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1	Introduction
During SA4#124 a Revised Study Item Description on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” in S4-231070 was agreed and afterwards approved in by SA#100 in SP-230538.
The revised study item description adds an objective related to feasibility studies and evaluations for study item, for which related content and technologies are documented in this Evaluation Permanent Document and TR 26.8xx.
The related objective is as follows:
· Establish an evaluation framework and use it for the evaluation of scenarios collected for the study. This includes the collection of scenarios based on the use cases identified, and defining a scenario template for the description of scenarios for the evaluation. The evaluation framework to document common testbed architectures and anchors, metrics (e.g. AI/ML task metrics, feasibility/performance metrics), and specific details (such as test configuration and constraints) for each scenario evaluation.
The evaluation framework is designed to accommodate different scenarios for the different use cases for the usage and deployment of AL/ML over 5G networks. A scenario describes the evaluation for a specific use case. Use cases have been identified as part of the SA1 study and a selected subset is documented in TR 26.927.
Editor’s Note: v0.1 of this document is lifted from clause 7 of Permanent Document v0.8 (S4-231011). Highlighted clause references in clause 10 of this document are cross references which need to be revised.
2	General aspects regarding the AI/ML software framework
For AI/ML evaluations, the following data is needed for the agreed scenarios:
· Test material (E.g. media datasets) including labels/annotations
· AI/ML models
· Md5 files for the test metrical and AI/ML models
· Scripts implementing the evaluation pipelines
· Code of (potential) optimization/compression methods
· Dockerfiles (specific version to be tracked)
· Definitions of the metrics for evaluation

For reproducibility on different systems, Dockerfiles implementing the evaluation pipelines should be provided. Dockerfiles, datasets, scripts, and code should be provided in a way that allows building Docker images from scratch. To avoid Docker images getting too large due to datasets, an image per scenario might be considered.

Test material might be referenced on an external server or might be copied to a common local server. Jsonfiles for annotations might be used for online documentation of the available data.

Potential options to host scripts and data are:
· Private GitHub (Imed 1st option and 5G-MAG eventually) no software possible without licensing aspects clarified
· 3GPP GitHub (maybe for scripts, only small files)
· 5G-MAG
· Akamai large file size
· Imed (1st option, https://github.com/ibouazizi/sa4aiml)

Considering licensing aspects, the evaluation software needs to be BSD-3 approved by some members.

Considering reproducibility, cross checks validating the accuracy of results should be performed and Md5 files should be provided. The tolerance for each metric needs to be defined for validation of crosscheck results.

2.1	Currently available scripts / containers
This section lists the currently available scripts and containers that might be used as basis for further development of the AI/ML evaluation framework.
2.1.1	Docker container with scripts and datasets
A docker image container is available to collect all scripts and datasets that will be used as part of the SA4 evaluation framework for FS_AI4Media study.
The docker container is an Ubuntu image with an initial installation of a python environment that includes the key deep learning frameworks: PyTorch and Tensorflow2.
The docker image is currently hosted on a personal server under the following URL:
	https://bouazizi.dev/aiml/aiml_docker_image_05152023.tar.gz 


A more suitable location to host the docker image should be arranged.
The container image is built on an Ubuntu 22.04 base image and can be loaded as follows:
	docker load -i aiml_docker_image_05152023.tar


 The container may leverage underlying GPUs for better inference. If the host machine is equipped with a suitable GPU, then it is recommended to first run the following command:
	apt install -y nvidia-docker2


It is assumed here that the host machine is running an Ubuntu distribution.
To run the container, the following command should be executed:
	docker run -it --gpus all -t aiml aiml_docker_image_05152023


2.1.1.1	Datasets and scripts
The container comes with an image detection dataset, namely the SFU-HW-Objects dataset and its associated annotations. 
The video sequences are encoded in HEVC lossless INTRA-only mode and are available under the videos subfolder. The following table shows the list of video sequences:

	Class 
	Sequence name 
	Width x Height 
	Frame count 
	# Object Classes 

	A 
	Traffic 
	2560x1600 
	150 
	2 

	A 
	PeopleOnStreet 
	2560x1600 
	150 
	4 

	B 
	BQTerrace 
	1920x1080 
	600 
	9 

	B 
	BasketballDrive 
	1920x1080 
	500 
	4 

	B 
	Cactus 
	1920x1080 
	500 
	1 

	B 
	Kimono 
	1920x1080 
	240 
	2 

	B 
	ParkScene 
	1920x1080 
	240 
	4 

	C 
	BQMall 
	832x480 
	600 
	3 

	C 
	BasketballDrill 
	832x480 
	500 
	4 

	C 
	PartyScene 
	832x480 
	500 
	6 

	C 
	RaceHorses 
	832x480 
	300 
	2 

	D 
	BQSquare 
	416x240 
	600 
	7 

	D 
	BasketballPass 
	416x240 
	500 
	4 

	D 
	BlowingBubbles 
	416x240 
	500 
	3 

	D 
	RaceHorses 
	416x240 
	300 
	2 

	E 
	KristenAndSara 
	1280x720 
	600 
	3 

	E 
	Johnny 
	1280x720 
	600 
	3 

	E 
	FourPeople 
	1280x720 
	600 
	4 



The annotations can be found under the ground-truth subfolder. These are one text file per frame of the video, where each file provides the ground truth annotations. 
The annotation files have the following format per line:
	<object_label> <box_topleft_x> <box_topleft_y> <box_width> <box_height>



The predictions are expected to have the following format:
	<object_label> <prediction_confidence> <box_topleft_x> <box_topleft_y> <box_width> <box_height>



The labels that are supported by this dataset are the following:

	Class ID 
	Object 
	Class ID 
	Object 
	Class ID 
	Object 

	0 
	Person 
	17 
	Horse 
	56 
	Chair 

	1 
	Bicycle 
	24 
	Backpack 
	58 
	Potted plant 

	2 
	Car 
	25 
	Umbrella 
	60 
	Dining table 

	5 
	Bus 
	26 
	Handbag 
	63 
	Laptop 

	7 
	Truck 
	27 
	Tie 
	67 
	Cell phone 

	8 
	Boat 
	32 
	Sports ball 
	74 
	Clock 

	13 
	Bench 
	41 
	Cup 
	77 
	Teddy bear 



An inference model that uses a different class ids/labels must have its results converted into the above format prior to evaluation.
The prediction results must be stored as a 1 file per image under the predictions folder.
The dataset is courtesy of the multimedia lab of SFU (SFU, Multimedia Lab, http://multimedia.fas.sfu.ca/data/). The video sequences are MPEG-JVET video sequences.
Currently, the images comes with a few scripts, which are still under development:
· visualize.py: visualizes the annotations with the corresponding video sequence
· infer.py: a demo script that loads a torchivision trained ResNet-50 FPN model and produces predictions for a given video sequence
· map_calc.py: a script that calculates the mAP for the predictions
Please report any bugs/errors to the author.
More datasets for other tasks such as tracking will be added as part of building this evaluation framework.
2.1.2	Scripts for evaluation of compressed AI/ML model transmission
At the Video SWG post 123 online meeting, a first scenario for the evaluation framework for AI/ML was proposed in S4aV230020, which included python code implementing an initial evaluation pipeline for this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). This clause presents a revised version of this software. Key feature of the software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement. In future, the scripts will also be included to a Docker image.
2.1.2.1	Main evaluation process
Figure 2.1.2.1-1 shows the evaluation process schematically in simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).


  scenario  = scenario_factory.get( cfg )
  coder     = coder_factory.get( cfg, scenario )

  anc_model = scenario.get_model()

  results["anc_size"] = get_size( anc_model )
  results["anc_perf"] = scenario.get_performance( anc_model )

  bit_stream  = coder.encode( anc_model )
  rec_model   = coder.decode( bit_stream )

  results["rec_size"] = get_size( bit_stream )
  results["rec_perf"] = scenario.get_performance( rec_model )

  write_to_csv( results )




