3GPP TS 26.565 V0.7.1 (2023-11)
14
Release 18

[bookmark: page1]
	[bookmark: specType1][bookmark: specNumber][bookmark: specVersion][bookmark: issueDate]3GPP TS 26.565 V0.76.10 (2023-1108)

	[bookmark: spectype2]Technical Specification

	3rd Generation Partnership Project;
[bookmark: specTitle]Technical Specification Group Services and System Aspects;
Split Rendering Media Service Enabler;
[bookmark: specRelease](Release 18)

		

	

	

	

	The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[bookmark: _MON_1684549432]
	[bookmark: page2]

	[bookmark: coords3gpp]3GPP
Postal address

3GPP support office address
650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Internet
http://www.3gpp.org

	[bookmark: copyrightNotification]Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightDate][bookmark: copyrightaddon]© 2022, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).
All rights reserved.

UMTS™ is a Trade Mark of ETSI registered for the benefit of its members
3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

[bookmark: tableOfContents]
Contents
Foreword	5
Introduction	6
1	Scope	7
2	References	7
3	Definitions of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	8
4	General	8
4.1	Overview	8
4.2	Typical Use Cases	8
5	Reference Architecture and Procedures	8
5.1	Reference Architecture	8
5.1.1	Introduction	8
5.1.2 	Client Architecture	9
5.1.3	End-to-End Architecture	9
5.1.5	User Plane Architecture	10
5.2	Procedures and Call Flows	11
5.2.1 	Call flow for Split Rendering instance discovery	11
5.2.1.1	Call flow for edge server and split rendering session setup	11
5.2.1.2 Client-driven procedures and call flows	11
5.2.2 	Call flow for Split Rendering session setup	12
6	Prerequisites	14
6.1	Requirements on 5G System	14
6.2	Requirements on Device APIs and Functionality	14
7	Network Support	14
7.1	Overview	14
7.2	Provisioning	14
7.3	Dynamic Policy and Network Assistance	14
7.4	Edge Resources	15
7.5	Metrics and Consumption Reporting	15
8	Split Rendering User Plane	15
8.1	General	15
8.2	Split Rendering Signalling Protocols	16
8.3	Split Rendering Formats for Media and Metadata	17
8.3.1 	General	17
8.3.2	Metadata Formats	18
8.3.2.1	General	18
8.3.2.2	Pose Format	18
8.3.2.3	Action Format	20
8.3.3	Metadata Data Channel Message Format	20
8.4 	Split Rendering Formats for Session Setup and Negotiation	21
8.4.1 	General	21
8.4.2 	Split Rendering Configuration Format	21
8.4.2.1	Introduction	21
8.4.2.2	 Split Rendering Configuration Format	22
8.4.3 	Output Format Description	24
8.5	Split Rendering Transport Protocols	24
9	Split Rendering Client	24
9.1	Functionality	24
9.2	Client API	24
9.3	Split Rendering Metrics	25
9.3.1 	General	25
9.3.2 	QoE Metrics Formats	26
9.3.2.1 	Timing Information Format	26
9.3.2.2	Latency metrics	26
10 	Security and Privacy Aspects	28
10.1 	Security	28
10.2 	Privacy	28
Annex A	 (Informative): Implementation Guidelines	29
Annex A.1 Guidelines for Application Developers	29
Annex A.2 Guidelines for Split Rendering MSE Implementers	29
A.2.1	Guidelines for implementers of the Split Rendering Server	29
Annex A.3 Conformance Testing	29
Annex B (normative): IDL Definition of Client API	30
Annex C (normative): Split Rendering Profiles	31
C.1 	Pixel Streaming Profile	31
C.1 	Introduction	31
C.2 	2D Pixel Streaming Profile	31
C.2.1	Introduction	31
C.2.2	SRC Capabilities	31
C.2.2.1	Overview	31
C.2.2.2	Video decoding	31
C.2.2.3	Audio and Speech decoding	32
C.2.2.4	Video encoding	32
C.2.2.5	Audio and Speech encoding	32
C.2.2.6 	Metadata Formats	32
C.2.3	SRS Capabilities	32
C.2.3.1	Overview	32
C.2.3.2	Video encoding	32
C.2.3.3	Audio and Speech encoding	32
C.2.3.4	Video decoding	32
C.2.3.5	Audio and Speech decoding	32
C.2.3.6 	Metadata Formats	33
C.3 	3D Pixel Streaming Profile	33
C.3.1	Introduction	33
C.3.2	SRC Capabilities	33
C.3.2.1	Overview	33
C.3.2.2	Video decoding	33
C.3.2.3	Audio and Speech decoding	33
C.3.2.4	Video encoding	33
C.3.2.5	Audio and Speech encoding	34
C.3.2.6 	Metadata Formats	34
C.3.3	SRS Capabilities	34
C.3.3.1	Overview	34
C.3.3.2	Video encoding	34
C.3.3.3	Audio and Speech encoding	34
C.3.3.4	Video decoding	34
C.3.3.5	Audio and Speech decoding	34
C.3.3.6 	Metadata Formats	34
C.4	 Description of the Rendering Format for Pixel Streaming Profiles	34
C.4.1 	General	34
C.4.2	3D Pixel Streaming Profile-specific glTF Extension	35
Annex X (informative): Change history	39
Foreword	6
Introduction	7
1	Scope	8
2	References	8
3	Definitions of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	8
4	General	9
4.1	Overview	9
4.2	Typical Use Cases	9
5	Reference Architecture and Procedures	9
5.1	Reference Architecture	9
5.1.1	Introduction	9
5.1.2 	Client Architecture	9
5.1.3	End-to-End Architecture	10
5.1.5	User Plane Architecture	11
5.2	Procedures and Call Flows	11
5.2.1 	Call flow for Split Rendering instance discovery	11
5.2.1.1	Call flow for edge server and split rendering session setup	11
5.2.1.2 Client-driven procedures and call flows	12
5.2.2 	Call flow for Split Rendering session setup	13
6	Prerequisites	14
6.1	Requirements on 5G System	14
6.2	Requirements on Device APIs and Functionality	14
7	Network Support	15
7.1	Overview	15
7.2	Provisioning	15
7.3	Dynamic Policy and Network Assistance	15
7.4	Edge Resources	15
7.5	Metrics and Consumption Reporting	16
8	Split Rendering User Plane	18
8.1	General	19
8.2	Split Rendering Signalling Protocols	19
8.3	Split Rendering Formats for Media and Metadata	20
8.3.1 	General	20
8.3.2	Metadata Formats	20
8.3.2.1	General	20
8.3.2.2	Pose Format	20
8.3.2.3	Action Format	22
8.3.3	Metadata Data Channel Message Format	23
8.4 	Split Rendering Formats for Session Setup and Negotiation	23
8.4.1 	General	23
8.4.2 	Split Rendering Configuration Format	24
8.4.2.1	Introduction	24
8.4.2.2	 Split Rendering Configuration Format	24
8.5	Split Rendering Transport Protocols	25
9	Split Rendering Client	26
9.1	Functionality	26
9.2	Client API	26
9.3	Split Rendering Metrics	27
10 	Security and Privacy Aspects	27
10.1 	Security	27
10.2 	Privacy	27
Annex A	 (Informative): Implementation Guidelines	28
Annex A.1 Guidelines for Application Developers	28
Annex A.2 Guidelines for Split Rendering MSE Implementers	28
A.2.1	Guidelines for implementers of the Split Rendering Server	28
Annex A.3 Conformance Testing	28
Annex B (normative): IDL Definition of Client API	29
Annex C (normative): Split Rendering Profiles	30
C.1 	Pixel Streaming Profile	30
C.1 	Introduction	30
C.2 	2D Pixel Streaming Profile	30
C.2.1	Introduction	30
C.2.2	SRC Capabilities	30
C.2.2.1	Overview	30
C.2.2.2	Video decoding	30
C.2.2.3	Audio and Speech decoding	31
C.2.2.4	Video encoding	31
C.2.2.5	Audio and Speech encoding	31
C.2.2.6 	Metadata Formats	31
C.2.3	SRS Capabilities	31
C.2.3.1	Overview	31
C.2.3.2	Video encoding	31
C.2.3.3	Audio and Speech encoding	31
C.2.3.4	Video decoding	31
C.2.3.5	Audio and Speech decoding	31
C.2.3.6 	Metadata Formats	32
C.3 	3D Pixel Streaming Profile	32
C.3.1	Introduction	32
C.3.2	SRC Capabilities	32
C.3.2.1	Overview	32
C.3.2.2	Video decoding	32
C.3.2.3	Audio and Speech decoding	32
C.3.2.4	Video encoding	32
C.3.2.5	Audio and Speech encoding	33
C.3.2.6 	Metadata Formats	33
C.3.3	SRS Capabilities	33
C.3.3.1	Overview	33
C.3.3.2	Video encoding	33
C.3.3.3	Audio and Speech encoding	33
C.3.3.4	Video decoding	33
C.3.3.5	Audio and Speech decoding	33
C.3.3.6 	Metadata Formats	33
Annex X (informative): Change history	34

[bookmark: foreword][bookmark: _Toc151113822]Foreword
[bookmark: spectype3]This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).
The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:
Version x.y.z
where:
x	the first digit:
1	presented to TSG for information;
2	presented to TSG for approval;
3	or greater indicates TSG approved document under change control.
y	the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.
z	the third digit is incremented when editorial only changes have been incorporated in the document.
In the present document, modal verbs have the following meanings:
shall	indicates a mandatory requirement to do something
shall not	indicates an interdiction (prohibition) to do something
The constructions "shall" and "shall not" are confined to the context of normative provisions, and do not appear in Technical Reports.
The constructions "must" and "must not" are not used as substitutes for "shall" and "shall not". Their use is avoided insofar as possible, and they are not used in a normative context except in a direct citation from an external, referenced, non-3GPP document, or so as to maintain continuity of style when extending or modifying the provisions of such a referenced document.
should	indicates a recommendation to do something
should not	indicates a recommendation not to do something
may	indicates permission to do something
need not	indicates permission not to do something
The construction "may not" is ambiguous and is not used in normative elements. The unambiguous constructions "might not" or "shall not" are used instead, depending upon the meaning intended.
can	indicates that something is possible
cannot	indicates that something is impossible
The constructions "can" and "cannot" are not substitutes for "may" and "need not".
will	indicates that something is certain or expected to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
will not	indicates that something is certain or expected not to happen as a result of action taken by an agency the behaviour of which is outside the scope of the present document
might	indicates a likelihood that something will happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
might not	indicates a likelihood that something will not happen as a result of action taken by some agency the behaviour of which is outside the scope of the present document
In addition:
is	(or any other verb in the indicative mood) indicates a statement of fact
is not	(or any other negative verb in the indicative mood) indicates a statement of fact
The constructions "is" and "is not" do not indicate requirements.
[bookmark: introduction][bookmark: _Toc151113823]Introduction
This specification defines a media service enabler for split rendering in the 5G system.
[bookmark: scope][bookmark: _Toc151113824]
1	Scope
The present document defines a Media Service Enabler for Split Rendering according to the guidelines of TR26.857 [1].
[bookmark: references][bookmark: _Toc151113825]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 26.857: "5G Media Service Enablers".
[2]		ISO/IEC 12113:2022, Information technology, Runtime 3D asset delivery format, Khronos glTF 2.0
[3]		ISO/IEC 23090-14: Information technology — Coded representation of immersive media — Part 14: Scene Description for MPEG Media.
[4]	3GPP TS 26.119, Media Capabilities for Augmented Reality
[5]	3GPP TS26.506, 5G Real-time Media Communication Architecture (Stage 2)
[6]	3GPP TS26.113, Real-Time Media Communication; Protocols and APIs
[7]	3GPP TS26.512, 5G Media Streaming (5GMS); Protocols

