark: _Toc157777728]7.2	RRC based metrics configuration and collection
The RRC based QoE metrics configuration and reporting is also named as the QoE Measurement Collection (QMC) functionality. In this case, the OAM provides the QoE configuration to the RAN and then the RAN sends the QoE configuration to the UE via specific RRC messages for UMTS [26], LTE [27] and NR [28] over the control plane. Similarly, the UE collects and reports the QoE metrics via the specific RRC messages to RAN and RAN further sends the QoE reports to the OAM for service experience evaluation, as shown below.

Figure 7.2-1: Example signalling diagram for NR
The service types supported by the QMC functionality include the DASH, VR and the MTSI [29]. According to the AR/MR QoE metrics definition, the QMC functionality may need to support the collection and reporting of AR/MR QoE by existing mechanism. The AR/MR QoE metrics study in the present document will not impact the QMC functionality.
[bookmark: _Toc143815981][bookmark: _Toc157702457][bookmark: _Toc157769038][bookmark: _Toc157770377][bookmark: _Toc157777729]7.3	Summary
Based on the analysis above, both the NWDAF based and the RRC based QoE metrics configuration and collection are not in scope of this AR/MR QoE study.
[bookmark: _Toc157702458][bookmark: _Toc157769039][bookmark: _Toc157770378][bookmark: _Toc157777730]8	Evaluations on AR/MR QoE metrics
In clause 6.3, three types of QoE metrics are introduced, i.e. delay related metrics, Presentence and immersiveness related metrics and device related metrics. In order to make sure the QoE metrics are measurable with real impact to the user experience, the evaluations are proposed based on the existing implementable APIs (e.g. openXR APIs) for the AR/MR QoE metrics specified in in the technical report.
-	Delay related metrics
-	Registration latency indicates the time from the application is started/activated until the 3D reconstructed map is obtained, which is defined as the during time from when the time application starts to call the xrEnumerateApiLayerProperties function to obtain a list of available API layers, to the time when the application obtains the viewer pose and projection parameters with using xrLocateViews function defined in openXR [22].
-	Scene startup latency and Interaction latency indicates the time from the application is started until the remote initial AR scene is displayed in the right place of the reconstructed 3D space, which is defined as the predicated display time of the rendered frame in the swapchain minus the time when the application starts to call the xrEnumerateApiLayerProperties function to obtain a list of available API layers.
-	One-way delay and RTT consists of the uplink one-way delay, the downlink one-way delay, or the RTT. This metric has been captured in the TS 26.119.
-	Presence and immersiveness related metrics
-	Tracking pose prediction error indicates the deviation of the relative pose in the real world and the predicted pose, which can be obtained by calculating the deviation of the predicated spaces locations and real space locations. The predicated spaces locations can be obtained with calling the xrLocateSpace function defined in openXR, while the actual location may not be known via the openXR API.
-	Pose error and time error indicates the difference between the pose used for rendering and the pose at the actual display time and how much the predicted display time is off from the actual display time separately. Figure 6.3.6.3-1 shows this metric can be obtained with xrLocateViews and xrWaitFrame function defined in openXR.
-	The definition of pose correction error needs further clarification before the implementability is evaluated for this metric.
-	Spatial Anchors and Trackables includes 3 QoE metrics, i.e. ACD, ADRP, and TUR.
1)	ACD indicates the delay between the time of the spatial anchor creation request and the time when the related XR space is created. The ACD start time corresponds to the time that calling xrCreateReferenceSpace, xrCreateActionSpace, xrCreateSpatialAnchorFB, xrCreateSpatialAnchorMSFT function or xrCreateSpatialAnchorFromPersistedNameMSFT function. The ACD end time corresponds to the time when receiving a XR_SUCCESS returned value.
2)	ADRP indicates the delay between the time of the spatial anchor pose request leading to the detection of the trackable and the time when the virtual content is displayed in the user’s real environment. The ADRP start time corresponds to the time that calling xrLocateSpace function defined in the openXR. The ADRP end time corresponds to the actual display time for that frame.
3)	The definition of TUR needs further clarification before the implementability is evaluated for this metric.
-	Device related QoE metrics
-	Resolution can be indicated by the camera information, which is derived from XR_OCULUS_external_camera API defined in openXR.
-	EyetrackingCapability can be indicated from XrSystemEyeTrackingPropertiesFB using xrGetSystemProperties function defined in openXR.
-	HandtrackingCapability can be indicated from XrSystemHandTrackingPropertiesEXT using xrGetSystemProperties function defined in openXR.
-	SpatialmappingCapability can be indicated from XrSystemSpatialEntityPropertiesFB using xrGetSystemProperties function defined in openXR.
When considering the benefits of the above QoE metrics that are measurable based on the OpenXR implementation, some of them are easily observed to have impacts on users’ experience, which are listed as below:
-	Delay related metrics
-	Registration latency
-	Scene startup latency and Interaction latency
-	One-way delay and RTT
-	Presence and immersiveness related metrics
-	Pose error and time error
-	Spatial Anchors and Trackables
	-	ACD
	-	ADRP
-	Device related QoE metrics
The impacts of the pose correction error, TUR metric on user experience need to be further evaluated.
[bookmark: _Toc119408435][bookmark: _Toc128059563][bookmark: _Toc143815982][bookmark: _Toc157702459][bookmark: _Toc157769040][bookmark: _Toc157770379][bookmark: _Toc157777731]9	Conclusions and Recommendations
In this TR, the available information from other organizations (e.g. ITU-T, IEEE, MPEG group) are collected, and the relevant observed information based on the AR/MR QoE reference model/observation points are discussed and presented based on OpenXR specification [22]. Based on the information observed in the observation points, many AR/MR QoE metrics are introduced, e.g. registration latency, Pose error and time error, etc. All AR/MR QoE metrics introduced in this study are measurable and some of them are implementable based on the OpenXR implementation. For the AR/MR QoE metrics introduced in this study, they may be used by normative work in order to perform the AR/MR QoE measurements and reporting for subsequent optimizations, e.g. reporting to the 5G network for network optimization.
Based on the details in the above, the following next step is proposed as below:
If the value of “Normative work proposed” column in below Table 9-1 is “yes”, then it is proposed to specify the corresponding AR/MR QoE metrics in TS 26.119. The column also adds a reference in the report, where this implementability and relation to the impact on the user experience is provided. Otherwise the implementability and the impact on the user experience need further studies.
Table 9-1: Identify the implementability and impact to user experience of QoE metrics
	QoE metrics
	Metrics definition
	Implementable, e.g. based on openXR
	Impact to user experience
	Normative work proposed
	Comment