Figure 2.1.2.1-1: The main evaluation process (simplified pseudo-code)
2.1.2.2	Configuration
The process can be configured as shown in Table 2.1.2.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name           
	Name of the compression method
	C,R

	scenario_name        
	Name of the scenario 
	S,R

	data_set_name        
	Name of the dataset
	S,R

	model_name           
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir              
	Directory to store the csv-file the bitstreams and other output data to
	

	data_dir             
	Directory to model data and datasets  
	S

	batch_size           
	Evaluation batch size (currently ignored)
	S

	workers              
	Number of workers for the data loader
	S

	disable_progress_bar 
	Disable progress bar
	C, S

	eval_compression     
	Compress and evaluate reconstructed model
	R

	eval_anchor             
	Evaluate anchor model
	R

	download_only        
	Only download models and datasets
	


Table 2.1.2.2-1: Configuration parameters

2.1.2.3	Result csv-file
Table 2.1.2.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 2.1.2.2-1 are added.
	Name               
	Description
	Unit

	anc_size           
	Size of the anchor model 
	byte           

	rec_size           
	Size of the bitstream    
	byte           

	compress_ratio  
	rec_size / anc_size      
	-            

	metric_name        
	Name of the metric       
	-                         

	anc_perf           
	Performance of anchor model
	Unit of metric_name 

	rec_perf           
	Performance of reconstructed model
	Unit of metric_name 

	anc_eval_time      
	Evaluation time for anchor model
	seconds        

	rec_eval_time      
	Evaluation time for reconstructed model
	seconds        

	enc_time           
	Encoding time
	seconds        

	dec_time           
	Decoding time
	seconds        


[bookmark: _Ref135006258]Table 2.1.2.3-1: Results written to the csv-file

2.1.2.4	Scenario module interface
The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 2.1.2.4-1. The parameters marked with S in Table 2.1.2.2-1 are forwarded to the init function of the Scenario class within the opts variable.
class Scenario():
  def __init__(self, opts):
    self.metric_name = "MetricOfScenario"
    # Input:
    # - opts: an object with members defining the scenario configuration
    # Should:
    # - define self.metric_name as string denoting the performance metric of 
    #   the scenario, which will be forwarded to the result csv-file
    # - init object from opts

  def get_model(self, pre_trained):
    # Input:
    # - pre_trained a boolean indicating whether to provide the pre-trained model
    # Should download model data and datasets, when not already done
    # Output:
    # - If pre_trained is true, model should be a pre-trained model,
    #   Otherwise, model should be an un-initialized model
    return model

  def download_data_and_models(self):
    # Should download model data and datasets, when not already done

  def get_perf(self, model, partition, enforce_higher_is_better=False):
    # Inputs:
    # - model: the model to get the performance for
    # - partition: the partition of the dataset used for evaluation:
    #   - "test"  The test partition for final performance measurement should be used
    #   - "valid" The validation partition for data-driven methods should be used
    # - enforce_higher_is_better: if true perf should be increasing with increasing 
    #   model performance
    # Outputs:
    # - perf: the performance
    # - infer_time: the inference plus measurement time
    return perf, infer_time




Figure 2.1.2.4-1: Interface required to be implement for new scenarios

2.1.2.5	Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 2.1.2.5-1. The parameters marked with C in Table 2.1.2.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
  def __init__(self, opts ):
    self.__opts = opts
    # Inputs:
    # - opts: an object with members defining the coder configuration:
    #   - opts.file_names["bit"]: the bitstream filename
    #   - opts.file_names["dec"]: the decoded model filename
    #   - opts.scenario: the scenario object
    # Should init the coder object from the opts object

  def encode(self, model ):
    # Inputs:
    # - model: the model to encode
    # Should:
    # - Encode the state_dict() of model to the file given in
    #   self.__opts.file_names["bit"]

  def decode(self, rec_model):
    # Inputs:
    # - rec_model: the model to write the reconstructed parameters to
    # Should:
    # - decode the bitstream file given in self.__opts.file_names["bit"]
    # - store the decoded parameters in the state_dict of rec_model


Figure 2.1.2.5-1: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use:
· the encode function to write optimized model parameters in a raw-byte format to the bitstream 
· the decode function to read them back to rec_model.
2.1.2.6	Currently implemented scenarios and compression methods

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition. 
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.


Table 2.1.2.6-1: Implemented scenarios and compression methods

2.1.2.7	Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.

2.1.2.8	Docker image for the compression pipeline
The related Dockerfile and bash scripts to build a docker image and run docker containers are available at https://vcgit.hhi.fraunhofer.de/tech/ai4media.
A Dockerfile to build a docker image comprising Ubuntu 22.04, python 3.10, required python packages, as well as Nvidia GPU support, is given in the docker directory of the repository. The image can be built by calling buildContainer.sh from within the docker directory.

Containers can be run based on this image by calling runContainer.sh from within the docker directory, as follows

runContainer.sh host_directory [other parameters...]




with the following parameters: 

· host_directory is a directory on the host system in which downloaded models/datasets and results will be stored. More specifically, runContainer.sh will mount host_directory to the container and set the parameters out_dir and data_dir, as specified in the software description, to host_directory\out and host_directory\data, respectively.
· other parameters are additional parameters, as specified in the software description, that will be forwarded to the evaluation scripts.

Example: 

runContainer.sh ~/myAiMlData --scenario_name="asr" --model_name="hubert_asr_large" \
                             --coder_name="dummy"



3	Scenario template
A scenario should provide the following information (aligned with TR 26.955, Annex A):
· Scenario name <give the scenario a catchy name> 
· Motivation for the scenario and its use case relevance:
Why is the scenario relevant for AI/ML multimedia services? Under which of the following use cases does the scenario fall?
· Object Recognition in Image and Video
· Video Quality Enhancement in Streaming
· Crowd-Sourcing Media Capture
· NLP on Speech
· Description of the scenario:
This provides a description of the scenario addressing potentially the relation to the three AI/ML evaluation framework objectives, including AI/ML model split points, AI/ML model checkpoints and updates, and AI/ML model data compression. The description should be more specific than the use case description as provided in TR 26.927. Predominantly the description should allow to develop a baseline solution.
· Supporting companies and 3GPP members: 
a.	This documents the 3GPP members that support this scenario in terms of providing the information, test material, test requirements and the characterization for the tests. For each of the identified necessities, a tick box is created in the template.
b.	Preferably several 3GPP members are included in the support.
c.	Cross-verification is preferably done by the supporters of the scenario
· Anchor AI/ML DNN model(s) for the scenario:
Give the name and details of the trained AI/ML DNN model(s) that will serve for building anchors for this scenario, as well as the data set used for its training. Such trained AI/ML models are not only limited to readily available base AI/ML models, but can also include models developed using transfer learning. There may be more than one candidate anchor AI/ML model for the scenario. As an example, details may include:
a.	Base model used (including links to such base model)	
b.	Framework language used (e.g. TFLite, Pytorch)
c.	Architecture/model type (e.g. CNN, RNN)
d.	Number of layers
e.	Number of parameters
f.	Model size
g.	Details of data set used for training
· Testbed architecture and anchors
Describe and detail the testbed architecture and anchors to be used for the scenario. The architecture and anchors should be based on the ones as defined in clause 5, with modifications matched to the scenario.
· Test configuration factors, constraints and settings:
Describe the test configuration factors, constraints and settings for the scenario. Depending on the nature of the scenario, examples are shown below.
AI/ML model split configuration factors, constraints and settings:
For scenarios considering the feasibility of AI/ML split points, many factors may contribute to the split point decision for the scenario, including those related to device/network status and conditions, as well those related to the AI/ML model used, such as its architecture and complexity. Possible split point decision factors may include:
	Categories
	Parameters
	Details

	Devices Involved
	CPU/GPU
	Device processor capabilities

	
	Battery
	Device battery status

	
	Heat
	Device heating / user health considerations

	Network
	Cellular
	Network selection, bandwidth, latency

	
	Mobility
	Network handover and mobility

	Intermediate Data
	Size
	Data transmission decision, data weights

	
	Type
	Video, Audio/Speech, Text, Binary etc.