[bookmark: definitions][bookmark: _Toc151113826]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc151113827]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc151113828]3.2	Symbols
For the purposes of the present document, the following symbols apply:
<symbol>	<Explanation>

[bookmark: _Toc151113829]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
AF		Application Function
AS		Application Server
MAF	Media Access Function
MSH		Media Session Handler
5G-RTC		5G Real-Time Communication
SR 		Split Rendering
SRC		Split Rendering Client
SRS		Split Rendering Server
UE		User Equipment

[bookmark: _Toc151113830]4	General
[bookmark: _Toc151113831]4.1	Overview
The Split Rendering Media Service Enabler collects a set of 5G media functions to build a media service enabler that targets application developers, network operators, and application service providers, to enable the realization of split rendered applications.
The interfaces, formats, protocols, and APIs are either referenced or defined in this specification. This will allow for interoperability between multiple vendor implementations.
This specification targets primarily XR applications. However, it is not limited to XR applications and may be used for rendering for 2D displays.
[bookmark: _Toc151113832]4.2	Typical Use Cases
A typical use case for the split rendering MSE is immersive gaming. In this use case, the UE benefits from invoking split rendering by avoiding the download of the game to the phone and getting high quality graphics from edge rendering.
Another use case that can benefit from split rendering is immersive communication, where users gather in a shared space and interact with each other and with the environment. Users may be represented by sophisticated Avatars and as the number of users increases the rendering will become more complex.
[bookmark: clause4][bookmark: _Toc151113833]5	Reference Architecture and Procedures
[bookmark: _Toc151113834]5.1	Reference Architecture
[bookmark: _Toc151113835]5.1.1	Introduction
In this clause, different variants of the reference architecture for the split rendering MSE are defined, each representing a different perspective and level of details.
The following functions are introduced:
· Split-Rendering Client (SRC): This function is responsible to acquire the UE media capabilities and negotiates with the RTC AS to agree on the split-rendering process at the RTC AS.
· Split-Rendering Server (SRS): This function is responsible for negotiation of SR session with SRC, monitoring the server’s edge resource usage, and managing/running the split rendering process.
· Application Function (AF): responsible for provisioning, QoS allocation, and edge resource discovery.
· Application Service Provider: The application provider that offers the service.
· Application: The application running on UE
· Media Session Handler (MSH): is the entity on UE that is responsible for the control plane communication with the AF.
[bookmark: _Toc151113836]5.1.2 	Client Architecture
The client architectural breakdown is based on the client architecture in TS26.119 [4] clause 5.1.
The split rendering client consists of the following components:
· The Media Access Functions: allow for fetching and processing of the pre-rendered media in preparation of final display. The MAF is also responsible for the carriage of any metadata or local media to the split rendering server.
· The scene manager and thin Presentation Engine: is responsible for the negotiation of the split rendering session and the parsing of the description of the rendered media as provided by the SR server. It is also responsible for setting up and managing the XR session with the XR runtime.
· The XR source management is responsible for gathering timed metadata such as pose and action information and sending it to the SR server.
[bookmark: _Toc151113837]5.1.3	End-to-End Architecture

Figure 5.1-3 – Split management architecture
As shown in Figure 5.1.3:	
1. The 5G Application Providers (AP) provisions the split-rendering through RTC-1.
2. In the use cases in which the AP is involved in the media delivery, the RTC-2 interface is used for this purpose.
3.The communication between AF and SRS is through RTC-3. This interface is out of the scope of this document. This interface may for instance include the EDGE-3 interface.
4. The signaling as well as the media delivery between SRC and SRS is though RTC-4.
5. The AF may provide the split-rendering information to the Media Session Handler defined by RTC-5, defined in TS26.506 [5].
6. SRC in the UE discovers the application through RTC-6 and handles the XR runtime.
7. The SRC discovers the client media capabilities through the RTC-7 interface. This interface is out of the scope of this document.
8. The 5G Application and AP interact through RTC-8-8. This interface is out of the scope of this document.

[bookmark: _Toc151113838]5.1.5	User Plane Architecture
Figure 5.1.5-1 depicts the user plane architecture for split rendering.

 [image:]
Figure 5.1.5-1 – User Plane Architecture for Split management architecture

The SR interfaces are considered to be specializations of their parent RTC interfaces as defined in TS26.506.
In the context of split rendering, the SR-4 interface is further classified as SR-4s and SR-4m sub-interfaces. The SR-4s interface covers all user-plane signaling, including WebRTC and ICE signaling. The SR-4m serves for media and metadata exchange between the split rendering client and the split rendering server.
[bookmark: _Toc151113839]5.2	Procedures and Call Flows
[bookmark: _Toc151113840]5.2.1 	Call flow for Split Rendering instance discovery
[bookmark: _Toc151113841]5.2.1.1	Call flow for edge server and split rendering session setup
Figure 5.2.1.1-1 demonstrates a general call flow for split-rendering.

Figure 5.2.1-1: High-level call flow for split-rendering
Steps:
1. In this optional step, the Application Provider requests and sets up the edge server(s) used for the split-rendering as described in TS 26.506 clauses 6.1 or 6.2. The Application provider may use any other method to allocation edge servers, or leave it to the MNO to set up appropriate edge servers to run the split-rendering process.
2. The Application Provider provisions the split-rendering session using SR-1 and SR-3, as defined in call flow of clauses 5.2.1.1. If the edge servers were provisioned in step 1, the edge servers ids are provided in this session to employ them for split-rendering.
NOTE: In the case of the client-driven edge management (TS 26.501 8.1), only the client-driven split-rendering (5.2.1.1) is applicable.
3. The split-rendering session is set up according to clause 5.2.2.
[bookmark: _Toc151113842]5.2.1.2 Client-driven procedures and call flows
Figure 5.2.1.2-1 demonstrates a call flow for setting up the split rendering by the client.

Figure 5.2.1.2-1: High-level call flow for initiating a split
Steps:
1. The Application Service Provider requests the SRF the provisioning a split management session.
2. The split management session is announced to the Application as part of the Service Access Information.
3. The Application requests a split of the client media functions from the SRC.
4. The SRC inquires the Media Session Handler about the client’s media capabilities.
5. The SRC and SRS negotiate on the acceptable capabilities for the device and agree on the split option.
6. The SRS starts the split rendering process.
7. The SRC establishes the WebRTC session.
8. The SRC informs the application that the split-rendering on edge is running.
9. The SRC sends uplink metadata, such as pose and action information.
10. The SRS sends the rendered media to the SRC.

[bookmark: _Toc151113843]5.2.2 	Call flow for Split Rendering session setup
The split rendering operation can be described by the as depicted in the call flow in the Figure 5.2.2-1.

Figure 5.2.2- 1 High-level call flow for split rendering session setup and operation
The steps are:
1. The Presentation Engine discovers the split rendering server and sets up a connection to it. It provides information about its rendering capabilities and the XR runtime configuration, e.g the OpenXR configuration may be used for this purpose.
2. In response, the split rendering server creates a description of the split rendering output and the input it expects to receive from the UE.
3. The Presentation Engine requests the buffer streams from the MAF, which in turn establishes a connection to the split rendering server to stream pose and retrieve split rendering buffers.
4. The Source Manager retrieves pose and user input from the XR runtime.
5. The Source Manager shares the pose predictions and user input actions with the split rendering server.
6. The split rendering server uses that information to render the frame.
7. The rendered frame is encoded and streamed down to the MAF.

[bookmark: _Toc151113844]6	Prerequisites
[bookmark: _Toc151113845]6.1	Requirements on 5G System
[bookmark: _Toc151113846]6.2	Requirements on Device APIs and Functionality
MSE-7
[bookmark: _Toc151113847]7	Split RenderingNetwork Support Application Function
[bookmark: _Toc151113848]7.1	OverviewFunctionality
The Split Rendering MSE stands to benefit from the several procedures that the network offers. These include but are not limited to:
· Dynamic QoS and charging
· Edge resources
· Consumption and metrics reporting
· Configuration Information
In this clause, the control plane procedures that are relevant for split rendering and their usage are described.
7.2 Provisioning
An Application Provider that wishes to offer applications using split rendering shall use the procedures defined in TS26.113[6] clause 5 to create a Provisioning Session with the RTC AF.
The ProvisioningSessionType shall be set to “BIDIRECTIONAL”.
The aspId shall be configured and shall be a unique identifier for the Application Service Provider that offers split rendering.
The externalApplicationId shall be a URN that uniquely identifies the application and shall be terminated by the sub-string “+3gpp-sr”. An examples is as follows: “urn:com:example:game+3gpp-sr”.

[bookmark: _Toc151113850]7.3	Dynamic Policy and Network Assistance
Dynamic policy and network assistance may be provisioned by the Application Provider with the RTC AF. The allowed dynamic policies for the split rendering sessions of the application provider are communicated to the MSH in the client using the Configuration procedure.
Upon the creation of a new split rendering session and upon eligibility, the MSH shall use the Dynamic Policy API to request the allocation of network resources and charging policy to the session based on the information in the corresponding Provisioning session.
A policy template that is provisioned for split rendering should be associated with the split rendering configuration.
When Pixel Streaming profile is used, a policy template and a dynamic policy request may include the following QoS specifications, one for each of the components of the downlink streams:
· 2 QoS specifications corresponding to for left and right eye buffer streams.
· 1 QoS specification corresponding to a depth buffer stream.
· 1 QoS specification corresponding to an occupancy/transparency buffer stream.
1 QoS specification corresponding to an audio stream.
·
The MSH And the WebRTC Signaling Server shall support the dynamic policy API as defined in TS26.113.
The Application Provider may provision support for PDU Set marking. The SRS shall support the PDU Set marking and should support the End of Burst marking for the RTP streams that are generated by the Split Rendering Server.
[bookmark: _Toc151113851]7.4	Edge Resources
A split rendering application may use the procedures defined in TS26.512 [7] clause 7.10 to define an edge resource configuration to be used for split-rendering sessions. In this case:
· The eligibilityCriteria shall be present and shall have appRequest set to true.
· The easRequirements shall indicate “SR” as the easType and shall include “3gpp-sr” among the easFeatures. The serviceKpi shall be present and indicate the SRS processing and networking capabilities and requirements.
· The easRelocationRequirements shall indicate “RELOCATION_INTOLERANT” in the tolerance field.