	Registration latency
	see clause 6.3.1
	yes
see clause 8
	yes
see clause 8
	Y
	

	Scene startup latency and Interaction latency
	see clause 6.3.2
	yes
see clause 8
	yes
see clause 8
	Y
	

	Pose error and time error
	see clause 6.3.5.1
	yes
see clause 6.3.5.3
	yes
see clause 8
	Y
	

	ACD
	see clause 6.3.7.4
	yes
see clause 6.3.7.4.1
	yes
see clause 8
	Y
	Further details to be provided before normative work.

	ADRP
	see clause 6.3.7.5
	yes
see clause 6.3.7.5.1
	yes
see clause 8
	Y
	Further details to be provided before normative work.

	Device related QoE metrics
	see clause 6.3.6.1
	yes
see clause 6.3.6.1 and 6.2.1.2
	yes
see clause 8
	Y
	

	Tracking pose prediction error
	see clause 6.3.3
	For further study
	For further study
	For further study
	

	Pose correction error
	see clause 6.3.8.1
	For further study
	For further study
	For further study
	

	TUR
	see clause 6.3.7.6
	For further study
	For further study
	For further study
	

The metrics may be reported for QoE proposal including QoE metrics considered to have the need for normative work in the above table, as well as one way delay RTT.
[bookmark: tsgNames][bookmark: _Toc119408437][bookmark: _Toc128059565][bookmark: _Toc143815984][bookmark: _Toc157702460][bookmark: _Toc157769041][bookmark: _Toc157770380][bookmark: _Toc157777732][bookmark: historyclause]
Annex <X> (informative):
Change history
	Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	2022-08
	SA4#120e
	S4-221164
	