	Model Type
	Architecture
	CNN, RNN, GAN, LSTM, etc.1

	User focus
	APP KPI
	Latency Requirement , Service criticality

	
	Data Privacy
	Data transmission allowed or not

	
	Cost of hosting
	Deployment cost at cloud/server

	Data flow
	Topologies2
	Media data source, intermediate data in uplink or downlink


	
1 Studies and experiments about splitting operations shall focus on CNN. Splitting for GAN/RNN/LSTM is FFS.
2 Topologies comprise the next cases:
1. Local source data – local initial inference
2. Local source data – remote initial inference
3. Remote source data – remote initial inference
The scenario may also describe split point constraints, such as limiting split points to those that do not change the model topology and its parameters, splitting only at the layers of the AI/ML model, etc.
Compression or optimization constraints and settings:
For scenarios considering the compression or optimization of the AI/ML model, and/or the intermediate data (where applicable to split inference scenarios), describe the compression or optimization constraints and settings.
· Feasibility/performance evaluation metrics and requirements:
Depending on the scenario, feasibility and performance metrics may be either related to model performance, or to the test bitstream (the nature of which depends on the use case scenario).
List and describe the relevant feasibility/performance evaluation metrics for the scenario. A list of possible metrics is detailed in clause 6.
· Test dataset(s) and scripts for the scenario:
Describe and provide data sets that will be used for the evaluation of this scenario. This should include a description of the license, access procedure, and the dataset annotation format. Same test datasets may be used for similar scenarios falling under the same use case.
Also provide scripts that will be used for performing the evaluation and calculating the metrics.
Further details are provided in clause 6.
· Detailed test conditions:
Provide the detailed test conditions, in particular the descriptions of the input and outputs of the task.
· Interoperability considerations for the scenario:
Interoperability considerations for the scenario may include those related to the delivery considerations for the AI model and other corresponding data (such as intermediate data), including delivery methods, protocols and packetization methods.
a) AI/ML model delivery formats, methods and pipelines: encapsulation formats for AI model data (if necessary), related to the delivery methods and pipelines which may be considered (e.g. download, streaming). This may be related to model update requirements and constraints.
b) AI/ML model optimization methods: methods of model optimization which are not considered under the evaluation methods described under the AI/ML model data compression evaluation defined.
c) Intermediate data compression, delivery formats, methods and pipelines. 
d) Related to a and c above: streaming protocols such as TCP / UDP
e) Related to a and c above: packetization methods such as RTP
· External performance data
References to external performance data that can be added, for example other SDOs, public documents and so on.
· Expected time plan for the scenario completion
· Additional information
4	Prioritizing scenarios
Due to the complexity of this evaluation work, scenarios should be prioritized based on their feasibility within a reasonable time frame. A higher priority should be given to scenarios for which the use case is actual, i.e. already being deployed and used. 
Priority should also be given to scenarios that are based on mobile phones and devices, compared to others based on e.g. automotive or UAVs (drones).
Finally, precedence should be given to evaluating the aspects and solutions that are considered in the SA1 study as documented in TR 22.874. These are:
· AI/ML operation splitting between AI/ML endpoints
· AI/ML model/data distribution and sharing over 5G system
· Distributed/Federated Learning over 5G system

5	Testbed architectures and anchors
Unless proven otherwise, a common set of architectures is assumed for the evaluation framework, irrespective of the scenario. 
The anchor architectures are as follows:
· Running inference completely on the device
· Receiving a compressed video (e.g. from the device), and running inference completely at the network and potentially sharing the inference results with the device.

These anchor architectures are depicted by the following figure:
 [image: ]
Figure 5-1: Anchor architecture
In figure 5-1, the left hand side represents the anchor for running the inference at the device side. The right hand side shows the architecture for the anchor where the inference is run on the network side. The anchor model for running on the device should be derived from the anchor model running on the network. 
The derivation process may include:
· Quantization to match the device’s inference engine, e.g. converting the weights and inputs to fixed point or unsigned integers. 
· Re-training of the converted model to optimize for the inference platform. This is allowed but should be accompanied by results without re-training.
· Conversion to an exchange format such as ONNX
The supported model libraries are PyTorch and Keras/Tensorflow2.
5.1	Split inference intermediate data testbed architecture
A testbed architecture for the evaluation of split inference intermediate data is represented in figure 5.1-1. The anchor model is split into two, split model part 1 and 2, each existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.




Figure 5.1-1 Split inference intermediate data testbed architecture
The testbed architecture includes the following main functional blocks:   
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· AI framework/library: The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.  
· Model split configuration: The configuration of split points for the anchor model which are to be evaluated. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 2.
· Local inferencing: Where the anchor model fully runs on the local node.
· Remote inferencing: Where the anchor model fully runs on the remote node.
· Split inferencing: Where an anchor model is split into two parts, each run on a local and a remote node respectively.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation.
· Test split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: Typically emulating an end-device such as a UE.
· Remote inference node: Typically emulating a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test network: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.

5.2	Model data testbed architecture
A testbed architecture for the evaluation of model data compression is represented in figure 5.2-1. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.


Figure 5.2-1 Model data testbed architecture
The testbed architecture includes the following main functional blocks:
· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 6.
· Test metrics: The metrics used for the evaluation of the scenario.
6	Metrics
In the process of AI/ML, no matter on the training set or on the new sample, there is always some difference between the output result of the model and the real value. Model evaluation is a process of using different evaluation metrics to understand the performance of artificial intelligence/machine learning models and its advantages and disadvantages. It is an indispensable part of the model development phases which can help to discover the appropriate model to express the data and evaluate the performance of the selected model.
Different AI/ML work tasks have different evaluation metrics, and the same machine learning task will also have different evaluation metrics, each metric has different emphasis, e.g., classification, regression, ranking, clustering, recommendation, etc.
Given that most scenarios that we’re dealing with in the scope of this study involve computer vision tasks, for model performance metrics, the evaluation framework should reuse existing metrics that are well-established in the research community. There exists different metrics depending on the type of task performed by the model.
Classification model evaluation is the process of assessing and measuring the performance of a machine learning model that has been used for classification tasks. its goal is to divide different images into different categories, to achieve the minimum classification error.
Confusion matrix is a table used in classification tasks that summarizes the performance of a machine learning model on a set of data for which the true values are known. It consists of rows and columns where each row represents the true class of the samples and each column represents the predicted class. The confusion matrix displays the number of samples that are classified correctly (true positives and true negatives) and incorrectly (false positives and false negatives) by the model.
	Confusion Matrix
	Predicted Value

	
	Positive
	Negative

	True Value
	Positive
	True Positives (TP)
	False Negatives (FN)

	
	Negative
	False Positives (FP)
	True Negatives (TN)



True Positives (TP): predict an observation belongs to a class and it actually does belong to that class;
True Negatives (TN): predict an observation does not belong to a class and it actually does not belong to that class;
False Positives (FP): predict an observation belongs to a class but it does not belong to that class;
False Negatives (FN): predict an observation does not belong to a class but it does belong to that class.

For object classification tasks, the following metrics are used to evaluate or measure the performance of a classification model:
1. Accuracy: Accuracy is the simplest metric for evaluating classification performance. It measures the percentage of correctly classified objects out of the total number of objects in the dataset. While accuracy is easy to understand and compute, it can be misleading if the dataset is imbalanced, or the cost of misclassifying different categories is not equal. Accuracy measures how often the classifier makes the correct predictions, it is defined as the ratio between the number of correct predictions and the number of total predictions.

2. Precision: Precision measures the proportion of true positives among all the objects that the model classified as positive. It is useful when the cost of false positives is high, and it is essential to avoid misclassifying objects. Since precision measures the proportion of predicted positive results that are actually positive, it is defined as the fraction of examples (true positives) among all of the examples which were predicted to belong in a certain class (positive).

3. Recall: Recall measures the proportion of true positives among all the objects that belong to the positive class in the dataset. It is useful when the cost of false negatives is high, and it is essential to detect all objects in the dataset. Since recall measures how much the classifier can predict in an actual positive sample, it is defined as the fraction of examples which were predicted to belong to a class with respect to all of the examples that truly belong in the class.

4. F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced view of the model's performance. F1-score is a combination of precision and recall, providing a balanced measure of the model's ability to find all true positive cases and its ability to avoid false positives.

