[bookmark: bmS4-0-e_(AH)_Video_SW--2023-10-10]3GPP TSG SA WG4#126	S4-231810 Revision S4aV230062
Chicago, USA, 13st -17th of November 2023

[bookmark: _Hlk126577385][bookmark: _Toc504713888]Source: 	 Interdigital Finland Oy
Title: 	[FS_AI4Media] Split inferencing scenario update
Agenda item: 	9.6
Document for:	Discussion and Agreement

Discussion

This contribution updates our previous split inferencing scenario by generalizing hand gesture detection to objects detection. The motivation to change is primarily due to the lack of annotated video test sets for hand gestures provided with an appropriate license agreement. Second, a reference video test SFU-HW-Objects was already mentioned in 5G-MAG, also referenced in MPEG and proposed by another proponent for object detection, using the retinanet FPN backbone.
We refocus our split inferencing scenario from a specific hand gesture recognition to generic object detection making use of existing 5G-MAG annotated video test sets.
We propose to evaluate the “Single Shot MultiBox Detector model for object detection” SSD300 model https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/ from Nvidia.
We include some early results in attachment for an image of an SFU-HW-Objects video (FourPeople_1280x720_60.mp4):
· Timings and intermediate data results from a test where the first inference part runs in a CPU and the second part runs in a GPU (excel attached file)
· Result (label, Box, Score) detection images: Ground truth, GPU anchor, CPU Anchor model, split model.
Following the comments received during the Video AH telco, we update text of our scenario to the existing object detection and labeling scenario clause §10.3.
2 Proposed changes

--- Begin changes --
10.3	Split inferencing for object detection and labeling
10.3.1	Motivation and use case relevance
Object detection and tracking finds prevalent applications in today’s world. These applications range from surveillance, image-based gallery and web search, media annotation, autonomous driving and more.
TR 22.874 section 5.2 describes these scenarios where deep learning-based object detection and tracking is performed.
10.3.2	Description of the scenario
In this scenario, a pre-trained model is used to detect objects in a video sequence. The output of the inference may consist of the following:
· Detected object labels per image
· Bounding boxes for the detected objects
· Masks describing pixel-accurate location of the object

In this scenario, it is assumed that the end device is resource constrained and may not have sufficient memory/processing capabilities, or battery power to perform the object detection task.
It is proposed that by splitting the model into 2 parts, where one part is inferred in the device and the other part is inferred in the network, the device will be able to perform the inference within its capabilities.
Two configurations are possible, based on the exact use cases:
· The image/video is captured on the device and inference is run on the image/video to produce feature maps that are then sent to the network for further inference. This step may be performed to protect user privacy. The device will then receive the results once, the inference is performed by the network. An example of such a use case is image/video-based web search, where the user captures an image/video and receives web search results. Another such use case is where the user captures an image/video and attempts to remove a specific object from the image/video.
· The image/video is provided by a content provider and processed by the network to enable the user to perform different tasks. The video is processed by a deep network to produce distilled features, which are then used by the device to perform task-specific inference. Different users viewing the same image/video may run different tasks. An example of such a use case is a sports game streaming service, where different users may have different interests in the game. One user may configure their application to track and annotate the players of their favorite team. Another user may be interested in extracting statistics about the ball. The core of the network produces a set of features that can be used to perform both tasks, where each user will run the model head specific to their selected task.
10.3.3	Supporting companies and 3GPP members
· Qualcomm, Interdigital.

10.3.4	Anchor AI/ML DNN model(s) for the scenario
The evaluation using the PyTorch framework includes several DNN models belonging to the table below:
· Retinanet
· The SSD300 model from Nvidia [1].
	Model
	Size (MB)
	No. of parameters

	Retinanet
	TBC
	TBC

	SSD300 (ResNet-50)
	89 MB
	23 million

10.3.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.

Figure 10.3.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network.
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.X.1.
The anchor model used is shown in Table 10.3.4-1.
Test network latencies are not considered to ensure scenario reproducibility.
Multiple model split configurations are considered as described in clause 10.2.6.
10.3.6	Test configuration factors, constraints, and settings
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions.

.
Figure 10.3.6-1 Testbed configuration

10.3.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network.

