Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 SWG #126 Meeting	Tdoc S4-231808
Chicago, US, 13 – 17 November 2023
Agenda item: 	9.6
Source: 	Qualcomm Inc.
Title: 	[FS_AI4Media] Split Inference for Object Detection
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
We implemented the splitting for the RetinaNet model in the ONNX format and verified that the inference performance is essentially the same between split inference and non-split inference. The scripts were pushed as a branch called “QCOM_split” to the Github repository [1]. Note that the URL was modified: “ml-ai” is replaced by “ai-ml”.
We propose to include the proposed changes in clause 2 below to the evaluation PD [2].
1. Proposed changes
* * * * 1st change * * * *
2.3 	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario.
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt- ml-ai-ml-evaluation-framework (github.com)
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location

· split_retinanet.py: this script is used to split the RetinaNet represented in the ONNX format. It takes the model at models/retinanet.onnx and splits at the four feature pyramid network (FPN) feature maps, as shown by the 4 nodes with red arrows pointed to in Figure 2.3-1, together with four other auxiliary operations (two of which are pointed to by the blue arrows in Figure 2.3-1 and there are two similar ones on the right side of the graph but not shown) that provide the input image shape information for later stages of the network. Note that the split needs 8 split points, rather than a single split point, due to branching and joining present in the structure of RetinaNet.
The splitting results in two partial models, called retinanet_part1.onnx and retinanet_part2.onnx, also in ONNX format. The input to part 1 is the input image. The feature maps in the output of part 1 is part of the input to part 2. The correct operation of part 2 needs additional input which is the shape of the input image. However, it makes no sense to feed the input image (together with the feature maps) as input to part 2. To resolve this problem, a dummy image of the same shape as the input image is used to generate the shape needed by part2. As a result, there is an overlap between part 1 and part 2. The overlap is chosen in such a way that only the portion of the graph directly contributing to generating the shape of the dummy image is included to minimize the additional processing. This is corroborated by the sizes of the models:
· retinanet.onnx: 149.433MB
· retinanet_part1.onnx: 120.731MB
· retinanet_part2.onnx: 28.840MB
from which we see that the sum of the two partial models is only 0.14MB bigger than the size of the whole model, indicating that the overlap is negligible and so is the additional processing for generating the shape of the dummy image.
The two parts are fed into infer_split.py for split inference.
· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results. A flag SAVE_FEATURES_IN_FILEs controls whether to write the FPN feature maps to the NPZ files, and it can be set to 0 to save storage, and in that case the feature maps out of the execution of part 1 are directly fed to part 2. This script also compares the performance between split inference and non-split inference in terms of normalized MSE.
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
 dataset_name Dataset name
 model_location Path to the unsplit ONNX Model
 model_part1_location Path to 1st part of the ONNX Model
 model_part2_location Path to 2nd part of the ONNX Model
optional arguments:
 -h, --help show this help message and exit
 --mask Indicates if output of model is a Mask and needs to be converted

· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
 video_name The name of the video sequence, e.g. Kimono.
optional arguments:
 -h, --help show this help message and exit
 --ds DATASET_NAME Name of the dataset. Defaults to SFU-HW-Objects.
 --threshold THRESHOLD
 The threshold for the prediction confidence to consider the prediction.

· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
 video_fn Path to the video file
 annotation_path Path to the folder with annotations/predictions
optional arguments:
 -h, --help show this help message and exit
 --sleep_time SLEEP_TIME
 Specifies the inteval between the display of 2 consecutive frames

Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
[image: A diagram of a computer

Description automatically generated]
Figure 2.3-1: 6 of the 8 split points of the RetinaNet shown in Netron. The 4 red arrows point to the 4 FPN layers corresponding to “FPN 6”, “FPN 2”, “FPN 1”, “FPN 0” in Table 2.3-1, respectively.

[image: A screenshot of a computer

Description automatically generated]
Figure 2.3-2: Zoom in of the node “/backbone/fpn/extra_blocks/p6/Conv” of the graph in Figure 2.3-1.