For object detection tasks, the metrics are:
1. Intersection over Union (IoU): IoU is one of the most commonly used metrics for evaluating object detection algorithms. It measures the overlap between the ground truth bounding box and the predicted bounding box. IoU is computed as the ratio of the intersection of the two boxes to the union of the two boxes. A higher IoU score indicates better object detection accuracy.
2. Precision and Recall: Precision measures the fraction of true positives (correctly identified objects) out of all predicted positives (objects identified by the algorithm). Recall measures the fraction of true positives out of all ground truth positives (objects that should have been identified). A high precision score indicates that the algorithm is correctly identifying objects, while a high recall score indicates that the algorithm is not missing any objects.
3. Average Precision (AP): AP is a commonly used metric for evaluating object detection algorithms. It measures the precision at different levels of recall and then averages them. AP provides a single number that summarizes the overall performance of the algorithm. A higher AP score indicates better object detection accuracy.
4. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single number that summarizes the overall performance of the algorithm. A higher F1 score indicates better object detection accuracy.
For object tracking tasks, the metrics are:
1. Intersection over Union (IoU): IoU is also commonly used for evaluating object tracking algorithms. In this case, it measures the overlap between the ground truth bounding box and the predicted bounding box for each frame in the sequence. A higher IoU score indicates better object tracking accuracy.
2. Precision and Recall: Precision and recall can also be used to evaluate object tracking algorithms. In this case, precision measures the fraction of frames where the algorithm correctly identified the object, while recall measures the fraction of frames where the algorithm correctly tracked the object.
3. Mean Average Precision (mAP): mAP is a commonly used metric for evaluating object tracking algorithms. It measures the average precision at different levels of overlap between the ground truth and predicted bounding boxes over the entire sequence. A higher mAP score indicates better object tracking accuracy.
4. Tracking Precision (TP) and Tracking Recall (TR): TP measures the fraction of frames where the predicted bounding box overlaps with the ground truth bounding box by a certain threshold, while TR measures the fraction of ground truth bounding boxes that were successfully tracked. A high TP score indicates that the algorithm is accurately tracking the object, while a high TR score indicates that the algorithm is not losing track of the object.
AI regression model evaluation is the process of measuring the accuracy and performance of a regression model developed using artificial intelligence (AI) techniques. Regression analysis is a statistical method used to predict the relationship between dependent and independent variables. Some of the most commonly used evaluation metrics for regression models are listed as following:
1. Mean Squared Error (MSE): measures the average squared error between the predicted and actual values. It's represented as the average of the squared differences between the predicted and actual values.

2. Root Mean Squared Error (RMSE): the square root of the mean squared error, this metric indicates the deviation of the predicted values from the actual values.

3. Mean Absolute Error (MAE): measures the average absolute difference between the predicted and actual values. This metric is robust to outliers.

4. R-squared (R2): determines how well the regression line fits the data by measuring the proportion of the variance explained by the model.
For other non-object related tasks, examples model performance metrics may include:
· Ranking Model Metrics (MRR, DCG, NDCG)
· Statistical Model Metrics (Correlation)
· Computer Vision Model Metrics (PSNR, SSIM, IoU)
· NLP Model Metrics (Perplexity, BLEU score)
For split inference and model compression related scenarios, other feasibility/performance metrics that should also be considered are:
· Video quality: depending on the scenario, the input or output video quality should also be documented. For example, a video super resolution scenario has to evaluate the quality of the resulting video. For the tasks, the impact of the quality of the input video on the accuracy should also be evaluated.
· Complexity: complexity of the entire process, including video compression and decompression, model compression and decompression (where relevant), and inference process.
· Bitrate: the total bitrate needed for performing the task. This may be 0 for the device anchor. For the network anchor, this includes the video bitrate for the uplink and the bitrate for sharing the task results back to the device. For split inference related scenarios, this should include the intermediate data bitrate.
· Split model size: model size and comparison ratio of the test split model to be delivered (compared to anchor model)
· Intermediate data size or bitrate: a comparison ratio of the intermediate data to be delivered (compared to the data size or bitrate of the relevant data from the anchors)
· Compressed model size: the compression ratio of the compressed model compared to the original reference model.
· Compressed intermediate data ratio: compression ratio of the compressed intermediate data bitstream compared to the original intermediate data bitstream
· Latency: the latency requirements for each scenario must also be taken into account to evaluate the feasibility of the proposed solutions, in particular for split inference scenarios, such as:
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency 
· Other latency metrics
· Encoding/decoding time.
· intermediate data delivery time
· Resources metrics of UE and/or DN:
· Computing power consumption on node
· CPU time
· GPU time  
· Memory usage
· Energy consumption

7	Datasets and scripts
It is recommended to build a docker container that comes with the necessary scripts for downloading the models and datasets, and running the evaluation for each agreed scenario. The Dockerfile should be hosted on a publicly accessible location to all 3GPP members. As example for software management refer to TR 26.955, Annex E.
Potential openly accessible video datasets are:
· YouTubeVIS: Video Instance Segmentation - YouTube-VOS
· SFU-HW-Objects-v1: SFU Multimedia Lab
· TVD: Tencent Video Dataset (TVD) - Tencent Media Lab
For some of the scenarios, companies may be asked to provide a suitable annotated data set to perform the evaluation. This may follow the principle in Annex B of TR 26.955 as well as the test sequence collection in Annex C of TR 26.955.
We offer to collect the data sets, anchors, etc here: https://dash-large-files.akamaized.net/WAVE/3GPP/AIML.
8	AI/ML frameworks and libraries
An AI/ML framework brings a set of services which are interfaces, libraries or tools. They are used to create models, train them and/or to infer input data and deliver a prediction.
Hereafter is a short list:
1. TensorFlow
2. PyTorch
3. Caffe
4. Keras
5. MXNET
6. Darknet

Some frameworks are especially designed for on-device (Mobile Phones) deep Learning, we may present the two main ones:
1. TensorFlow Lite [8]
2. PyTorch Live [9]

Note: Keras is running on top of TensorFlow, and both together provide a high-level APIs to make a more user-friendly framework. For the rest of the document TensorFlow and Keras frameworks are considered as one entity noted TensorFlow/Keras.
AI/ML frameworks can be completed and enriched with libraries, for example to provide optimization and compression tools such as:
· NNC : clause §6.5.7
· AI Model Efficiency ToolKit (AIMET) clause §6.6. 

Both libraries support TensorFlow/Keras and PyTorch environments.
8.1	Framework popularity
PyTorch and Tensorflow/Keras are the two major and most popular frameworks for Deep Learning. 
PyTorch appears significantly more in academics as shown in the next graph [11]
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On the other hand, Tensorflow is much more popular in industry. 
The TensorFlow eco-system comprises some deployment-oriented applications like TensorFlow Serving and TensorFlow Lite for AI/ML application to be deployed on cloud, edge, server, mobile or IoT devices.
PyTorch has filled the gap by proposing TorchServe [12] and PyTorch Live [9].

8.2	Detailed framework characteristics
Framework or library tools available (compression, quantization etc.):
· TensorFlow and Pytorch natively support optimization and quantization tools.
Hardware accelerator support:
List of tools for optimizing the ML models.
· It is very likely that the model performance will be evaluated with various processing conditions, being CPU, GPU, TPU or others like DSP.
· TensorFlow/Keras and PyTorch already integrate such capabilities:
· TensorFlow/Keras GPU or TPU usage in respectively [13] and [14]
· PyTorch GPU or TPU usage in respectively [15] and [16]
Supported models.
Natively both frameworks TensorFlow/Keras and PyTorch integrate many pre-trained models, this is described in document “models for evaluation”. If the model is not available, it can be reconstructed from its known architecture and trained.
A list of pre-trained model support is proposed for keras in [17], and for Pytorch in [18].
Split function
Splitting functionality shall be evaluated to point out the benefits it can bring to the 5G system (latency, energy, privacy), but also to measure and characterize the intermediate data. Therefore, the framework shall offer APIs/functions to split some models. This function is already available in TensorFlow/Keras framework as described in doc Split scenarios for evaluation and TensorFlow based split evaluation platform.
Mobile or on-device versions
Both PyTorch and TensorFlow/Keras have their own mobile solutions TensorFlow Lite [8] and PyTorch Live [9].
Language
Both PyTorch and TensorFlow/Keras are Python based. 
TensorFlow supports additionally JavaScript, C++ and Java.
Supported format for AI/ML models
PyTorch and TensorFlow/Keras support Open Neural Network eXchange (ONNX) and Neural Network Exchange Format (NNEF).
· ONNX: Tensorflow models (including Keras and TensorFlow Lite models) can be converted to ONNX [19]. PyTorch models can be exported to the ONNX format [20]. ONNX support tools for porting PyTorch model into TensorFlow or vice-versa.
· NNEF: supported by Khronos and designed to support both PyTorch and TensorFlow. NNEF tools can convert trained models from/to ONNX format [21].