[bookmark: _Toc151113852]7.5	Metrics and Consumption Reporting
The Application Provider may use the Provisioning procedure to configure the collection of split rendering metrics and logging of consumption statistics. When present, this information shall be passed to the MSH using the Configuration procedure.
The SRC shall collect and report the data for a split rendering session that matches the criteria for metrics and/or consumption reporting as indicated by the configuration procedure.

8 	Split Rendering User Plane
The SR application function is an RTC AF that supports the provisioning and configuration of split rendering sessions. The SR AF shall support the procedures for the RTC AF as defined in TS26.506.
7.2	RESTful APIs
[bookmark: _Toc68899481][bookmark: _Toc71214232][bookmark: _Toc71721906][bookmark: _Toc74858958][bookmark: _Toc123800666]7.2.1	Split-Rendering Provisioning procedures (RTC-1)
[bookmark: _Toc68899482][bookmark: _Toc71214233][bookmark: _Toc71721907][bookmark: _Toc74858959][bookmark: _Toc123800667]7.2.1.1	General
These procedures are used by the Application Provider and the AF on SR-1 to provision for the split-rendering process.
[bookmark: _Toc68899483][bookmark: _Toc71214234][bookmark: _Toc71721908][bookmark: _Toc74858960][bookmark: _Toc123800668]7.2.1.2	Create Split-Rendering Configuration
[bookmark: _MCCTEMPBM_CRPT71130061___7]This procedure is used by the AP to create a new Split-Rendering Configuration. The AP shall use the HTTP POST method for this purpose and the request message body shall include a SplitRenderingConfiguration resource.
If the procedure is successful, the AF shall generate a resource identifier representing the new Split-Rendering Configuration. In this case, the AF shall respond with a 201 (Created) HTTP response message and shall provide the URL to the newly created resource in the Location header field. The response message body may include a SplitRenderingConfiguration resource that represents the current state of the Split Rendering Configuration, including any fields set by the AF.
If the procedure is not successful, the AF shall provide a response code as defined in clause 7.3.
[bookmark: _Toc68899484][bookmark: _Toc71214235][bookmark: _Toc71721909][bookmark: _Toc74858961][bookmark: _Toc123800669]7.2.1.3	Read Split-Rendering Configuration properties
[bookmark: _MCCTEMPBM_CRPT71130062___7]This procedure is used by the AP to obtain the properties of an existing Split-Rendering resource from theAF. The HTTP GET method shall be used for this purpose.
If the procedure is successful, the AF shall respond with a 200 (OK) response message that includes the SplitRenderingConfiguration resource in the response message body.
If the procedure is not successful, the AF shall provide a response code as defined in clause 7.3.
[bookmark: _Toc68899485][bookmark: _Toc71214236][bookmark: _Toc71721910][bookmark: _Toc74858962][bookmark: _Toc123800670]7.2.1.4	Update Split-Rendering Configuration properties
[bookmark: _MCCTEMPBM_CRPT71130063___7]The update operation is invoked by the AP to modify the properties of an existing SplitRenderingConfiguration resource. All writeable properties except domainNameAlias may be updated. The HTTP PATCH or HTTP PUT methods shall be used for the update operation.
If the procedure is successful, the AF shall respond with a 200 (OK) and provide the content of the resource in the response, confirming the successful update operation.
If the procedure is not successful, the AF shall provide a response code as defined in clause 7.3.
[bookmark: _Toc68899486][bookmark: _Toc71214237][bookmark: _Toc71721911][bookmark: _Toc74858963][bookmark: _Toc123800671]7.2.1.5	Destroy Split-Rendering Configuration
[bookmark: _MCCTEMPBM_CRPT71130064___7]This operation is used by AP to destroy a Split-Rendering Configuration resource and to terminate the related distribution. The HTTP DELETE method shall be used for this purpose. As a result, the AF will release any associated network resources, purge any cached content, and delete any corresponding configurations.
If the procedure is successful, the AF shall respond with a 200 (OK) response message.
If the procedure is not successful, the A.F shall provide a response code as defined in clause 7.3.
7.2.2		Split-Rendering Provisioning API
[bookmark: _Toc68899611][bookmark: _Toc71214362][bookmark: _Toc71722036][bookmark: _Toc74859088][bookmark: _Toc123800821]7.2.2.1	Overview
[bookmark: _MCCTEMPBM_CRPT71130273___7]This clause specifies the API that the AP uses at interface SR-1 to create and manage Provisioning sessions for media services that use split rendering. Each split rendering configuration is represented by a SplitRenderingConfiguration, for which the resource structure is specified in 7.2.2.2 and the data model is specified in clause 7.2.2.3.
[bookmark: _Toc68899612][bookmark: _Toc71214363][bookmark: _Toc71722037][bookmark: _Toc74859089][bookmark: _Toc123800822]7.2.2.2	Resource structure
The Split-Rendering Provisioning API is accessible through this URL base path:
{apiRoot}/3gpp-rtc1/{apiVersion}/provisioning-sessions/{provisioningSessionId}/
[bookmark: _MCCTEMPBM_CRPT71130274___7]Table 7.2.2-1 below specifies the operations and the corresponding HTTP methods that are supported by this API. In each case, the Provisioning Session identifier shall be substituted into {provisioningSessionId} in the above URL template and the sub-resource path specified in the second column shall be appended to the URL base path.
Table 7.2.2‑1: Operations supported by the Split-Rendering Provisioning API
	Operation
	Sub‑resource path
	Allowed HTTP method(s)
	Description

	[bookmark: _MCCTEMPBM_CRPT71130275___7]Create Split-Rendering Configuration
	split-rendering-configuration
	POST
	Used to create a Split-Rendering Configuration resource.

	Retrieve Split-Rendering Configuration
	
	[bookmark: _MCCTEMPBM_CRPT71130276___7]GET
	Used to retrieve an existing Split-Rendering Configuration.

	Update Split-Rendering Configuration
	
	[bookmark: _MCCTEMPBM_CRPT71130277___7]PUT,
[bookmark: _MCCTEMPBM_CRPT71130278___7]PATCH
	Used to modify an existing Split-Rendering Configuration.

	Delete Split-Rendering Configuration
	
	[bookmark: _MCCTEMPBM_CRPT71130279___7]DELETE
	Used to delete an existing Split-Rendering Configuration.

[bookmark: _Toc68899613][bookmark: _Toc71214364][bookmark: _Toc71722038][bookmark: _Toc74859090][bookmark: _Toc123800823]7.2.2.3	Data model
[bookmark: _Toc68899614][bookmark: _Toc71214365][bookmark: _Toc71722039][bookmark: _Toc74859091][bookmark: _Toc123800824]7.2.2.3.1	SplitRenderingConfiguration resource
[bookmark: _MCCTEMPBM_CRPT71130281___7]The data model for the SplitRenderingConfiguration resource is specified in table 7.2.2-2 below:
Table 7.2.2-2: Definition of SplitRenderingConfiguration resource
	Property name
	Data Type
	Cardinality
	Description

	Name
	String
	1..1
	A name for this Split Rendering Configuration.

	 Status
	Boolean
	1..1
	Indicates whether to this split rendering configuration is active

	 edgeResourceConfigurationId
	ResourceId
	0..1
	The identifier of the edge resource configuration that will be used for sessions of this split rendering configuration.

	 policyTemplateId
	ResourceId
	1..1
	The identifier of the policy template that will be applied to the sessions of this split rendering configuration.

	 Configuration
	Object
	1..1
	Describes the split-rendering configuration currently used by the SRS.
Editor’s Note: The syntax and semantics of this element are TBD.

7.2.2.4	Configuration Guidelines for Split Rendering
7.2.2.4.1	Guidelines on Provisioning Session

7.2.2.4.2	Guidelines on Edge Resource Configuration
A split rendering application may use the procedures defined in TS26.512 clause 7.10 to define an edge resource configuration to be used for split-rendering session. In this case:
The eligibilityCriteria shall be present and shall have appRequest set to true.
The easRequirements shall indicate “SR” as the easType and shall include “3gpp-sr” among the easFeatures. The serviceKpi shall be present and indicate the SRS processing and networking capabilities and requirements.
The easRelocationRequirements shall indicate “RELOCATION_INTOLERANT” in the tolerance field.
7.2.2.4.3	Guidelines on Policy Template

[bookmark: _Toc150202066]Dynamic Policy API for Split Rendering
The WebRTC Signaling Server (which potentially maybe part of the Split Rendering Server) shall support the dynamic policy API as defined in X.
Furthermore, the Split Rendering Server shall support the PDU Set marking and should support the End of Burst marking for the RTP streams that are generated by the Split Rendering Server.
7.3	HTTP response codes
Guidelines for error responses to the invocation of APIs of NF services are specified in clause 4.8 of TS 29.501 [22]. API-specific error responses are specified in the respective technical specifications.

[bookmark: _Toc151113853]8	Split Rendering User Plane

[bookmark: _Toc151113854]8.1	General
The user plane for split rendering covers all traffic between the SRC and SRS, or the SRC and any other RTC AS. The common formats for split rendering are defined in this clause. Split rendering profiles may define additional user plane formats.
This clause illustrates the protocol stack for the User plane transport related to the signalling as well as the media delivery between SRC and SRS though RTC-4.