The following screenshots show examples of the object detection predictions and results.
	[image:]
	[image:]

	[image:]
	[image:]

Figure 2.3-3: Examples of the object detection predictions and results.
For the SFU-HW-Objects data set, the difference between split inference and non-split inference in bounding box coordinates and in scores in terms of normalized MSE is less than 10-5 for 99.25% of all video frames. This shows that the performance is essentially the same, whether split inference is used or not.
The following results were obtained by using the RetinaNet model with a very basic split approach (no retraining, no compression of intermediate features, and no quantization of the split models). For a realistic scenario, these would eventually be required.
	Video Sequence
	Single Model Inference %
	Split Model Inference %

	BasketballDrill
	14.8
	10.24

	BasketballDrive
	27.48
	18.33

	BasketballPass
	25.35
	16.09

	BlowingBubbles
	39.44
	28.35

	BQMall
	26.09
	21.01

	BQSquare
	24.54
	6.03

	BQTerrace
	19.86
	13.64

	Cactus
	79.9
	35.8

	FourPeople
	53.13
	34.35

	Johnny
	71.23
	38.44

	Kimono
	49.9
	44.9

	KristenAndSara
	10.56
	5.49

	ParkScene
	40.67
	27.29

	PartyScene
	60.43
	48.86

	PeopleOnStreet
	10.09
	21.44

	RaceHorses
	47.94
	48.15

	Traffic
	53.74
	36.42

	Overall Average
	38.54
	26.75

Below are some exemplary feature maps (one shown for each FPN layer in the RetinaNet) for the first frame (frame 0) of the Traffic video sequence.
	FPN 0
	FPN 1
	FPN 2
	FPN 6

	[image:]
	[image:]
	[image:]
	[image:]

Figure 12.3-4: Example feature maps.
The sizes of the intermediate data are:
Table 12.3-1: the size of the feature maps
	FPN Layer
	Size (assuming batch size of 1)

	0
	256 × 100 × 160

	1
	256 × 50 × 80

	2
	256 × 25 × 40

	6
	256 × 13 × 20

Note that the intermediate data is about 8MB 22MB of size per image. In contrast, the original image size is about 3MB. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
* * * * End of 1st change * * * *
1. Proposal
We propose to include the updates in clause 2 into the evaluation PD [2].
We also propose to continue working on the evaluation and ask proponents to provide more fine-tuned split models for better evaluation.
Due to the large size of the models, we propose to consider other locations for the storage of the evaluated pre-trained models.
1. References
[1] 5G-MAG Repository, 5G-MAG/rt-ai-ml-evaluation-framework (github.com)
[2] S4-231331, “[FS_AI4Media] Permanent Document v0.8.1”, 3GPP TSG SA WG4 125, August 2023.
[3] Netron, https://github.com/lutzroeder/netron

- 12/13 -
image1.png
Inputlmage

Ibackbadnel/fpn/layer_blocks.0/layer_blocks.0.0/Conv

Ibackbonelfpnllayﬂr_zlocks.1IIayer_bIocks.1 .0/Conv

Ibackbone/fpn/layer_blocks.2/layer_blocks.2.0/Conv

To node /Shape_1 Ibackbonel/fpn/extra_blocks/p6/Conv N J

To node /Cast_4

image2.png
Ibackbonel/fpn/extra_blocks/p6/Conv

NODE PROPERTIES

type

name

ATTRIBUTES

dilations
group

kemel shape
pads

strides

INPUTS

ouTPUTS

Conv

/backbone/fpn/extra_blocks/p6/Conv

11

33
1,111

2.2

name: /backbone/body/layer4/layera.2/relu_2/Relu_output 0
name: backbone.fpn.extra_blocks.p6.weight

name: backbone.fpn.extra_blocks.p6.bias

name: /backbone/fpn/extra_blocks/p6/Conv_output 0

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