9	AI/ML models
There may be several cases for the availability of AI/ML models:
1. Pre-trained models available from the AI/ML frameworks and libraries
2. Pre-trained models not available from the frameworks but from an external source, for instance GitHub
3. Non-trained models
4. New models 

Case 1) can be illustrated by the ResNet50 model which is available from both PyTorch and TensorFlow/Keras frameworks.
Case 2) can be illustrated with the EDSR model, where the model authors proposed a PyTorch implementation of their model which is available from a GitHub repository.
Case 3) is where proponents want to perform experiments from a well-known model and retrain it with a specific dataset corresponding to the use case to be evaluated. For example, YOLO or AlexNet are not available in TensorFlow/Keras.
Case 4) is for proponents who propose new model architecture.
For case 2), the proponent shall share the information on how to get the model, and how to run the experiments.
For cases 3) and 4), the proponents shall share the AI/ML model data (dataset, hyperparameters, etc.…) and describe how they train the AI/ML model.
9.1	Model characteristics
Several characteristics that may define an AI/ML model:
· Model Popularity within scientific community: The model is often cited in scientific papers and as such is recognized as an efficient model by many frameworks, in particular the frameworks listed in doc “Frameworks for evaluation”. ResNet50 or MobileNet are good examples of such models.
· Availability as a pre-trained version: Pre-trained version of the model as proposed by the framework should be preferred. Untrained models are possible under conditions above.
· AIML model Task: It depends on the use cases and scenarios to evaluate. The preferred domain is computer vision, which include object detection, image recognition, segmentation, pose estimation, image classification.
· Format: By default, the model format is the framework model format to be supported, for example ONNX and/or NNEF.
· Splitability: Ability to split/partition the model in two subsets. Some models may be easier to split than others depending on the complexity of the relations between the layers.  

9.2	Pre-trained model repositories
ModelZoo [22] is a popular repository providing open-source deep learning code and pre-trained models for a range of different frameworks (e.g., TensorFlow, Pytorch) and for different model tasks categories (e.g. computer vision, NLP).
TensorFlow proposes a collection of pre-trained models in [23], [24] and [25].
Keras Applications [24] are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.
10	Scenarios
Test scenario status as of SA4 #126, November 2023.
	Scenario
(clause)
	Scenario type
	Complete template
	Scripts
	Results
	Crosschecked
	Comments

	10.1
	Model compression
	X
	X
	X
	
	

	10.2
	Split
	X
	X
	X
	
	

	10.3
	Split
	X
	
	
	
	

	10.4
	Split
	X
	
	
	
	Scenario merged with 10.3 at SA4#126

	10.5
	Split
	
	
	
	
	

	10.6
	Transmission
	X
	
	
	
	



10.1	Transmission of compressed AI/ML model data for automatic speech recognition
10.1.1	Motivation and use case relevance
AI/ML model data distribution and sharing over 5G system has been identified in TR 22.874 [1] as one of the three key operations for AI/ML related services. Reason for this is that UEs might need a great variety of AI/ML models to respond to different tasks and environments, while not being able to store all needed AI/ML models due to memory storage constraints, so that a frequent context adaptive down-loading of AI/ML model data is necessary. 
To tackle this problem, methods for model compression have been proposed (see clause 6 of other PD), which provide the benefits that they 1) lower bandwidth requirements or latencies for model data distribution, and 2) reduce the memory footprint of the AI/ML models on the UEs. However, besides the reduction of the model size, compression can also lead to a decrease of the AI/ML model performance. Which performance-compression trade-offs can be reached by different AI/ML model compression methods is thus an important question when defining AI/ML related services and is thus investigated in this scenario. 
From the media-based AI/ML use cases defined in clause 4, the following require the transmission of AI/ML model data and thus could benefit from model compression:
1. Full or partial transfer of models for object recognition in image and video (clause 4.1) 
2. Transfer of models for post-filtering for video coding (clause 4.2.1.2)
3. Transfer of models for crowd-sourcing media capture (clause 4.3.1)
4. Transfer of models for NLP on speech (clause 4.4)

This scenario evaluates the transmission of the wav2vec 2.0 [3] and the HuBERT [4] AI/ML models for automatic speech recognition (ASR), which derive a transcript of a given speech sequence. The transmission of compressed AI/ML models for ASR is relevant in the following use cases defined in clause 4:
· Crowd-Sourcing Media Capture (clause 4.3.1): To adapt to background noise or for lyrics recognition, specialized AI/ML models for ASR need to be transferred to a huge number of UEs for device inference.
· NLP on Speech (clause 4.4.): An initial ASR model needs to be down-loaded to the UE; then updated model data needs to be shared frequently with other UEs for distributed/federated learning.
10.1.2	Description of scenario
In this scenario, a pre-trained AI/ML model for ASR, wav2vec 2.0 [3] or HuBERT [4], is transmitted to an UE as shown in figure 10.1.2-1. To reduce bandwidth requirements or latencies the model is compressed before transmission. The compression method might be implemented as sender-only compression/optimization technique or might comprise an encoder at the sender-side and a decoder at the receiver-side.
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[bookmark: _Ref134222221]Figure 10.1.2-1: Transmission of the ASR model
How the ASR model can be employed by an UE to derive a transcript of a speech sequence is shown in figure 10.1.2-2, which comprises the following entities:
· A speech sequence stored as uncompressed audio file sampled with 16kHz.
· The ASR model inferring a classification for the speech sequence. 
· A vector sequence representing the classification. Each vector comprises 29 elements specifying the probability (represented as logits) of the 29 labels: '-', ' ', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', ''', 'X', 'J', 'Q', and 'Z'.
· A label selector selecting the most probable labels from the vector sequence.
· The predicted transcript, i.e. the sequence of selected labels.


[image: audio]

[bookmark: _Ref132127302]Figure 10.1.2-2: Prediction of a transcript with the reconstructed ASR model
10.1.3	Supporting companies and 3GPP members
· Fraunhofer HHI
· Nokia Corporation
10.1.4	Anchor AI/ML DNN model(s) for the scenario
Several pre-trained AI/ML models for ASR are provided by the TorchAudio library [5] under MIT License. For evaluation, the models listed in table 10.1.4-1 should be used.
	TorchAudio name
	numParam [M]
	sizeAnc [Mbit]
	werAnc[%]

	WAV2VEC2_ASR_BASE_960H
	94.4
	3021
	3.4

	HUBERT_ASR_LARGE
	315.5
	10095
	2.1



[bookmark: _Ref134157465]Table 10.1.4-1: Number of parameters (numParam), size (sizeAnc) and word error rates (werAnc) of the anchor models
The WAV2VEC2_ASR_BASE_960H [6] model consist of several convolutional layers for feature extraction and a transformer. It is pre-trained 960 hours of audio data from the Librispeech data set [8][9] and has been fine-tuned on 960 hours of audio data from the same set. 
The HUBERT_ASR_LARGE [7] is a modified version of the wav2vec 2.0 model. It is pre-trained on 60.000 hours of unlabeled audio data from the Libri-Light [10] dataset and has been fine-tuned on 960 hours of audio data from the Librispeech data set [8][9]. It achieves a lower word error rate, but has more parameters.
10.1.5	Testbed architecture and anchors
The testbed architecture corresponds to the example testbed architecture defined in clause 5.2 and shown in figure 5.2-1. The following applies for the shown functional blocks:
· The test encoder can also be a sender-only optimization/compression technique.
· The test decoder might be absent for sender-only optimization techniques.
· The reference data set is the test-clean dataset as shown in table 10.1.8-1. 
· The anchor model is one of the models shown in table 10.1.4-1. 
· The inference output processor corresponds to the pipeline shown in figure 5.2-1.
· Metrics computation derives the word error rate (wer) and the model size (size) as defined in clause 6.
10.1.6	Test configuration factors, constraints and settings
For encoding, data-dependent optimization techniques might be used. The Librispeech dev-clean dataset, as shown in table 10.1.8-1, might be used for optimization. 