[image:]
Figure 8.1-1 Split rendering protocol Stack

[bookmark: _Toc151113855]8.21	Split Rendering Signalling Protocols
Both SRC and SRS shall support the SWAP protocol as defined in TS26.113 clause 612.2.
The SWAP protocol allows for the definition of application-specific messages.
For Split Rendering, tThe following application-specific messages shall be supported for split rendering:
· The configuration message carries the split rendering configuration information from the SRC to the SRS. It shall be identified by the type “urn:3gpp:sr-mse:sr-configuration” and the object shall be formatted according to clause 8.4.2.2.
· The rendering description message carries the description of the split rendered media from the SRS to SRC. It shall be identified by the type “urn:3gpp:sr-mse:sr-description” and the object shall be formatted according to clause 8.4.3. The rendering description message provides the semantics of the media that is delivered over WebRTC from the SRS to SRC.
The SWAP message exchange for the establishment of a split rendering session is depicted by the following call flow diagram:

Pre-requisites:
· The SRC has discovered the identifier of the SRS that it will use for its split rendering session.
· The SRC has retrieved the address of the SWAP server as part of the configuration.
The stpes are as follows:
1. The SRC sends the configuration message as an application-specific SWAP message to the SWAP server. It provides the identifier of the target SRS as a matching criteria.
2. The SWAP server uses the provided matching criteria to locate the SRS.
3. The SWAP server forwards the configuration message to the target SRS.
4. The SWAP server confirms the successful forwarding of the message to the SRC
5. The SRS processes the SR configuration message. It may for instance verify application and resource availablity, launch the application, configure its rendering, and create a rendering description.
6. The SRS sends the rendering description message as an application-specific SWAP message to the SWAP server.
7. The SWAP server forwards the message to the SRC.
8. The SWAP server acknowledges the successful forwarding of the message to the SRS.
9. The SRC processes the rendering description and identifies the required data channel and media sessions.
10. SRC sends a connect message with the SDP offer to the SRS. The offer reflects the negotiated media and data channel streams.
11. The SWAP server acknowledges the forwarding of the message to the SRS
12. The SRS replies with an accept message that includes the SDP answer. The SDP answer reflects the information that was provided in the split rendering description.
13. The SWAP server acknowledges the forwarding of the message to the SRC
[bookmark: _Toc151113856]8.32	Split Rendering Formats for Media and Metadata
[bookmark: _Toc151113857]8.32.1 	General
This clause defines media and metadata formats that are common to one or more split rendering profiles.
[bookmark: _Toc151113858]8.32.2	Metadata Formats
[bookmark: _Toc132968723][bookmark: _Toc151113859]8.32.2.1	General
Both SRC and SRS shall support the usage of the WebRTC data channel for the exchange of split rendering metadata. The WebRTC data channel shall declare In the “3gpp-sr” as the data channel sub-protocol., tThe message content format depends on the type of the message. The data channel sub-protocol is defined in clause X.
Message types shall be unique identifiers in the URN format. This clause defines a set of message types and their formats. The messages are derived from the OpenXR API to ensure smooth operation with AR devices that support OpenXR. In case other XR APIs are used, mapping the message payload to the appropriate XR API structures shall be performed by the split rendering client.
Editor’s Note: This following sections will potentially reference the corresponding formats in 26.119.
[bookmark: _Toc132968724][bookmark: _Toc151113860]8.32.2.2	Pose Format
The split rendering client on the XR device periodically transmits a set of pose predictions to the split rendering server using the WebRTC data channel. The type of the message shall be set to “urn:3gpp:split-rendering:v1:pose”.
Each predicted pose shall contain the associated predicted display time and an identifier of the XR space that was used for that pose.
Depending on the view configuration of the XR session, there could be different pose information for each view.
The payload of the message shall be as follows:
Table 8 8.3.2-1 - Pose Prediction Format
	Name
	Type
	Cardinality
	Description

	poseInfo
	Object
	1..n
	An array of pose information objects, each corresponding to a target display time and XR space.

	 displayTime
	number
	1..1
	The time for which the current view poses are predicted. This time is expressed in XR system time clock.
In OpenXR, this timestamp is the one used for the xrViewLocateInfo structure of the xrLocateViews call.
The SRS shall not make any assumptions on the accuracy or time sync of this displayTime.

	 xrSpace
	number
	0..1
	An identifier for the XR space in which the view poses are expressed. The set of XR spaces are agreed on between the split rendering client and the split rendering server at the setup of the split rendering session.
The set of XR spaces is negotiated as part of the split rendering configuration as defined in clause 8.4.2.2.

	 viewPoses
	Object
	0..n
	An array that provides a list of the poses associated with every view. The number of views is determined during the split rendering session setup between the split rendering client and server, depending on the view configuration of the XR session.

	 pose
	Object
	1..1
	An object that carries the pose information for a particular view.

	 orientation
	Object
	1..1
	Represents the orientation of the view pose as a quaternion based on the reference XR space.

	 x
	number
	1..1
	Provides the x coordinate of the quaternion.

	 y
	number
	1..1
	Provides the y coordinate of the quaternion.

	 z
	number
	1..1
	Provides the z coordinate of the quaternion.

	 w
	number
	1..1
	Provides the w coordinate of the quaternion.

	 position
	Object
	0..1
	Represents the location in 3D space of the pose based on the reference XR space.
For eye gaze poses, the position is not required.

	 x
	number
	1..1
	Provides the x coordinate of the position vector.

	 y
	number
	1..1
	Provides the y coordinate of the position vector.

	 z
	number
	1..1
	Provides the z coordinate of the position vector.

	 confidence
	number
	0..1
	This optional parameter provides a confidence score that reflects the probability for this pose prediction to be correct. For the current pose or a pose in the past, the confidence value would be 1. The confidence can take a value between 0 and 1.
If not provided by the XR runtime, this field may be estimated by the SRC or omitted.

	 estimatedAtTime (ref. T1)
	number
	0..1
	The time when the pose estimation was made.
The SRS may use that information to select the most recent predicted pose in the group of poses for a target display time.

	 fov
	Object
	01..1
	Indicates the four sides of the field of view used for the projection of the corresponding XR view. This field is only present if these field of view values have changed from the last sent values.

	 angleLeft
	number
	1..1
	The angle of the left side of the field of view. For a symmetric field of view this value is negative.

	 angleRight
	number
	1..1
	The angle of the right side of the field of view.

	 angleUp
	number
	1..1
	The angle of the top part of the field of view.

	 angleDown
	number
	1..1
	The angle of the bottom part of the field of view. For a symmetric field of view this value is negative.

[bookmark: _Toc132968725][bookmark: _Toc151113861]8.32.2.3	Action Format
Actions are grouped into action sets, which may be activated and deactivated during the lifetime of an XR session. The action sets and actions are negotiated at the start of the split rendering session.
The split rendering client reports any changes to action state as soon as it occurs by sending a message of the type “urn:3gpp:split-rendering:v1:action”.
The content of the action message type shall follow the following format:
Table 9 - Action Format
	Name
	Type
	Cardinality
	Description

	actionSets
	Object
	1..n
	An array of active action sets, for which there is at least an action that has a state change.

	 actions
	Object
	1..n
	An array of objects that conveys information about the actions of the parent action set.

	 identifier
	stringnumber
	1..1
	A unique identifier of the action that was agreed upon during split rendering session setup.

	 subactionPath
	string
	1..1
	The sub-action path for which the state has changed. It abstracts a binding between an action and the hardware input associated to it by the XR runtime.

	 state
	object
	1..1
	The state of the action that had a change in state.

	 lastChangeTime
	number
	1..1
	The timestamp of the last change to the state of this action.

	 currentStateBool
	Bool
	0..1
	The current Boolean state of the action

	 currentStateNum
	number
	0..1
	The current numerical state of the action.

	 currentStateVec2
	Array
	0..1
	An array of numerical state values for the action.

[bookmark: _Toc151113862]8.23.3	Metadata Data Channel Message Format
For the carriage of metadata defined in clause 8.2, such as pose and action information, the SRS and SRC shall use the WebRTC data channel. The data channel sub-protocol shall be identified as “3gpp-sr-metadata”, which shall be included in the dcmap attribute of the SDP.
The transmission order for the data channel shall be set to in-order and the transmission reliability shall be set to reliable.
The split rendering metadata message format shall be set to text-based and the messages shall be UTF-8 encoded JSON messages.
A data channel message may carry one or more split rendering messages as defined in Table 8.2.3-1.

Table 8.2.3-1 Split Rendering Metadata Messages Format
	Name
	Type
	Cardinality
	Description

	messages
	Array(Message)
	1..n
	A list of split rendering metadata messages. Each message shall be formatted according to the Message data type as defined in Table

Each split rendering message shall follow the format specified in Table 8.2.3-2.
Table 8.2.3-2 Split Rendering Metadata Message Data Type
	Name
	Type
	Cardinality
	Description

	id
	string
	1..1
	An unique identifier of the message in the scope of the data channel session.

	type
	string
	1..1
	A urn that identifies the message type.

	message
	object
	1..1
	The message content depends on the message type.

	sendingAtTime (ref. T1’)
	number
	0..1
	The time when the split rendering metadata message is transmitted from the split rendering client to the split rendering server.

8.3	Split Rendering Transport Protocols
Split Rendering shall use WebRTC for the real-time transport of the rendered media. The RTP restrictions for WebRTC as specified in RFC8834 shall apply. The usage of the WebRTC data channel shall be in accordance with RFC8831.
Editor’s Note: applicable guidelines for the usage of the PDU Set Marking is pending completion of TS26.522.
[bookmark: _Toc151113863]8.4 	Split Rendering Formats for Session Setup and Negotiation
[bookmark: _Toc151113864]8.4.1 	General
In Figure 5.2.1-1 and 5.2.1-2, step 5 defines the negotiation between the SRC and SRS for the split-rendering configuration. In most simple case, the SRC provides SRS the capabilities of the device and if SRS can accommodate the split-rendering processing that addresses the device, it confirms the configuration. In such scheme, the SRS is responsible to make the decision and no back-and-forth negotiation occurs.In Figure 5.2.1-1 and 5.2.1-2, in step 5, the negotiation between the SRC and SRS for the split-rendering configuration takes place. The detailed call flow for such a negotiation between the SRC and the SRS may vary. Depending upon the split rendering profile, the negotiation between the SRC and the SRS may be straight forward or go back and forth.
In the simplest case, the SRC provides SRS the capabilities of the device and if SRS can accommodate the split-rendering processing that addresses the device’s needs and capabilities, it confirms by providing a description of the output format. In such scheme, the SRS is responsible to make the decision and no back-and-forth negotiation occurs.
[bookmark: _Toc151113865]8.4.2 	Split Rendering Configuration Format
[bookmark: _Toc151113866]8.4.2.1	Introduction
The Split Rendering client establishes an XR session locally based on the device configuration and user selection. The SR client defines the view configuration (e.g. mono or stereo views), the projection format (such as projection, equirectangular, quad, or cubemap), the swap chain image configuration, etc.
In addition, XR space and action configurations are negotiated between the SR client and server. This includes defining common XR spaces and defining and selecting actions and action sets.
The format is extensible to support the exchange of additional/future configuration information.
[bookmark: _Toc151113867]8.4.2.2	 Split Rendering Configuration Format
The session configuration information shall be in JSON format. It shall have the following format:
	Name
	Type
	Cardinality
	Description

	renderingFlags
	Array(SR_CONFIG_FLAGS)
	0..1
	Provides a set of flags to activate/deactivate selected rendering functions. The defined SR_CONFIG_FLAGS are:
· FLAG_ALPHA_BLENDING
· FLAG_DEPTH_COMPOSITION
· FLAG_EYE_GAZE_TRACKING

	splitRenderingProfile
	array(URI)
	0..1
	A list of supported split-rendering profile identifiers on the UE. The profile identifiers are listed in Annex C for each profile.