	
	
	Initial version
	0.0.1

	2022-08
	SA4#120e
	S4-221165
	
	
	
	S4-221163: Collect information from ITU-T
	0.1.0

	2022-11
	SA4#121
	S4-221564
	
	
	
	Add QoE-related activity in the external standardizations
	0.2.0

	2023-02
	SA4#122
	S4-230294
	
	
	
	Add QoE information collection from MPEG, relevant VR metrics, basic architecture and observation points.
	0.3.0

	2023-04
	SA4#123-e
	S4-230699
	
	
	
	Clarify the parameters that can be monitored by the observation point 1. Identify some QoE metrics. Replace the figures with the original figure or figures in visio format. Change the equations to mathtype format.
	0.4.0

	2023-05
	SA4#124
	S4-230987
	
	
	
	Delete the reference to MeCar PD and S4-230393;
Add the pose prediction parameters that can be observed in OP1;
Define the Pose error and time error QoE metric, Tracking position prediction error, device related QoE metric, and one-way delay RTT metric.
	0.5.0

	2023-08
	SA4#125
	S4-231539
	
	
	
	Remove the Editor’s Note in clause 4.
Revise “Tracking position prediction parameters” to “Tracking pose prediction parameters”, and update “Tracking position prediction error” metric to “Tracking pose prediction error”.
Add the Eye gaze pose prediction parameters” that may be observed via OP1.
Remove the Editor’s Note in clause 6.2.1.8.
Update the Editor’s Note in clause 6.2.2, 6.2.3 and 6.2.4 by indicating the parameters tha may be monitored by OP2~OP4 depends on the progress of MeCar WI.
Remove the Editor’s note in clause 6.,3.2 by clarifying Render to photon time.
Remove the Editor’s note in clause 6.3.5 by defining how to calculate the Viewer Pose Prediction Error metric.
Update the Pose error and time error measurement procedure.
Add the Spatial Anchors and Trackables related QoE metrics, which include Anchor Creation Delay (ACD) metric, Anchor Detection-to-Render-to-Photon (ADRP) metric, and Anchor Untracked Ratio (AUR) metric.
Remove the subjective assessment clause.
Add some clarification that both the NWDAF based and the RRC based QoE metrics configuration and collection are not in scope of this AR/MR QoE study.
Correct some typo error and add an Editor’s note in clause 6.3.7.6.
	0.7.1

	2023-11
	SA4#126
	S4-231941
	
	
	
	Integrate three pCRs (S4-231675, S4-231794, S4-232032) in this TR.
Update the Figure 6.2-1: AR/MR QoE reference model and Metrics Observation Points, and exchange the definitions of OP3 and OP4.
Adding description for OP2, OP3 and OP4.
Editorial change for the title of section 7.1.
Address editor’s notes on the Anchor Untracked Ratio QoE.
Introduce Pose Correction Error metric.
	0.8.0

	2023-12
	SA#102
	SP-231297
	
	
	
	Version 1.0.0 created by MCC
	1.0.0

	2024-01
	SA4#127
	S4-240448
	
	
	
	Integrate five pCRs (S4-240039, S4-240240, S4-240447, S4-240451, S4-240452) in this TR, mainly resolve the Editor’s Note in clause 6.2, 6.3, and make some editorial changes, e.g. change the figure format to visio format, Other changes include updating trackable and anchor definitions, renaming Anchor Untracked Ratio to Trackable Untracked Ratio and fixe the mixing up between trackable and anchor. Adding the evaluation and conclusion parts for the introduced QoE metrics in this TR.
	1.1.0

	2024-01
	SA4#127
	S4-240503
	
	
	
	Align the references to TS 26.119.
Add the general clause.
	1.1.1

	2024-01
	SA4#127
	S4-240510
	
	
	
	Add the general clause for clause 6.3.8.4, 6.3.8.5, 6.3.8.6
	1.1.2

3GPP
image2.png
=

A GLOBAL INITIATIVE

image3.emf
AR QoE

Quality of Presentation Quality of Integration Quality of Interaction

Virtual Content

Quality

Video Quality

Audio Quality

Network

Transmission

Display Hardware

.....