10.1.7	Feasibility/performance evaluation metrics and requirements
The anchor model and test bitstream are provided as files containing the model parameters. The file size (size) combined with the word error rate (wer) achieved by the reconstructed ASR model after inference are employed to determine the efficiency of a compression method.
File Size
The anchor model and test bitstream can be stored as follows:
a) The anchor model is provided as data file containing numParam uncompressed model parameters individually represented as N-byte floating-point values.
b) For encoder-only compression methods, the test bitstream is provided as data file containing numParam quantized and/or reduced model parameters individually represented as N-byte values.
c) For methods requiring a decoder, the test bitstream is a coded representation encoding the parameters jointly. 

For all cases, size can be determined by measuring the file size. For cases a) and b), the size in bit can also be determined as numParam * 8 * N.
Word Error Rate
To quantify the performance of the anchor and the reconstructed model, the word error rate (wer) is used, which has also been applied in the original publication of the wav2vec 2.0 model [3]. The word error rate is determined on a set of data pairs. Each pair comprises 
· a speech sequence stored as uncompressed audio file, and
· a reference transcript of the audio sequence stored as text file.
Using the dataset, the wer value is determined in two steps:
1) A word error rate  is derived for each pair  of the dataset as follows:
· The AI/ML model is applied as shown in Figure 2.3-2 using the speech sequence as input and obtaining a predicted transcript as output.
· The predicted and reference transcripts are split into a predicted and a reference list of words, respectively.
· The word error rate  of the predicted word list with respect to the reference word list is derived as follows

with , , and  denoting the number of word substitutions, word deletions, and word insertions in the predicted word list and  denoting the number of words in the reference list.
2) The total word error rate wer is derived as follows:

10.1.8	Test dataset(s) and scripts for the scenario
Evaluations use the Librispeech [8][9] datasets, which are available under Creative Commons Attribution 4.0 International License and shown in table 10.1.8-1. To quantify the performance of the anchor and the test model, the word error rate (wer) is determined based on the test-clean dataset. For data-dependent encoder optimizations, the dev-clean dataset might be used. The datasets can be automatically down-loaded, e.g. by using the exemplary python-script shown in figure 10.1.8-1. 

	Name
	Number of sequences
	Hours of audio

	test-clean
	2620
	5.4

	dev-clean
	2864
	5.4



[bookmark: _Ref134157550]Table 10.1.8-1: Datasets considered in the scenario
The exemplary script derives word error rate and file size of the anchor models. Further scripts to create and evaluate the reconstructed models can be obtained from TBD [Ed.: A link to a “framework repository” might be added here, currently the scripts are attached to the document]. They can be generically extended by different compression methods.

import torch            # Version 2.0.0 required
import torchaudio       # Version 2.0.1 required
import torchaudio.datasets as datasets
from torchaudio.functional import resample
from torcheval.metrics import WordErrorRate


test_dir = "D:\\data" # This directory should exist, datasets will be stored here.
device   = "cpu" # or "cuda"

def eval_test_case( test_case, bundle ):
    print('Evaluating test case {test_case}'.format( test_case=test_case) )

    ####### Get Model ##############################
    model       = bundle.get_model()
    sample_rate = bundle.sample_rate
    labels      = bundle.get_labels()

    ####### Get Data Loader Model ##################
    val_loader = torch.utils.data.DataLoader(
                datasets.LIBRISPEECH(test_dir, "test-clean", "LibriSpeech", True ),
                batch_size=1, shuffle=False, num_workers=1, pin_memory=True)

    ####### Evaluate Model #########################
    model.eval()
    model.to( device )
    metric = WordErrorRate()
    blank  = 0

    with torch.inference_mode():
        for speech_sequence, cur_sample_rate, reference_transcript, *dump in val_loader:

            # Resample speech sequence if necessary
            if cur_sample_rate != sample_rate:
                speech_sequence = resample(speech_sequence, cur_sample_rate, sample_rate)

            speech_sequence = speech_sequence.reshape( (1,-1) )
            speech_sequence = speech_sequence.to(device)

            # Apply the ASR model
            vetor_sequence, _ = model(speech_sequence)

            # Select labels
            idcs = torch.argmax(vetor_sequence[0], dim=-1)
            idcs = torch.unique_consecutive(idcs, dim=-1)
            idcs = [i for i in idcs if i != blank]
            predicted_transcript = "".join([labels[i] for i in idcs])
            predicted_transcript = predicted_transcript.replace("|"," ")

            # Update error
            metric.update( predicted_transcript, reference_transcript[0] )

    wer_Anc = metric.compute()
    print('   wer_Anc: {wer_Anc:.3f} %'.format(wer_Anc=wer_Anc*100))

    ####### Get Model Size #########################
    num_parameters = 0
    for param in model.parameters():
        num_parameters += param.numel()

    # Each parameter is stored as 32 bit float, so multiply by four
    size_Anc = num_parameters * 4 * 8
    print('   size_Anc: {size_Anc:.3f} Mbit'.format(size_Anc=size_Anc/1000/1000))

if __name__ == '__main__':
    eval_test_case( 1, torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H )
    eval_test_case( 2, torchaudio.pipelines.HUBERT_ASR_LARGE       )



[bookmark: _Ref134157799]Figure 10.1.8-1: Exemplary python script for determining sizeAnc and werAnc.

10.1.9	Detailed test conditions
A compression method under test is evaluated using the test cases shown in table 10.1.9-1.
	Test case
	Model
	wer range 

	1
	WAV2VEC2_ASR_BASE_960H
	3.4% to 8.4%

	2
	HUBERT_ASR_LARGE
	2.1% to 7.1%



[bookmark: _Ref134157837]Table 10.1.9-1: Test cases and respective wer ranges. werAnc and sizeAnc are given in table 10.1.4-1.

To characterize a compression method under test in a given test case, it is evaluated using different test configurations T, which might be produced by varying encoder parameters, e.g. quantization parameters or sparsification ratios. More specifically, for each test configuration T from a set of test configurations, a data pair (cSize, wer) is derived with
· cSize denoting the size of the test bitstream size divided by the size of anchor model sizeAnc and
· wer denoting the word error rate of the test model.

If possible, the set of test configurations should contain at least 5 test configurations T that produce word error rates in the range of werAnc to werAnc+0.05 as shown in Table 2.10-1.
For comparison, (cSize, wer) pairs, as well as werAnc, might be reported graphically, as shown in figure 10.1.9-1.
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[bookmark: _Ref132128795]Figure 10.1.9-1: Example for the characterization of a compression method for different test configurations T 
10.1.10	Interoperability considerations for the scenario
Download (possibly via TCP) of the model data is expected.
10.1.11	External performance data
None.
10.1.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.1.13	Additional information
The wav2vec 2.0 model has been successfully employed for ASR on mobile devices: An Android-based implementation can be downloaded from [11]. An evaluation of the wav2vec 2.0 model on a device with limited computational performance can be found in [12].
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[9] [bookmark: _Ref134157240]OpenSLR, LibriSpeech ASR corpus [Online], https://www.openslr.org/12 
[10] [bookmark: _Ref134157305][bookmark: _Ref132125712]J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux. “Libri-light: a benchmark for ASR with limited or no supervision”. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 7669–7673. 2020. https://github.com/facebookresearch/libri-light.
[11] [bookmark: _Ref134157361]Pytorch: Speech Recognition on Android with Wav2Vec2 Low complexity implementation [Computer Software], https://github.com/pytorch/android-demo-app/tree/master/SpeechRecognition
[12] [bookmark: _Ref134157369]S. Gondi, "Wav2vec2.0 on the edge: Performance evaluation", arXiv, 2202.05993, 2022