	spaceConfiguration
	Object
	0..1
	The space configuration is typically sent by the split rendering server to the split rendering client. Upon reception of this information, the SR client uses this information to create the reference and action spaces as well as to agree on common identifiers for the XR spaces.

	 referenceSpaces
	Array
	0..1
	An array of reference spaces and their identifiers.

	 id
	number
	1..1
	A unique identifier of the XR space in the context of the split rendering session.

	 refSpace
	enum
	1..1
	One of the defined reference spaces in OpenXR. These may be: XR_REFERENCE_SPACE_TYPE_VIEW, XR_REFERENCE_SPACE_TYPE_LOCAL, or XR_REFERENCE_SPACE_TYPE_STAGE.

	 actionSpaces
	Array
	0..1
	An array of action spaces that need to be defined by the split rendering client in the XR session.

	 id
	number
	1..1
	A unique identifier of the XR space in the context of the split rendering session.

	 actionId
	number
	1..1
	Provides the unique identifier of the action.

	 subactionPath
	string
	1..1
	The subaction path identifies the action, which can then be mapped by the XR runtime to user input modalities.

	 initialPose
	Pose
	0..1
	Provides the initial pose of the new XR space’s origin.

	viewConfiguration
	Object
	0..1
	Conveys the view configuration that is configured for the XR session.

	 type
	Enum
	1..1
	The type indicates the view configuration. Defined values are MONO and STEREO. Other values may be added.

	 width
	number
	1..1
	The recommended width of the swapchain image.

	 height
	number
	1..1
	The recommended height of the swapchain image.

	 compositionLayer
	string
	1..1
	An identifier of the selected composition layer.

	 minPoseInterval
	number
	0..1
	The minimum time interval between two consecutive pose information instances sent to the network, in milliseconds.

		fovs
	Array
	0..1
	An array that provides a list of the field of views (FoV) associated with each view.

			fov
	Object
	1..n
	Indicates the four sides of the field of view used for the projection of the corresponding XR view.
The number of views n is determined by the type enum of the viewConfiguration. Both the viewPoses in the Pose Format and the fovs arrays shall be ordered in a consistent way (i.e., a same index can be used to retrieve the view pose and the related FoV information).

				angleLeft
	number
	1..1
	The angle of the left side of the field of view. For a symmetric field of view this value is negative.

				angleRight
	number
	1..1
	The angle of the right side of the field of view.

				angleUp
	number
	1..1
	The angle of the top part of the field of view.

				angleDown
	number
	1..1
	The angle of the bottom part of the field of view. For a symmetric field of view this value is negative.

	 environmentBlendMode
	enum
	1..1
	The type indicates the environment blend mode configuration. Defined values are OPAQUE, ADDITIVE and ALPHA_BLEND. Other values may be added.

	actionConfiguration
	Array
	0..1
	This contains a list of the actions that are to be defined by the SR client.

	 action
	Object
	1..n
	A definition of a single action object.

	 id
	number
	1..1
	A unique identifier of the action.

	 actionType
	enum
	1..1
	The type of the action state. This can be a Boolean, float, vector2, pose, vibration output, etc.

	 subactionPaths
	string
	1..n
	An array of subaction paths associated with this action. The split rendering client will provide the state of all defined sub-action paths.

	extraConfigurations
	Object

	0..1
	A placeholder for addition configuration information.

[bookmark: _Toc151113868]8.4.3 	Output Format Description
The output format description depends on the split rendering profile and is defined by the split rendering profile in Annex C.
[bookmark: _Toc151113869]8.5	Split Rendering Transport Protocols
Split Rendering shall use WebRTC for the real-time transport of the rendered media. The RTP restrictions for WebRTC as specified in RFC8834 shall apply. The usage of the WebRTC data channel shall be in accordance with RFC8831.
Editor’s Note: applicable guidelines for the usage of the PDU Set Marking are pending completion of TS26.522.

[bookmark: _Toc151113870]9	Split Rendering Client
[bookmark: _Toc151113871]9.1	Functionality
The Split Rendering Client (SRC) is a function that runs on the UE to provide split rendering functionality to applications. The SRC is designed to be offered as an SDK to application developers. The SRC abstracts the details of the split rendering operation and provides a simple to use API to the application to facilitate the usage of split rendering.
The SRC performs the following functions:
· Creates and manages the XR session,
· Discovers and selects a split rendering server (SRS) in the network,
· Establishes a split rendering session with the SRS,
· Communicates the necessary information about the session to the MSH/AF to benefit from dynamic policy, network assistance, consumption reporting, etc.
· Operates the rendering loop on the UE.
[bookmark: _Toc151113872]9.2	Client API
As described in clause 5.1.3, the SRC exposes an API over RTC-7 interface to the application. The SRC defines the following interface:
	Method
	Parameters
	State after Success
	Description

	
	in
	out
	
	

	SplitRenderer()
	- appId
- aspId?
- settings?
	- session handle
	STATE_READY
	Creates a SplitRenderer object, which can subsequently be used to connect to an SRS and perform split rendering.

	connect()
	- settings?
- criteria?
	- connection handler
	STATE_CONNECTED
	Instructs the SRC to discover and connect to an SRS.

	disconnect()
	- reason?
	
	STATE_DISCONNECTED
	Terminates the connection to the SRS.

	getMetrics()
	- metrics
	- metrics report
	N/A-
	Retrieves a set of metric reports for the split rendering session that describe the quality of experience of the session.

The SplitRenderer interface is defined using the IDL syntax (according to ISO/IEC 19516) as follows:
	interface SplitRenderer {
	readonly attribute SRState state;

	attribute EventHandler onstatechange;
	attribute EventHandler onerror;
	attribute EventHandler onqualitychange;

	void SplitRenderer(String application_id);
	void connect();
	void disconnect();
	Metrics getMetrics();
};

The application is able to subscribe to events related to the split rendering session by setting the corresponding event handler. The supported events are:
· State change: the state of the SR session has changed
· Error: an error has occurred during the split rendering session. The error is not severe enough to cause a state change to the STATE_ERROR state.
· Quality change: the SRC has observed a change in the quality of the split rendering session. This may involve one or more SR metrics.
[bookmark: _Toc151113873]9.3	Split Rendering Metrics
[bookmark: _Toc151113874]9.3.1 	General
Editor’s Note: to be updated once the AR/MR QoE metrics are specified.
[
Relevant metrices related to split rendering depend upon the sepcific application category, that is, VR, AR and/or MR.
Split rendering QoE metrics may include, but is not limited to:
· QoE metrics related with device information, e.g. Eye Relief, lifetime, gaze-based metrics and head-motion-based metrics, etc.
· QoE metrics related to the network transmission quality.
· metrics describing the characteristics of the AR/MR content creation, content rendering and content encoding (e.g. the quality for the generated or rendered AR/MR content, the motion-to-render-to-photon latency, etc).
· metrics describing the characteristics of immersiveness and presence for AR/MR, such as tracking (e.g. tracking errors), world-scale experience (map world-scale experience to QoE metrics), persistence (map persistence to QoE metrics) etc.
For specific use cases of VR, Split Rendering QoE metrices may be based on the 3GPP TR 3GPP TR 26.928 [2] and TR 26.929 [3].
For specific use cases AR and MR, Split Rendering QoE metrices may be based on the 3GPP TR 26.812 [4].
]
RTCP Extended Reports messages discussed in the 5G_RTP permanent document (PD) may be used to transmit the metadata information required to calculated QoE metrics from split rendering server to the split rendering client.
The SRS may use the “QoE timing information” RTCP Extended Reports messages to transmit the timing information required for measuring the QoE metrics to an SRC. The RTCP report block formats for transmitting the QoE timing information is specified in 5G_RTP document. SDP signalling required for negotiating the transmission of QoE metrics between the UE and the SRS is documented in 5G_RTP PD.
]
[bookmark: _Toc151113875]9.3.2 	QoE Metrics Formats
[bookmark: _Toc151113876]9.3.2.1 	Timing Information Format
The timing information associated with the rendered frame is transmitted in the RTCP report block formats. This timing information is listed in the Table 8.3.Y.3-1.
The latency metrics that use the timing information defined in Table 8.3.Y.3-1 are detailed in the section 9.3.Table 8.3.Y.3-1: Timing information in the RTCP block formats.
	Name
	Description

	estimatedAtTime (ref. T1)
	This time is defined in Table 8.2.2.2-1 - Pose Prediction Format.
This time is sent from the split rendering client.
This time is then received by the split rendering server and sent back to the split rendering client with the associated media frame.

	sendingAtTime (ref. T1’)
	This time is defined in Table 8.2.3-2 - Split Rendering Metadata Message Data Type
This time is sent from the split rendering client.
This time is then received by the split rendering server and sent back to the split rendering client with the associated media frame.

	startToRenderAtTime (ref. T3)
	The time when the renderer in the Split Rendering Server starts to render the associated media frame.

	sceneUpdateTime (ref. T6)
	The time when the Scene Manager starts to update the 3D scene graph according to the viewer pose and the user actions.

	serverTransmitTime (ref. T5)
	The time when the encoded rendered frame is transmitted from the split rendering server to the split rendering client.

Editor’s note: the reference time used for the timing information is for FFS.
[bookmark: _Toc151113877]9.3.2.2	Latency metrics
To enable good XR experiences, it is relevant to monitor latencies such as the motion-to-photon and the pose-to-render-to-photon.
Beyond the sense of presence and immersiveness, the age of the content and user interaction delay are of the uttermost importance for immersive and non-immersive interactive experiences, i.e., experiences for which the user interaction with the scene impacts the content of scene (such as online gaming).
Table 9.3.2-1 provides timing information collected to compute the latency metrics at the split rendering client or split rendering server endpoint.

Table 9.3.2-1: Timing information for latency metrics
	Source endpoint
	Timing information
	Definition

	Split Rendering Client
	estimatedAtTime
(ref. T1)
	Ref. Table 8.3.Y.3-1

	Split Rendering Client
	lastChangeTime
	The time the user action is made. It corresponds to the lastChangeTime field defined in the action format in Table 9.

	Split Rendering Server
	sceneUpdateTime
(ref. T6)
	Ref. Table 8.3.Y.3-1

	Split Rendering Server
	startToRenderAtTime
(ref. T3)
	Ref. Table 8.3.Y.3-1

	Split Rendering Client
	actualDisplayTime
(ref. T2.actual)
	The actual display time of the rendered frame in the swapchain. The estimation of the actual display time is available through the XR runtime.

