3GPP TSG-SA WG4 Meeting #126	S4-XXXXX
[bookmark: _Hlk145083976]Chicago, 13–17 November 2023	

Title:	Discussion on the Service Access Information API refactoring
Source:	Tencent Cloud
Agenda Item:	 (5GMS_Pro_Ph2)
Document for:	Discussion and agreement
Contact:	Iraj Sodagar

Abstract
This contribution proposes improvements to S4aI230152, proposed by BBC. The improvements are:
1. Reduce the number of HTTP requests to get the service access information
2. Optionally able to signal the nature of change
Background
The contribution S4aI230152 proposes an interesting approach to access the service access information. It breaks the service access information into a series of HTTP requests to manage the update of service access information more efficiently for the MSH. The main purpose is for the MSH to be able to see the changes in resources and therefore only manage the resources that have been changed.
The proposed solution replaces the HTTP GET request of SAI as a single resource with one HTTP GET to get the SAI high-level subresources and their update flags and possibly one or more HTTP GET requests for each subresource. 
The main drawback of such an approach is the multiple HTTP requests. Whenever the MSH receives the SAI with one or more subresources with the set change flag, then it has to make the same number of HTTP GET requests to get the updated version of those subresources. 
Improved design
The goal of this contribution is to improve the above design in two aspects.
Reduce the number of HTTP GET requests
To reduce the number of HTTP GET requests, we suggest to update the SAI resource of R17 with the following design:
· Each subresource of the SAI resource is an object with two elements: 
· A flag to indicate if the subresource is updated
· The subresource if the flag= true
The above design is shown in the following example:


R17 design:
	{
	"provisioningSessionId": "74d2c0d0-09fb-41ee-bb00-67198ce9b85e",
	"provisioningSessionType": "DOWNLINK",
	"streamingAccess": {…},
	"clientConsumptionReportingConfiguration": {…},
	"dymamicPolicyInvocationConfiguration": {…},
	"clientMetricsReportingConfigurations": […],
	"networkAssistanceConfiguration": {…},
	"clientEdgeResourcesConfiguration": {…}
}


Proposed design:
	{
	"provisioningSessionId": "74d2c0d0-09fb-41ee-bb00-67198ce9b85e",
	"provisioningSessionType": "DOWNLINK",
	"streamingAccessEntryPoints": { change: true, …}
	"clientConsumptionReportingConfiguration": {change: true, …},
	"dymamicPolicyInvocationConfigurations": {change: true, …},
	"clientMetricsReportingConfigurations": {change: false},
	"networkAssistanceConfiguration": {change: true, …},
	"clientEdgeResourcesConfigurations": {change: false},
}


 As shown above, when the MSH requests the SAI using the HTTP GET, it gets a resource that its subresources are conditional: if a subresource is updated, its flag is set to true and the update is included, otherwise the flag is set to false. The main advantage of this approach is that only one HTTP request is adequate to get the updated SAI.
Note that the JSON schema also allows adding a URL for getting a subresource and therefore the MSH can optionally make an HTTP GET request for individual subresources if needed.
Implicit change flag
One possible variation of the above design is that implicitly signals the change flag: if a subresource is included in the SAI, it has an update and if it is not included, it is either not defined (if it was not previously not defined, or it is not changed).
Improve the signaling of subresource status
In the above design, the flag only indicates whether the subresource is changed or not. The flag can be improved to signal the status of the subresource as the following:
1. Nochange: When the subresource is not changed.
2. Create: when a new subresource is provided for the first time
3. Update: when a subresource	being updated
4. Destroy: when a subresource is removed
The above values provide a similar functionality to the CRUD interface, but provide it as a change status flag.
The benefit of such a flag is that for each subresource it provides a status explicitly, and the MSH can use the explicit signaling to start a process for creating, updating, or destroying a subresource.
Note that a simple server implementation may use only Nochange/Update values as a minimum functionality.
Proposal
We suggest the above proposal be added to the 510 Permanent Document as the main design.