10.2	Split inferencing for human pose estimation
10.2.1	Motivation and use case relevance
Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.
Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.
Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1.
10.2.2	Description of the scenario
In this scenario, a pre-trained AI/ML model for human pose estimation, PoseNet (MobileNetV1 backbone, FP32) [1], is split into two different parts (split models) for split inferencing. The first part is inferenced on a low-capability device (e.g. Samsung A series, TBC), and the second part is inferenced on a high-capability device (e.g. Samsung Galaxy S23, TBC) which simulates a network resource entity. The scenario corresponds to the topology shown in figure 5.1.1.1-1, the split AI/ML model inference topology where the UE is the media data source with first inference endpoint on the UE. Prior to the service, the (split) pre-trained model (anchor model) is assumed to be available on the high-capability device, and the inference input data (test dataset) is assumed to be available on the low-capability device.
The scenario considers the splitting of PoseNet at different layers in order to measure the overall performance and data characteristics of split inferencing between two nodes of differing computational capabilities.
As part of the scenario, the delivery of AI/ML data from between the two devices are taken in account, more specifically:
- Delivery of the split model from the high-capability device (network) to the low-capability device
- Delivery of the intermediate data (output of first split inference) from the low-capability device to the high-capability device
The inference output of PoseNet for the scenario will be to detect, in an instance-agnostic fashion, all visible keypoints belonging to any person in a corresponding input image.
10.2.3	Supporting companies and 3GPP members
· Samsung Electronics Co., Ltd.
10.2.4	Anchor AI/ML DNN model(s) for the scenario
For the evaluation of this scenario, the PoseNet (MobileNetV1 backbone, FP32) model is used. PoseNet as a reference implementation of a TensorFlow Lite pose estimation model is available from TensorFlow [1] and is licensed under the Creative Commons Attribution 4.0 License.
	Model
	Size (MB)
	mAP
	No. of layers
	No. of parameters

	PoseNet (MobileNetV1 backbone, FP32)
	13.3MB
	45.6
	31
	1,180,147


Table 10.2.4-1: Anchor model(s) for the scenario
10.2.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 5.1.


Figure 10.2.5-1 Testbed architecture for the scenario
The split configurations for the scenario are compared to two anchors:
1. Where the anchor model is inferenced completely on the low capability device
2. Where the anchor model is inferenced completely on the high capability device (simulating a network entity), with the test dataset and inference output delivered via the test network
The anchor model used is that shown in table 10.2.4-1.
Multiple model split configurations are considered as described in clause 10.2.6.
10.2.6	Test configuration factors, constraints and settings
PoseNet is composed of 31 different layers, resulting in 32 different possible split point configurations between the two inference nodes, including the two anchors as mentioned in clause 10.2.5 (layers inference on first node : layers inferenced on second node):
· 0:31
· 1:30
· 2:29
· …
· 31:0
The scenario aims to evaluate each of the 32 split point configurations, with each split configuration tested at a range of different network bandwidth configurations (specific bandwidths TBC).
Latencies due to any pre-processing (e.g. downscaling/upscaling) required on the test dataset for the input into PoseNet will not be taken into consideration as part of the scenario metrics.
Processing capability related configurations are dependent on the devices used for the scenario as described in clause 10.2.2.
10.2.7	Feasibility/performance evaluation metrics and requirements
For each split point configuration, the following metrics are computed:
· Test split model file sizes
· Intermediate data size or bitrate
· Inference latency at each device
· Optionally, additional performance measurements (complexity) at each device
Performance measurements may use the native benchmark binary or Android benchmark app as provided by TensorFlow (or scripted developed independently) in order to measure: certain KPIs which may include, but are not limited: initialization time, inference time of warmup state, inference time of steady state, memory usage during initialization time and overall memory usage.
10.2.8	Test dataset(s) and scripts for the scenario
The test dataset used for the lossless model split inference verification is comprised of a subset of images from COCO (Common Objects in Context) [2].
The annotations in the COCO dataset belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License, whilst the images are also under a Creative Commons license, the use of which must abide by the Flickr Terms of Use.
These images can be found at https://github.com/SamsungLabs/SA4-AIML.
The TFLite benchmark tool was used for the calculation of intermediate data sizes and split inferencing times.
Scripts for the scenario have been uploaded to the following repository: https://github.com/SamsungLabs/SA4-AIML. We are working on uploading also to the 5G-MAG repo for the future.
Lossless model split inference verification (“posenet_split_test.py”)
The script “posenet_split_test.py” does the following:
Converts the frozen (.pb) model to one TFLite model (full model)
Converts the frozen (.pb) model into two split models
Runs inference on the full model
Runs inference on the split models
Compares the results (keypoint coordinates, confidence scores) from both. If the results are the same (i.e. absolute difference in results is less than 0.001), then it considers the results to be matching, otherwise, the test fails.
Guidelines are given below:
	Usage: posenet_split_test.py [-h] --model_path MODEL_PATH --image_dir IMAGE_DIR [--split_layer {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}]
                             [--output_dir OUTPUT_DIR]

required arguments:
  --model_path MODEL_PATH
                        path to the Frozen model (.pb)
  --image_dir IMAGE_DIR
                        path to the test images directory

optional arguments:
  --split_layer {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26}
                        layer at which the model should be split. Accepted range of values = [0, 26]
  --output_dir OUTPUT_DIR
                        path to the output directory


Split model intermediate data sizes & split processing times (“get_tensor_sizes.py”, “collect_benchmark.py”)
These two scripts are used to get the split model intermediate data sizes and to calculate the split processing times on two separate devices.
Guidelines are given below:
	STEP 1 :
Run the TFLite benchmark tool in both Client ( Android ) and Server ( Linux ) devices.
Refer to https://www.tensorflow.org/lite/performance/measurement#native_benchmark_binary for more details.


Steps to benchmark on Android :
adb push bazel-bin/tensorflow/lite/tools/benchmark/benchmark_model /data/local/tmp
adb shell chmod +x /data/local/tmp/benchmark_model
adb push <model file> /data/local/tmp
adb shell /data/local/tmp/benchmark_model --graph=/data/local/tmp/<model file> --enable_op_profiling=true --profiling_output_csv_file=/data/local/tmp/benchmark.csv

Steps to benchmark on Linux :
chmod +x benchmark_model
./benchmark_model --graph=<model file> --enable_op_profiling=true --profiling_output_csv_file=benchmark.csv

STEP 2 :
Collect relevant data from the benchmark CSV files. 
Copy the data (columns- node type, first, avg_ms, %, cdf%, mem KB, times called, name) under the heading "Operator-wise Profiling Info for Regular Benchmark Runs: -> Run Order" to new CSV files.

STEP 3 :
Use the script "get_tensor_sizes.py" to get the intermediate output sizes.

Usage Example :
get_tensor_sizes.py  [-h] --model_path MODEL_PATH [--output_path OUTPUT_PATH]

Description of arguments :
--model_path MODEL_PATH : path to the TFLite model
--output_path OUTPUT_PATH : path to the output

STEP 4:
Use the script "collect_benchmark.py" to get the processing times on the client and server, intermediate output sizes, and intermediate model sizes for all possible splits. 
Note: Intermediate model sizes are given as an output only if the model size is provided in the arguments.

Usage Example :
collect_benchmark.py [-h] --client_benchmark_file CLIENT_BENCHMARK_FILE --server_benchmark_file SERVER_BENCHMARK_FILE --tensor_sizes_file TENSOR_SIZES_FILE [--output_path OUTPUT_PATH] [--model_size MODEL_SIZE]

Description of arguments :
--client_benchmark_file CLIENT_BENCHMARK_FILE : path to the model benchmark csv file for client
--server_benchmark_file SERVER_BENCHMARK_FILE : path to the model benchmark csv file for server
--tensor_sizes_file TENSOR_SIZES_FILE : path to the model tensor sizes csv file
--output_path OUTPUT_PATH : path to the output csv file
--model_size MODEL_SIZE : size of the TFLite model in kilobytes