Recognition

Tracking

Geometry

Consistency

Illumination

Consistency

.....

Hand Gesture

Speech

Network

Server

Body Posture

Head Movement

.....

Microsoft_Visio_Drawing.vsdx
AR QoE
Quality of Presentation
Quality of Integration
Quality of Interaction
Virtual Content Quality
Video Quality
Audio Quality
Network Transmission
Display Hardware
.....
Recognition
Tracking
Geometry Consistency
Illumination Consistency
.....
Hand Gesture
Speech
Network
Server
Body Posture
Head Movement
.....

image4.emf

ω!)

image5.png
(a) Stationary

image6.png
(b) Slow diagonal motion

image7.png
T, . T, . T,

(c) Fast diagonal motion

image8.png
(d) Faster horizontal motion

image9.emf

𝑣!"#$%"

image10.emf
XR Baseline Client

User input

Media Access Function

XR Runtime

Cameras

Sensor

Displays

Presentation

Engine

Composition

Runtime

functions

(tracking,

SLAM)

Visual Renderer

Audio Renderer

Audio

Subsystem

Speakers

Scene

Manager

Video Codecs

Audio Codecs

Metadata Formats

XR Source

Management

XR Application

Actuators

IF-1a

IF-3

IF-9

IF-8

Content Delivery Protocols

Media Session

Handler

IF-5

IF-6 IF-2

IF-7

Metrics collection &

reporting

5G System (Uu)

Microphones

API

-

1

API-2

API-7

API-6

IF-10

IF-1b

IF-1c

IF-4

API-6

IF-7

IF-6

OP-2

OP-3

OP-4

OP-1

Microsoft_Visio_Drawing1.vsdx
XR Baseline Client
User input

Media Access Function
XR Runtime
Cameras
Sensor
Displays
Presentation Engine
Composition
Runtime functions (tracking, SLAM)
Visual Renderer
Audio Renderer
Audio Subsystem
Speakers
Scene Manager
Video Codecs
Audio Codecs
Metadata Formats
XR Source Management
XR Application
Actuators
IF-1a
IF-3
IF-9
IF-8
Content Delivery Protocols
Media Session Handler
IF-5
IF-6
IF-2
IF-7
Metrics collection & reporting
5G System (Uu)
Microphones
API-1
API-2
API-7
API-6
IF-10
IF-1b
IF-1c
IF-4
API-6
IF-7
IF-6
OP-2
OP-3
OP-4
OP-1

image11.emf
Media Access

function

Basic AR/MR Application

AR Runtime on Device

AR Runtime API

Sensors

Cameras

Microphones

XR Spatial

Description

Server

XR Spatial

Description

Cache

Spatial Description Contribution/Updates

(personalized and shared)

XR Spatial

Compute

Functions

XR Spatial Description Streaming/Download

Contextual Requests

Microsoft_Visio_Drawing2.vsdx
Media Access function
Basic AR/MR Application
AR Runtime on Device
AR Runtime API
Sensors
Cameras
Microphones
XR Spatial Description
Server
XR Spatial Description
Cache
Spatial Description Contribution/Updates
(personalized and shared)

XR Spatial Compute
Functions
XR Spatial Description Streaming/Download

Contextual Requests

image12.emf
5G STAR UE

Media Access Functions

Media Client

Sensors Cameras

Display

Speakers

AR/MR Application

User Input

AR Scene Manager

AR Runtime

M8

Immersive

Media Decoders

Immersive

Audio

Renderer

Soundfield

Mapping

Content

Delivery

Media Session Handler

5

G System

(

Uu

)

Pose

Correction

Immersive

Visual

Renderer

Compositor

Scene Graph Handler

2D Codecs

XR Spatial

Compute

AR Runtime API

5G System

(Server and

Compute)

AR/MR

Application

Provider

Scene Description

Delivery

Media AF

5

G System

(

gNB

)