	Split Rendering Client
	sendingAtTime
(ref. T1’)
	Ref. Table 8.3.Y.3-1

	Split Rendering Server
	serverTransmitTime (ref. T5)
	Ref. Table 8.3.Y.3-1

	Split Rendering Client
	receptionTime
	The time when the data is received by the split rendering client.

The latency metrics are specified in Table 9.3.2-2. Latency calculation formulas are defined using the timing information defined in Table 9.3.2-1.

Table 9.3.2-2: Latency metrics
	Latency metric
	Description

	poseToRenderToPhoton
	The time duration, in units of milliseconds, between the time to provide the pose information from the XR runtime to the renderer (the renderer uses this pose to generate the rendered frame) and the display time of the rendered frame.
It can be computed as follows:
actualDisplayTime – estimatedAtTime

	renderToPhoton
	The time duration, in units of milliseconds, between the start of the rendering by the Presentation Engine and the display time of the rendered frame.
It can be computed as follows:
actualDisplayTime – startToRenderAtTime

	roundtripInteractionDelay
	The time duration, in units of milliseconds, between the time a user action is initiated and the time the action is presented to the user.
It can be computed as follows:
actualDisplayTime – lastChangeTime

	userInteractionDelay
	The time duration, in units of milliseconds, between the time a user action is initiated and the time the action is taken into account by the content creation engine in the scene manager.
It can be computed as follows:
sceneUpdateTime – lastChangeTime

	ageOfContent
	The time duration, in units of milliseconds, between the time the content is created in the scene by the Scene Manager and the time it is presented to the user.
It can be computed as follows:
actualDisplayTime – sceneUpdateTime

	sceneUpdateDelay
	The time duration, in units of milliseconds, spent by the Scene Manager to update the scene graph.
It can be computed as follows:
startToRenderAtTime – sceneUpdateTime

	metadataDelay
	The time duration, in units of milliseconds, between the time the split rendering metadata message is sent from the split rendering client and the time the split rendering server start to render using that metadata.
It can be computed as follows:
startToRenderAtTime – sendingAtTime

	dataFrameDelay
	The time duration, in units of milliseconds, spent to transmit the media rendered frame from the split rendering server to the split rendering client.
It can be computed as follows:
receptionTime – serverTransmitTime

[bookmark: _Toc151113878]10 	Security and Privacy Aspects
[bookmark: _Toc151113879]10.1 	Security
Signaling for session establishment and exchange of application-specific messages shall use a secure transport channel based on WebSockets as defined in TS26.113.
Media transport shall be secured by the usage of WebRTC.
[bookmark: _Toc151113880]10.2 	Privacy
Editor’s Note: Privacy considerations are FFS.

[bookmark: _Toc151113881]Annex A	 (Informative):
Implementation Guidelines
[bookmark: _Toc151113882]Annex A.1 Guidelines for Application Developers

[bookmark: _Toc151113883]Annex A.2 Guidelines for Split Rendering MSE Implementers
[bookmark: _Toc151113884]A.2.1	Guidelines for implementers of the Split Rendering Server
If the use of eye gaze tracking is activated, the SRS may use this confidence information to perform foveated rendering. In foveated rendering, areas of the picture are encoded with a higher SNR quality than other areas, to match the user’s current gaze.
With gaze predictions, the SRS should create an importance map for the picture based on the confidence values associated with the gaze predictions. Additionally, the SRS may also use other information to produce the importance map, such as content Regions of Interest. A low confidence score may indicate that the estimation on the device is not adequate. In this case the server can try to re-estimate the pose prediction prior to rendering.

This importance map is passed to the encoder to properly allocate bits for the encoding of the picture.

[bookmark: _Toc151113885]Annex A.3 Conformance Testing

[bookmark: tsgNames][bookmark: startOfAnnexes]

[bookmark: _Toc151113886]Annex B (normative):
IDL Definition of Client API
The Split Rendering Client API is defined using the IDL syntax (according to ISO/IEC 19516) as follows:
	interface SplitRenderer {
	readonly attribute SRState state;

	attribute EventHandler onstatechange;
	attribute EventHandler onerror;
	attribute EventHandler onqualitychange;

	void SplitRenderer(in string application_id, in string aspId, in map settings);	void connect(in map settings, in List criteria);
	void disconnect(string reason);
	Metrics getMetrics(sequence<string> metrics);
};

[bookmark: _Toc151113887]Annex C (normative):
Split Rendering Profiles
[bookmark: _Toc151113888]C.1 	Pixel Streaming Profile
[bookmark: _Toc151113889]C.1 	Introduction
This Annex defines split rendering profiles to define requirements for SRC and SRS for different scenarios. At this stage the following two profiles are defined:
· 2D Pixel Streaming Profile in clause C.2 to support split rendering to 2D screens, devices of type 3 in TS 26.119 [4].
· 3D Pixel Streaming Profile in clause C.3 to support split rendering to MeCAR glasses to devices of type 1, 2, and 4 in TS 26.119 [4].
[bookmark: _Toc151113890]C.2 	2D Pixel Streaming Profile
[bookmark: _Toc130977743][bookmark: _Toc151113891]C.2.1	Introduction
This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support split rendering to 2D screens.
[bookmark: _Toc151113892]C.2.2	SRC Capabilities
[bookmark: _Toc151113893]C.2.2.1	Overview
Requirements for UE-based SRC functionalities for following functions are defined in this clause:
-	Media Decoding
-	Media Encoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study. For example, it would indicate that the output device is an HMD that supports 2 views and stereo audio.
[bookmark: _Toc143758582][bookmark: _Toc130977744][bookmark: _Toc151113894]C.2.2.2 	Media Capabilities
The SRC shall support the media capabilities of a device type 3 as defined in TS 26.119 [4], clause 10.4.
C.2.2.2	Video decoding
Based on the definitions in MeCAR PD, clause 6.6, an SRC shall support
-	the AVC-UHD-Dec decoding capability.
-	the HEVC-UHD-Dec decoding capability.
An SRC should support
-	the AVC-UHD-Dec-4 decoding capability.
-	the HEVC-UHD-Dec-4 decoding capability.
-	the UHD-Dec-4 decoding capability.
A SRC Client may support
-	the HEVC-8K-Dec decoding capability.
-	the 8K-Dec-8 decoding capability.
[bookmark: _Toc130977745][bookmark: _Toc151113895]C.2.2.3	Audio and Speech decoding
The SRC client shall support the capabilities required for speech and audio decoding as defined in clause 6.7.2 (of MeCAR document).
[bookmark: _Toc151113896]C.2.2.4	Video encoding
Editor’s Note: Video Encoding Capabilities are for further study
[bookmark: _Toc151113897]C.2.2.5	Audio and Speech encoding
Editor’s Note: Audio and Video Encoding Capabilities are for further study
[bookmark: _Toc151113898][bookmark: _Toc130977747]C.2.2.36 	Metadata Formats
XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be rendered. The pose predication shall be formatted according to clause 8.2.2.2.
XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time interval. The action information shall be formatted according to clause 8.2.2.3.
[bookmark: _Toc151113899]C.2.3	SRS Capabilities
[bookmark: _Toc151113900]C.2.3.1	Overview
Requirements for network-based SRS functionalities for following functions are defined in this clause:
-	Media Encoding
-	Media Decoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the SRC are shared with the SRC prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study.
[bookmark: _Toc151113901]C.2.3.2	Video encoding
Editor’s Note: Video Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc151113902]C.2.3.3	Audio and Speech encoding
Editor’s Note: Audio and Speech Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc151113903]C.2.3.4	Video decoding
Editor’s Note: Video Decoding Capabilities are for further study
[bookmark: _Toc151113904]C.2.3.5	Audio and Speech decoding
Editor’s Note: Audio and Video Decoding Capabilities are for further study
[bookmark: _Toc151113905]C.2.3.6 	Metadata Formats
Editor’s Note: Metadata capabilities are for further study to match the SRC capabilities.
[bookmark: _Toc151113906]C.3 	3D Pixel Streaming Profile
[bookmark: _Toc151113907]C.3.1	Introduction
This profile defines required capabilities for UE-based SRC functionalities as network-side SRS capabilities to support MeCAR devices.
[bookmark: _Toc151113908]C.3.2	SRC Capabilities
[bookmark: _Toc151113909]C.3.2.1	Overview
Requirements for UE-based SRC functionalities for following functions are defined in this clause:
-	Media Decoding
-	Media Encoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the receiving UE are shared with the split rendering server prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study. For example, it would indicate that the output device is an HMD that supports 2 views and stereo audio.
[bookmark: _Toc143758598][bookmark: _Toc151113910]C.3.2.2 	Media Capabilities
The SRC shall support the media capabilities of a device type 1 as defined in TS 26.119 [4], clause 10.2.
If the device is a device type 2 as defined in TS 26.119 [4], clause 10.4, it shall also support the media capabilities of a device type 2 as defined in TS 26.119 [4], clause 10.3.

If the device is a device type 4 as defined in TS 26.119 [4], clause 10.5, it shall also support the media capabilities of a device type 2 as defined in TS 26.119 [4], clause 10.5.