10.3.83	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario.
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt-ml-ai-evaluation-framework (github.com)
Two models are evaluated with different scripts adapted for each following model.
10.3.4.1	FPN/RPN retinanet scripts
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location

· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results.
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
 dataset_name Dataset name
 model_part1_location Path to 1st part of the ONNX Model
 model_part2_location Path to 2nd part of the ONNX Model
optional arguments:
 -h, --help show this help message and exit
 --mask Indicates if output of model is a Mask and needs to be converted

· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
 video_name The name of the video sequence, e.g. Kimono.
optional arguments:
 -h, --help show this help message and exit
 --ds DATASET_NAME Name of the dataset. Defaults to SFU-HW-Objects.
 --threshold THRESHOLD
 The threshold for the prediction confidence to consider the prediction.

· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
 video_fn Path to the video file
 annotation_path Path to the folder with annotations/predictions
optional arguments:
 -h, --help show this help message and exit
 --sleep_time SLEEP_TIME
 Specifies the inteval between the display of 2 consecutive frames

Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
The following screenshots show examples of the object detection predictions and results.
	[image: Several people walking in a mall

Description automatically generated]
	[image: A child in a room with presents and a tree

Description automatically generated]

	[image: A group of people walking around a patio

Description automatically generated]
	[image: A group of people crossing a street

Description automatically generated]

10.3.4.2	 ssd300 scripts
· convert_ssd300_to_onnx.py
This script converts the pytorch ssd_300 model to ONNX.
Usage: python convert_ssd300model.py <output_path_to_directory>
Output: <output_path_to_directory>/ssd_resnet.onnx
Example: From rt-ml-ai-evaluation-framework directory :
python scripts/objectdetection/ssd300/convert_ssd300model.py ./models

· split_onnx.py
This script splits an ONNX file at identified bottlenecks points.
Usage: python split_onnx.py <path_to_onnx file> <split_point_name> <split_flag>
split_flag :’before’ to split before the split_point_name , ‘after’ to split after the split_point_name

Example: python split_onnx.py ./models/ssd_resnet.onnx /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_2/Relu before

Output : First and second part of the split in “./models”
Special character “/” in split_point_name is replaced with a “_”.

Output example: /models/ssd_resnet_Part_I__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx
./models/ssd_resnet_Part_II__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx

· infer_onnx.py
This script is used to run the inference of ssd300 model on an image or on a video.
It infers the first part and the second part of the model sequentially in GPU or in CPU.
The predictions are saved with the format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score], compatible with the scripts visualize.py and calc_map.py
Intermediate data are saved in numpy binary format .npz. s
The visual prediction results, the image with the boxes, are saved with the .png format. For video, only the first visual prediction is saved.

Usage: python infer_onnx.py [-h] [-c PATH_TO_CONFIG] [-s INPUT_SOURCE] [-loop LOOP] [-partI PARTI] [-partII PARTII] [-anchor ANCHOR] [-results_filename RESULTS_FILENAME] -results_dir RESULTS_DIR [-no_CPU_anchor] [-no_GPU_anchor] [-ref_split REF_SPLIT] [-no_split]
	
Help:
infer_onnx is a script that run the inference of a ssd resnet model, full model or split.
	Options:
 -h, --help show this help message and exit
 -c PATH_TO_CONFIG, --path_to_config PATH_TO_CONFIG Path to config file
 -s INPUT_SOURCE, --input_source INPUT_SOURCE Path to input source
 -loop LOOP loop inference
 -partI PARTI Path to model part I
 -partII PARTII Path to model part II
 -anchor ANCHOR Path to model anchor
-results_filename RESULTS_FILENAME Path to results file -results_dir RESULTS_DIR	Path to results directory hosting predictions
 -no_CPU_anchor no inference with CPU on model anchor
 -no_GPU_anchor no inference with GPU on model anchor
 -ref_split REF_SPLIT reference split label
 -no_split no split (just anchor for instance)

--- end changes --
3 Proposal

We propose to update the scenario in section 10.3 of the AIML Evaluation permanent PD V0.2

image1.emf
High-capability deviceLow-capability deviceAnchorModel(Low Capa Device)Model Split configurationTest Split Model 1Test Split Model 2Metrics Logs/ComputationTest MetricsTest Bitstream(Intermediate Data)Test Dataset Pre-processorAI Framework / LibraryTest DatasetTest NetworkInference Output ProcessorInference Output ProcessorNetwork configurationAnchorModel(High Capa Device)Test NetworkInference Output Processor

Microsoft_Visio_Drawing.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor

image2.emf
Head InferenceDelivery estimationTail InferenceOptimization/CompressionSerializationDeserializationDecompression

Microsoft_Visio_Drawing1.vsdx
Head Inference
Delivery estimation
Tail Inference
Optimization/Compression
Serialization
Deserialization
Decompression

image3.png

image4.png

image5.png

image6.png