Media AS

AR

Scene

AR

Functions

M4

M5

XR Spatial Description

Delivery

Microsoft_Visio_Drawing3.vsdx
5G STAR UE
Media Access Functions
Media Client
Sensors
Cameras
Display
Speakers
AR/MR Application
User Input
AR Scene Manager
AR Runtime
M8
Immersive
Media Decoders
Immersive Audio
Renderer
Soundfield Mapping
Content  Delivery
Media Session Handler
5G System
(Uu)
Pose
Correction
Immersive Visual
Renderer
Compositor
Scene Graph Handler
2D Codecs
XR Spatial Compute
AR Runtime API
5G System
(Server and Compute)
AR/MR
Application
Provider
Scene Description
Delivery
Media AF
5G System
(gNB)
Media AS
AR Scene
AR Functions
M4
M5
XR Spatial Description Delivery

image13.wmf
X

R

R

u

n

t

i

m

e

X

R

A

p

p

l

i

c

a

t

i

o

n

E

d

g

e

A

p

p

l

i

c

a

t

i

o

n

S

e

r

v

e

r

1

:

P

r

e

d

i

c

t

R

T

T

2

:

q

u

e

r

y

f

o

r

t

h

e

n

e

x

t

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

3

:

r

e

t

u

r

n

t

h

e

n

e

x

t

d

i

p

l

a

y

t

i

m

e

4

:

p

r

e

d

i

c

t

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

b

a

s

e

d

o

n

R

T

T

a

n

d

f

r

a

m

e

r

a

t

e

5

:

q

u

e

r

y

f

o

r

a

p

r

e

d

i

c

t

e

d

p

o

s

e

a

t

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

6

:

p

o

s

e

p

r

e

d

i

c

t

i

o

n

,

c

o

m

p

l

e

t

e

d

a

t

(

T

1

)

7

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

7

b

i

s

:

C

h

e

c

k

t

h

e

s

t

a

t

u

s

f

l

a

g

s

i

n

f

o

r

m

a

t

t

i

o

n

(

F

.

p

r

e

d

i

c

t

e

d

1

)

8

:

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

9

:

r

e

n

d

e

r

f

o

r

p

r

e

d

i

c

t

e

d

p

o

s

e

(

P

.

p

r

e

d

i

c

t

e

d

1

)

1

0

:

r

e

t

u

r

n

r

e

n

d

e

r

e

d

f

r

a

m

e

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

1

1

:

s

e

n

d

r

e

n

d

e

r

e

d

f

r

a

m

e

t

o

s

w

a

p

c

h

a

i

n

,

e

.

g

.

,

v

i

a

x

r

R

e

l

e

a

s

e

S

w

a

p

c

h

a

i

n

I

m

a

g

e

(

)

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

E

n

d

F

r

a

m

e

(

)

1

2

:

q

u

e

r

y

f

o

r

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

1

3

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

2

)

1

4

:

r

e

p

r

o

j

e

c

t

i

o

n

1

5

:

q

u

e

r

y

f

o

r

t

h

e

p

o

s

e

a

t

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

T

2

.

p

r

e

d

i

c

t

e

d

2

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

1

6

:

p

o

s

e

e

s

t

i

m

a

t

i

o

n

1

7

:

r

e

t

u

r

n

a

p

o

s

e

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

2

)

1

8

:

C

o

m

p

u

t

e

t

i

m

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

-

T

2

.

p

r

e

d

i

c

t

e

d

2

)

,

C

o

m

p

u

t

e

p

o

s

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

1

-

P

.

p

r

e

d

i

c

t

e

d

2

)

a

c

c

o

r

d

i

n

g

t

o

t

h

e

c

o

n

f

i

d

e

n

c

e

s

t

a

t

u

s

.

a

c

t

u

a

l

d

i

s

p

l

a

y

t

i

m

e

i

s

T

2

.

a

c

t

u

a

l

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

8

.