C.3.2.2	Video decoding
Based on the definitions in MeCAR PD, clause 6.6, an SRC shall support
-	the AVC-UHD-Dec decoding capability.
-	the HEVC-UHD-Dec decoding capability.
-	the AVC-UHD-Dec-4 decoding capability.
-	the HEVC-UHD-Dec-4 decoding capability.
-	the UHD-Dec-4 decoding capability.
A SRC Client may support
-	the HEVC-8K-Dec decoding capability.
-	the 8K-Dec-8 decoding capability.
[bookmark: _Toc151113911]C.3.2.3	Audio and Speech decoding
The SRC client shall support the capabilities required for speech and audio decoding as defined in clause 6.7.2 (of MeCAR document).
[bookmark: _Toc151113912]C.3.2.4	Video encoding
Editor’s Note: Video Encoding Capabilities are for further study
[bookmark: _Toc151113913]C.3.2.5	Audio and Speech encoding
Editor’s Note: Audio and Speech Encoding Capabilities are for further study
[bookmark: _Toc151113914]C.3.2.36 	Metadata Formats
XR-Pose-Cap 1: the SRC shall be able to retrieve one or more pose predictions for each view and for every frame to be rendered. The pose predication shall be formatted according to clause 8.2.2.2.
XR-Pose-Cap 2: the SRC shall be able to retrieve and collect the user actions that occurred during an identified time interval. The action information shall be formatted according to clause 8.2.2.3.
[bookmark: _Toc151113915]C.3.3	SRS Capabilities
[bookmark: _Toc151113916]C.3.3.1	Overview
Requirements for network-based SRS functionalities for following functions are defined in this clause:
-	Media Encoding
-	Media Decoding
-	Metadata Formats
Editor’s Note: Additional Media Capabilities are for further study
The capabilities of the SRC are shared with the SRC prior to the start of the split rendering session.
Editor’s Note: Signaling of capabilities and configurations are for further study.
[bookmark: _Toc151113917]C.3.3.2	Video encoding
Editor’s Note: Video Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc151113918]C.3.3.3	Audio and Speech encoding
Editor’s Note: Audio and Speech Encoding capabilities is for further study to match the SRC capabilities.
[bookmark: _Toc151113919]C.3.3.4	Video decoding
Editor’s Note: Video Decoding Capabilities are for further study
[bookmark: _Toc151113920]C.3.3.5	Audio and Speech decoding
Editor’s Note: Audio and Speech Decoding Capabilities are for further study
[bookmark: _Toc151113921]C.3.3.6 	Metadata Formats
Editor’s Note: Metadata capabilities are for further study to match the SRC capabilities.
[bookmark: _Toc151113922]C.4	 	Description of the Rendering Format for Pixel Streaming Profiles
[bookmark: _Toc151113923]C.4.1 	General
In response to the Split Rendering Configuration message, the SRS shall reply with a description of the rendering format.
The rendering format description shall be a compliant glTF 2.0 [2] file. The file may include references to the buffer streams that contain the components of the rendered media.
Both SRS and SRC shall comply with the SD-Rendering-Ext1 capability as defined in TS26.119 [4].
In addition, both SRS and SRC shall support for referencing WebRTC RTP streams and data channels as described in [3].
An SRC that complies with the 3D Pixel Streaming profile shall support the 3GPP_node_prerendered extension as defined in C.4.2.
[bookmark: _Toc151113924]C.4.2	3D Pixel Streaming Profile-specific glTF Extension
The 3GPP_node_prerendered extension is an extension at the node level to describe that the corresponding node is accessible as a prerendered content. The 3GPP_node_prerendered extension should be associated with the root node of the scene. It constitutes an alternative representation of the node and all its children. As such, if present, if the client decides to use the pre-rendered representation, it shall completely ignore the mesh description of the node and its children nodes.
The 3GPP_node_prerendered supports multiple 2D video textures and audio sources that correspond to the rendered views and audio content.
The semantics of the 3GPP_node_prerendered are provided by the following table:
	Name
	Type
	Usage
	Default
	Description

	visual
	Object
	O
	N/A
	An object that describes the rendered visual components of the content.

	audio
	Object
	O
	N/A
	An object that describes the rendered audio components of the content.

The description of the visual object is provided in the following table:
	Name
	Type
	Usage
	Default
	Description

	visual_configuration
	enum
	O
	VIEW_STEREO
	An indication of the view configuration for the pre-rendered media. It can either be VIEW_MONO or VIEW_MONO.

	Views
	array(Object)
	M
	
	An array that describes the views of the prerendered content.

	 eye_visibility
	enum
	M
	
	The visibility of the current view. This can take one of the following values: “EYE_LEFT”, EYE_RIGHT”, “EYE_BOTH”, or “EYE_NONE”. EYE_NONE is used for depth and transparency components.

	 composition_layers
	array(number)
	M
	
	An array of accessors identifiers that each corresponds to a composition layer of the parent view.

	 composition_layer_type
	array(enum)
	M
	
	For each of the composition layers of the parent view, this indicates the type of that composition layer. The values should be provided in the same order as the composition_layers. The allowed values are: “COMPOSITION_LAYER_PROJECTION”, “COMPOSITION_LAYER_QUAD”, “COMPOSITION_LAYER_EQUIRECTANGULAR”, “COMPOSITION_LAYER_CUBEMAP”, “COMPOSITION_LAYER_DEPTH”, and “COMPOSITION_LAYER_OCCUPANCY”.

The description of the audio object in the prerendered media extension is provided in the following table:
	Name
	Type
	Usage
	Default
	Description

	type
	enum
	O
	AUDIO_STEREO
	describes the format of the prerendered audio content. The type can take one of the following values: “AUDIO_MONO”, “AUDIO_STEREO”, and “AUDIO_HOA”.

	Components
	array(number)
	M
	
	provides a list of the accessors that point to the media streams associated with rendered audio content.

The JSON scheme for the 3GPP_node_prerendered is as follows:
	{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered",
 "type" : "object",
 "description": "glTF extension to described pre-rendered content",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "visual": {
 "$ref": "3GPP_node_rendered.visual.schema.json",
 "description": "visual streamed buffers"
 },
 "audio": {
 "$ref": "3GPP_node_rendered.audio.schema.json",
 "description": "audio streamed buffers"
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["visual"]
}
{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.visual",
 "type" : "object",
 "description": "Object representing the visual rendered media",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "view_configuration": {
 "type": "string",
 "description": "the view configuration used for the session",
 "gltf_detailedDescription": "the view configuration used for the session",
 "enum": ["VIEW_MONO", "VIEW_STEREO"]
 },
 "views": {
 "type": "array",
 "description": "array of layer view objects",
 "gltf_detailedDescription": "",
 "items": {
 "$ref": "3GPP_node_rendered.visual.view.schema.json"
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["views"]
}

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.visual.view",
 "type" : "object",
 "description": "A representation of a rendered view",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "eye_visibility": {
 "type": "string",
 "description": "the visibility of the current view",
 "enum": ["EYE_LEFT", "EYE_RIGHT", "EYE_BOTH", "EYE_NONE"]
 },
 "composition_layers": {
 "type": "array",
 "description": "array of timed accessors that carry the streamed buffers for each composition layer of the view",
 "items": {
 "type": "integer"
 },
 "minItems": 1
 },
 "composition_layer_type": {
 "type": "array",
 "items": {
 "type": "string",
 "description": "the type of composition layer in the array of composition layers with the same array index",
 "gltf_detailedDescription": "the type of composition layer in the array of composition layers with the same array index",
 "enum": ["COMPOSITION_LAYER_PROJECTION", "COMPOSITION_LAYER_QUAD", "COMPOSITION_LAYER_EQUIRECTANGULAR", "COMPOSITION_LAYER_CUBEMAP", "COMPOSITION_LAYER_DEPTH", "COMPOSITION_LAYER_OCCUPANCY"]
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["views"]
}

{
 "$schema" : "http://json-schema.org/draft-07/schema",
 "title" : "3GPP_node_rendered.audio",
 "type" : "object",
 "description": "Object representing the audio rendered media",
 "allOf": [{ "$ref": "glTFProperty.schema.json"}],
 "properties" : {
 "type": {
 "type": "string",
 "description": "the type of the rendered audio",
 "gltf_detailedDescription": "the type of the rendered audio",
 "enum": ["AUDIO_MONO", "AUDIO_STEREO", "AUDIO_HOA"],
 "default": "AUDIO_STEREO"
 },
 "components": {
 "type": "array",
 "description": "array of timed accessors to audio component buffers",
 "items": {
 "type": "integer"
 },
 "minItems": 1
 },
 "extensions": {},
 "extras": {}
 },
 "required": ["components"]
}

[bookmark: _Toc151113925]
Annex X (informative):
Change history

	[bookmark: historyclause]Change history

	Date
	Meeting
	TDoc
	CR
	Rev
	Cat
	Subject/Comment
	New version

	April 2023
	123-e
	S4-230726
	
	
	
	Improvements and Corrections to edge and dynamic policy procedures in SR
	

	May 2023
	124
	S4-121075
	
	
	
	General updates to TS26.565
	

	May 2023
	124
	S4-121004
	
	
	
	SR Rendering API
	

	May 2023
	124
	S4-231005
	
	
	
	Pixel Streaming Media Profile
	

	May 2023
	124
	S4-231003
	
	
	
	pCR on signaling for SR session control
	

	May 2023
	124
	S4-230925
	
	
	
	On SR configuration API and view configuration
	

	August 2023
	125
	S4-231449
	
	
	
	[SR_MSE] Transport protocols
	

	August 2023
	125
	S4-231518
	
	
	
	[SR_MSE] Rendering optimization
	

	August 2023
	125
	S4-231432
	
	
	
	[SR_MSE] Updates to Media Capabilities
	

	August 2023
	125
	S4-231324
	
	
	
	Split rendering Metrics
	

	August 2023
	125
	S4-231434
	
	
	
	Editorial corrections on SR MSE architectures
	

	November 2023
	126
	S4-231909
	
	
	
	Editor’s updates
	0.7.0

	November 2023
	126
	S4-231911
	
	
	
	Added pose interval to configuration
	0.7.0

	November 2023
	126
	S4-231912
	
	
	
	Added signaling of SR profile in configuration
	0.7.0

	November 2023
	126
	S4-231914
	
	
	
	Clarified session setup and configuration
	0.7.0

	November 2023
	126
	S4-231796
	
	
	
	Added protocol stack
	0.7.0

	November 2023
	126
	S4-232007
	
	
	
	Timing information in QoE metrics
	0.7.0

	November 2023
	126
	S4-231800
	
	
	
	Made fov optional in pose format
	0.7.0

	November 2023
	126
	S4-231802
	
	
	
	Defined output signaling format for pixel streaming
	0.7.0

	November 2023
	126
	S4-232011
	
	
	
	Updated media profiles for pixel streaming profile
	0.7.1

3GPP
oleObject1.bin
[image: image1.png]~

5G

image2.emf

oleObject2.bin
[image: image1.png]=

A GLOBAL INITIATIVE

image3.emf
DN

Split-Rendering

Server

(SRS)

Application

Provider

RTC

AF

UE

Application

External

RTC-8

Split-

Rendering

Client (SRC)

Media

Session

Handler

RTC-1

RTC-3

RTC-4

RTC-5

RTC-6

Exposed API

In SR-MSE scope

Not in SR-MSE scope

RTC-7

Split-

Rendering

XR

Runtime

RTC-2

Microsoft_Visio_Drawing1.vsdx
DN
Split-Rendering Server
(SRS)
Application Provider
RTC
AF
UE
Application
External
RTC-8
Split-Rendering Client (SRC)
Media Session Handler
RTC-1
RTC-3
RTC-4
RTC-5
RTC-6
Exposed API
In SR-MSE scope
Not in SR-MSE scope
RTC-7
Split-Rendering
XR
Runtime

RTC-2

image4.emf
UE

RTC AS

Application
Provider
RTC-4m Split Rendering ¥
) > Server P
(SRS) RTC-2
» SWAP Server
RTC-4s
. Other

Functions

UE

RTC AS

Split Rendering

Server

(SRS)

SWAP Server

Other

Functions

Application

Provider

RTC-4s

RTC-4m

RTC-2

image5.wmf
U

E

R

T

C

A

S

R

T

C

A

F

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

R

T

C

-

1

/

3

/

5

:

E

d

g

e

r

e

s

o

u

r

c

e

p

r

o

v

i

s

i

o

n

i

n

g

&

c

o

n

f

i

g

u

r

a

t

i

o

n

(

T

S

2

6

.

5

0

6

6

.

1

/

6

.

2

&

5

.

3

)

O

p

t

i

o

n

a

l

2

:

R

T

C

-

1

/

5

:

S

p

l

i

t

-

r

e

n

d

e

r

i

n

g

p

r

o

v

i

s

i

o

n

i

n

g

(

5

.

2

.

1

.

1

)

3

:

R

T

C

-

4

:

S

p

l

i

t

-

R

e

n

d

e

r

i

n

g

S

e

s

s

i

o

n

S

e

t

u

p

(

5

.

2

.

2

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject3.bin

image6.wmf
A

p

p

l

i

c

a

t

i

o

n

M

e

d

i

a

S

e

s

s

i

o

n

H

a

n

d

l

e

r

/

D

e

v

i

c

e

F

u

n

c

t

i

o

n

s

S

p

l

i

t

-

R

e

n

d

e

r

i

n

g

C

l

i

e

n

t

(

S

R

C

)

S

p

l

i

t

-

R

e

n

d

e

r

i

n

g

S

e

r

v

e

r

(

S

R

S

)

R

T

C

A

F

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

R

T

C

-

1

:

P

r

o

v

i

s

i

o

n

i

n

g

2

:

R

T

C

-

8

:

A

p

p

l

i

c

a

t

i

o

n

i

n

f

o

r

m

a

t

i

o

n

a

c

q

u

i

s

i

t

i

o

n

(

n

o

t

i

n

s

c

o

p

e

)

3

:

R

T

C

-

6

:

R

e

q

u

e

s

t

f

o

r

s

p

l

i

t

r

e

n

d

e

r

i

n

g

4

:

R

T

C

-

7

:

D

i

s

c

o

v

e

r

S

R

S

5

:

R

T

C

-

4

s

:

N

e

g

o

t

i

a

t

e

s

p

l

i

t

r

e

n

d

e

r

i

n

g

s

e

s

s

i

o

n

N

e

g

o

t

i

a

t

i

o

n

6

:

S

t

a

r

t

s

p

l

i

t

-

r

e

n

d

e

r

i

n

g

p

r

o

c

e

s

s

7

:

R

T

C

-

4

s

:

E

s

t

a

b

l

i

s

h

W

e

b

R

T

C

s

e

s

s

i

o

n

f

o

r

s

p

l

i

t

r

e

n

d

e

r

i

n

g

8

:

R

T

C

-

6

:

i

n

f

o

r

m

a

t

a

p

p

l

i

c

a

t

i

o

n

a

b

o

u

t

s

t

a

t

e

c

h

a

n

g

e

9

:

R

T

C

-

4

m

:

s

e

n

d

u

p

l

i

n

k

m

e

t

a

d

a

t

a

1

0

:

R

T

C

-

4

m

:

s

e

n

d

r

e

n

d

e

r

e

d

m

e

d

i

a

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject4.bin

image7.wmf
X

R

R

u

n

t

i

m

e

S

p

l

i

t

R

e

n

d

e

r

i

n

g

C

l

i

e

n

t

S

c

e

n

e

M

a

n

a

g

e

r

(

t

h

i

n

P

r

e

s

e

n

t

a

t

i

o

n

E

n

g

i

n

e

)

X

R

S

o

u

r

c

e

M

a

n

a

g

e

m

e

n

t

M

e

d

i

a

A

c

c

e

s

s

F

u

n

c

t

i

o

n

S

p

l

i

t

R

e

n

d

e

r

i

n

g

S

e

r

v

e

r

1

:

c

r

e

a

t

e

a

s

p

l

i

t

r

e

n

d

e

r

i

n

g

s

e

s

s

i

o

n

2

:

s

e

n

d

d

e

s

c

r

i

p

t

i

o

n

o

f

s

p

l

i

t

r

e

n

d

e

r

i

n

g

o

u

t

p

u

t

3

:

e

s

t

a

b

l

i

s

h

t

r

a

n

s

p

o

r

t

c

o

n

n

e

c

t

i

o

n

s

e

.

g

.

W

e

b

R

T

C

s

e

s

s

i

o

n

4

:

r

e

c

e

i

v

e

p

o

s

e

i

n

f

o

r

m

a

t

i

o

n

a

n

d

u

s

e

r

a

c

t

i

o

n

s

5

:

t

r

a

n

s

m

i

t

p

o

s

e

i

n

f

o

r

m

a

t

i

o

n

a

n

d

u

s

e

r

a

c

t

i

o

n

s

6

:

p

e

r

f

o

r

m

r

e

n

d

e

r

i

n

g

f

o

r

r

e

q

u

e

s

t

e

d

p

o

s

e

(

s

)

7

:

s

e

n

d

n

e

x

t

b

u

f

f

e

r

f

r

a

m

e

8

:

d

e

c

o

d

e

a

n

d

p

r

o

c

e

s

s

b

u

f

f

e

r

f

r

a

m

e

9

:

p

a

s

s

r

a

w

b

u

f

f

e

r

f

r

a

m

e

s

f

o

r

d

i

s

p

l

a

y

1

0

:

c

o

m

p

o

s

e

a

n

d

r

e

n

d

e

r

f

r

a

m

e

R

e

n

d

e

r

i

n

g

L

o

o

p

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject5.bin

image8.wmf
X

R

R

u

n

t

i

m

e

S

p

l

i

t

R

e

n

d

e

r

i

n

g

C

l

i

e

n

t

S

c

e

n

e

M

a

n

a

g

e

r

(

t

h

i

n

P

r

e

s

e

n

t

a

t

i

o

n

E

n

g

i

n

e

)

X

R

S

o

u

r

c

e

M

a

n

a

g

e

m

e

n

t

M

e

d

i

a

A

c

c

e

s

s

F

u

n

c

t

i

o

n

S

p

l

i

t

R

e

n

d

e

r

i

n

g

S

e

r

v

e

r

1

:

c

r

e

a

t

e

a

s

p

l

i

t

r

e

n

d

e

r

i

n

g

s

e

s

s

i

o

n

2

:

s

e

n

d

d

e

s

c

r

i

p

t

i

o

n

o

f

s

p

l

i

t

r

e

n

d

e

r

i

n

g

o

u

t

p

u

t

3

:

e

s

t

a

b

l

i

s

h

t

r

a

n

s

p

o

r

t

c

o

n

n

e

c

t

i

o

n

s

e

.

g

.

W

e

b

R

T

C

s

e

s

s

i

o

n

S

e

s

s

i

o

n

S

e

t

u

p

a

n

d

n

e

g

o

t

i

a

t

i

o

n

4

:

r

e

c

e

i

v

e

p

o

s

e

i

n

f

o

r

m

a

t

i

o

n

a

n

d

u

s

e

r

a

c

t

i

o

n

s

5

:

t

r

a

n

s

m

i

t

p

o

s

e

i

n

f

o

r

m

a

t

i

o

n

a

n

d

u

s

e

r

a

c

t

i

o

n

s

6

:

p

e

r

f

o

r

m

r

e

n

d

e

r

i

n

g

f

o

r

r

e

q

u

e

s

t

e

d

p

o

s

e

(

s

)

7

:

s

e

n

d

n

e

x

t

b

u

f

f

e

r

f

r

a

m

e

8

:

d

e

c

o

d

e

a

n

d

p

r

o

c

e

s

s

b

u

f

f

e

r

f

r

a

m

e

9

:

p

a

s

s

r

a

w

b

u

f

f

e

r

f

r

a

m

e

s

f

o

r

d

i

s

p

l

a

y

1

0

:

c

o

m

p

o

s

e

a

n

d

r

e

n

d

e

r

f

r

a

m

e

R

e

n

d

e

r

i

n

g

L

o

o

p

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject6.bin

image9.emf

image10.emf
RTC-4s

SWAP (TS 26.113)

SR Signaling Protocol

Configuration

Format

Description

Format

RTC-4m

Media Transport

(RFC8834)

Data Channel

(RFC8831)

Media Data Stream

Format

Metadata Data

Channel Message

Format

Media Formats Metadata Formats

Signalling Path Media Path

Data Metadata

Session Setup and

negociation

Microsoft_Visio_Drawing.vsdx
RTC-4s
SWAP (TS 26.113)
SR Signaling Protocol
Configuration Format
Description Format
RTC-4m
Media Transport
(RFC8834)
Data Channel
(RFC8831)
Media Data Stream Format
Metadata Data Channel Message Format
Media Formats
Metadata Formats
Signalling Path
Media Path
Data
Metadata
Session Setup and
negociation

image11.wmf
S

R

C

S

W

A

P

S

e

r

v

e

r

S

R

S

1

:

A

p

p

-

s

p

e

c

i

f

i

c

m

e

s

s

a

g

e

o

n

S

R

c

o

n

f

i

g

u

r

a

t

i

o

n

2

:

m

a

t

c

h

e

n

d

p

o

i

n

t

3

:

f

o

r

w

a

r

d

a

p

p

-

s

p

e

c

i

f

i

c

S

R

c

o

n

f

i

g

u

r

a

t

i

o

n

m

e

s

s

a

g

e

4

:

a

c

k

n

o

w

l

e

d

g

e

m

e

s

s

a

g

e

f

o

r

w

a

r

d

e

d

5

:

p

r

o

c

e

s

s

S

R

c

o

n

f

i

g

u

r

a

t

i

o

n

6

:

A

p

p

-

s

p

e

c

i

f

i

c

m

e

s

s

a

s

g

e

o

n

r

e

n

d

e

r

i

n

g

d

e

s

c

r

i

p

t

i

o

n

7

:

f

o

r

w

a

r

d

a

p

p

-

s

p

e

c

i

f

i

c

m

e

s

s

a

g

e

o

n

r

e

n

d

e

r

i

n

g

d

e

s

c

r

i

p

t

i

o

n

8

:

a

c

k

n

o

w

l

e

d

g

e

m

e

s

s

a

g

e

f

o

r

w

a

r

d

e

d

9

:

p

r

o

c

e

s

s

r

e

n

d

e

r

i

n

g

d

e

s

c

r

i

p

t

i

o

n

1

0

:

c

o

n

n

e

c

t

m

e

s

s

a

g

e

w

i

t

h

S

D

P

o

f

f

e

r

1

1

:

a

c

k

n

o

w

l

e

d

g

e

m

e

s

s

a

g

e

f

o

r

w

a

r

d

e

d

1

2

:

a

c

c

e

p

t

m

e

s

s

a

g

e

w

i

t

h

S

D

P

a

n

s

w

e

r

1

3

:

a

c

k

n

o

w

l

e

d

g

e

m

e

s

s

a

g

e

f

o

r

w

a

r

d

e

d

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

8

.

4

oleObject7.bin

image1.emf