2

oleObject1.bin

image14.emf
Now

Next predicted display time

1/FrameRate

Time

RTT

1/FrameRate

T2.predicted1

Now

display time

Time

T2.predicted2 display time

display time

At time of step 4:

At time of step 13:

Microsoft_Visio_Drawing4.vsdx
Now
Next predicted display time
1/FrameRate
Time
RTT
1/FrameRate
T2.predicted1
Now
display time
Time
T2.predicted2
display time
display time
At time of step 4:
At time of step 13:

image15.png

image16.emf
XR

Runtime

Scene Graph

Handler

UE

XR spatial

computing

XR Server

1. Configuration of the anchor creation QoE

3. Create the spatial anchor

5. Receive the

acknowledgment

anchor-

creation-

request-

time

anchor-

creation-

start-

time

anchor-

creation-

end-Rx-

time

anchor-

creation-

end-time

2. Request the spatial anchor creation

4. Acknowledge of the spatial anchor creation

Roundtrip Anchor Creation Delay (Roundtrip ACD)

Microsoft_Visio_Drawing5.vsdx
XR
Runtime
Scene Graph
Handler
UE
XR spatial computing
XR Server

1. Configuration of the anchor creation QoE
3. Create the spatial anchor
5. Receive the acknowledgment
anchor-creation-request-time
anchor-creation-start-
time
anchor-creation-end-Rx-time
anchor-creation-end-time
2. Request the spatial anchor creation
4. Acknowledge of the spatial anchor creation
Roundtrip Anchor Creation Delay (Roundtrip ACD)

image17.emf
Display

Composition

& warping

XR spatial

computing

Visual

renderer

Scene Graph

Handler

UE

XR Runtime

2. Detect trackable related

to the spatial anchor

1. Request spatial anchor pose

3. Spatial anchor pose

6. Render the scene

4. Update the scene

5. Updated scene

7. Rendered frame

8. Post process

9. Presentation

Anchor Dection to Render to Photon (ADRP)

anchor-

detection-

time

render-

start-

time

render-

end-time

Actual display-

time

T2.actual

anchor-pose-

request-time

Microsoft_Visio_Drawing6.vsdx
Display
Composition
& warping
XR spatial
computing
Visual
renderer
Scene Graph
Handler
UE
XR Runtime

2. Detect trackable related to the spatial anchor
1. Request spatial anchor pose
3. Spatial anchor pose
6. Render the scene
4. Update the scene
5. Updated scene
7. Rendered frame
8. Post process
9. Presentation
Anchor Dection to Render to Photon (ADRP)
anchor-detection-time
render-start-
time
render-end-time
Actual display-time
T2.actual
anchor-pose-request-time

image18.wmf
g

N

B

U

E

(

Q

M

C

H

a

n

d

l

e

r

)

U

E

(

D

A

S

H

H

a

n

d

l

e

r

)

C

a

p

a

b

i

l

i

t

y

=

q

o

e

-

S

t

r

e

a

m

i

n

g

-

M

e

a

s

R

e

p

o

r

t

U

E

s

t

a

r

t

s

Q

o

E

c

o

n

f

i

g

f

r

o

m

O

A

M

A

p

p

L

a

y

e

r

M

e

a

s

C

o

n

f

i

g

X

M

L

Q

o

E

C

o

n

f

i

g

N

e

w

Q

o

E

C

o

n

f

i

g

f

r

o

m

n

e

t

w

o

r

k

s

i

d

e

X

M

L

Q

o

E

R

e

p

o

r

t

M

e

a

s

u

r

e

m

e

n

t

R

e

p

o

r

t

A

p

p

L

a

y

e

r

Q

o

E

R

e

p

o

r

t

t

o

Q

A

M

o

r

Q

o

E

S

e

r

v

e

r

Q

o

E

m

e

t

r

i

c

r

e

p

o

r

t

r

e

a

d

y

X

M

L

Q

o

E

R

e

p

o

r

t

M

e

a

s

u

r

e

m

e

n

t

R

e

p

o

r

t

A

p

p

L

a

y

e

r

Q

o

E

R

e

p

o

r

t

t

o

Q

A

M

o

r

Q

o

E

S

e

r

v

e

r

Q

o

E

m

e

t

r

i

c

r

e

p

o

r

t

r

e

a

d

y

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

6

.

4

.

7

oleObject2.bin

image1.png
~

5G