Test dataset and scripts to be provided by SA4 #125 (August, 2023).
10.2.9	Detailed test conditions
For reference purposes, the scenario includes split inferencing between two devices, namely one low capability device and one high capability device. The specific devices used and detailed below are for reference only, since cross referencing on the same device hardware components is unpractical between different proponents.
Low capability device: Samsung A01 (hardware specifications: https://www.gsmarena.com/samsung_galaxy_a01-9999.php)
High capability device: Linux PC
	PRETTY_NAME="Ubuntu 22.04.2 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.2 LTS (Jammy Jellyfish)"
Architecture:            x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Address sizes:        46 bits physical, 48 bits virtual
  Byte Order:            Little Endian
CPU(s):                  40
  On-line CPU(s) list:  0-39
Vendor ID:              GenuineIntel
Model name:            Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
    CPU family:          6
    Model:              85
    Thread(s) per core:  2
    Core(s) per socket:  10
    Socket(s):          2
    Stepping:            7
    CPU max MHz:        3200.0000
    CPU min MHz:        1000.0000
    BogoMIPS:            4400.00



The test environments used for each device include TensorFlow / TFLite for Android and Linux respectively.
TBD.
10.2.10	Interoperability considerations for the scenario
None.
10.2.11	External performance data
None.
10.2.12	Expected time plan for the scenario completion
Provide test dataset and scripts – SA4 #125, August, 2023
Completion – SA4 # 126, November, 2023
10.2.13	Additional informationResults
Note: these results have not yet been cross-checked.
An example result of executing the script “posenet_split_test.py” is shown below:
	$ python posenet_split_test.py --model_path=posenet/model-mobilenet_v1_100.pb --image_dir=posenet_split_test/images/. --output_dir=posenet_split_test/.
2023-09-21 12:29:49.740294: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-09-21 12:29:49.796260: I tensorflow/tsl/cuda/cudart_stub.cc:28] Could not find cuda drivers on your machine, GPU will not be used.
2023-09-21 12:29:50.831343: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
2023-09-21 12:29:51.966277: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:51.966513: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.113530: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.113666: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.204172: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:52.204222: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
Completed TFLite full model generation


2023-09-21 12:29:52.668011: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.668146: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.764901: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.765037: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:52.856058: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:52.856108: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
2023-09-21 12:29:52.964945: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:52.965082: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:53.061569: I tensorflow/core/grappler/devices.cc:66] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 0
2023-09-21 12:29:53.061715: I tensorflow/core/grappler/clusters/single_machine.cc:358] Starting new session
2023-09-21 12:29:53.149491: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:364] Ignored output_format.
2023-09-21 12:29:53.149542: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:367] Ignored drop_control_dependency.
Completed model splitting


Starting full model inference test
INFO: Created TensorFlow Lite XNNPACK delegate for CPU.
Completed full model inference test. Avg. time taken per input: 99.90212500000001ms


Starting split model inference test
Completed split model inference test. Avg. time taken per input: 99.93037499999998ms


PASSED: Inference results match for input: posenet_split_test/images/two_on_bench.jpg
PASSED: Inference results match for input: posenet_split_test/images/riding_elephant.jpg
PASSED: Inference results match for input: posenet_split_test/images/skate_park_venice.jpg
PASSED: Inference results match for input: posenet_split_test/images/frisbee_2.jpg
PASSED: Inference results match for input: posenet_split_test/images/person_bench.jpg
PASSED: Inference results match for input: posenet_split_test/images/frisbee.jpg
PASSED: Inference results match for input: posenet_split_test/images/kyte.jpg
PASSED: Inference results match for input: posenet_split_test/images/looking_at_computer.jpg
PASSED: Inference results match for input: posenet_split_test/images/backpackman.jpg
PASSED: Inference results match for input: posenet_split_test/images/skiing.jpg
PASSED: Inference results match for input: posenet_split_test/images/with_computer.jpg
PASSED: Inference results match for input: posenet_split_test/images/soccer.png
PASSED: Inference results match for input: posenet_split_test/images/baseball.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis_standing.jpg
PASSED: Inference results match for input: posenet_split_test/images/tie_with_beer.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis_in_crowd.jpg
PASSED: Inference results match for input: posenet_split_test/images/snowboard.jpg
PASSED: Inference results match for input: posenet_split_test/images/fire_hydrant.jpg
PASSED: Inference results match for input: posenet_split_test/images/skate_park.jpg
PASSED: Inference results match for input: posenet_split_test/images/boy_doughnut.jpg
PASSED: Inference results match for input: posenet_split_test/images/on_bus.jpg
PASSED: Inference results match for input: posenet_split_test/images/multi_skiing.jpg
PASSED: Inference results match for input: posenet_split_test/images/truck.jpg
PASSED: Inference results match for input: posenet_split_test/images/tennis.jpg



For split model intermediate data sizes and inference processing times, see the excel file attached to S4-231771.
None.
10.2.14	References for the scenario
[1] https://www.tensorflow.org/lite/examples/pose_estimation/overview
[2] https://cocodataset.org/#home

10.3	Split inferencing for object detection and labeling
10.3.1	Motivation and use case relevance
Object detection and tracking finds prevalent applications in today’s world. These applications range from surveillance, image-based gallery and web search, media annotation, autonomous driving and more. 
TR 22.874 section 5.2 describes these scenarios where deep learning-based object detection and tracking is performed.
10.3.2	Description of the scenario
In this scenario, a pre-trained model is used to detect objects in a video sequence. The output of the inference may consist of the following:
· Detected object labels per image
· Bounding boxes for the detected objects
· Masks describing pixel-accurate location of the object

In this scenario, it is assumed that the end device is resource constrained and may not have sufficient memory/processing capabilities, or battery power to perform the object detection task.
It is proposed that by splitting the model into 2 parts, where one part is inferred in the device and the other part is inferred in the network, the device will be able to perform the inference within its capabilities.
Two configurations are possible, based on the exact use cases:
· The image/video is captured on the device and inference is run on the image/video to produce feature maps that are then sent to the network for further inference. This step may be performed to protect user privacy. The device will then receive the results once, the inference is performed by the network. An example of such a use case is image/video-based web search, where the user captures an image/video and receives web search results. Another such use case is where the user captures an image/video and attempts to remove a specific object from the image/video.
· The image/video is provided by a content provider and processed by the network to enable the user to perform different tasks. The video is processed by a deep network to produce distilled features, which are then used by the device to perform task-specific inference. Different users viewing the same image/video may run different tasks. An example of such a use case is a sports game streaming service, where different users may have different interests in the game. One user may configure their application to track and annotate the players of their favorite team. Another user may be interested in extracting statistics about the ball. The core of the network produces a set of features that can be used to perform both tasks, where each user will run the model head specific to their selected task.
10.3.3	Supporting companies and 3GPP members
· Qualcomm, Interdigital.
10.3.4	Anchor AI/ML DNN model(s) for the scenario
The evaluation using the PyTorch framework includes several DNN models belonging to the table below:
· Retinanet 
· The SSD300 model from Nvidia [1].
	Model
	Size (MB)
	No. of parameters

	Retinanet 
	TBC
	TBC

	SSD300 (ResNet-50)
	89 MB
	23 million



10.3.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.


Figure 10.3.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network. 
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.X.1.
The anchor model used is shown in Table 10.3.4-1.
Test network latencies are not considered to ensure scenario reproducibility. 
Multiple model split configurations are considered as described in clause 10.2.6.
10.3.6	Test configuration factors, constraints, and settings
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions. 

. 
Figure 10.3.6-1 Testbed configuration

10.3.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network. 
10.3.38	Test dataset(s) and scripts for the scenario
The SFU-HW-Objects and the SFU-HW-Tracking datasets are used for this evaluation scenario. 
A set of scripts is made available under the 5G-MAG rt-ml-ai-evaluation-framework repository: 5G-MAG/rt- ai-ml-evaluation-framework (github.com) HYPERLINK "https://github.com/5G-MAG/rt-ml-ai-evaluation-framework" 5G-MAG/rt-ml-ai-evaluation-framework (github.com).
Two models are evaluated with different scripts adapted for each following model.
10.3.8.1	FPN/RPN Retinanet scripts
The scripts are:
· convert_model.py: a script to convert a pre-trained model into an ONNX model
· inferonnx.py: this script is used to run an object detection inference model and produce predication results in the following format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score]. The model is used to produce results for the anchors, where the full model is run locally on the device or completely in the network.
	usage: inferonnx.py [-h] [--mask] dataset_name model_location
inferonnx.py: error: the following arguments are required: dataset_name, model_location


· split_retinanet.py: this script is used to split the RetinaNet represented in the ONNX format. It takes the model at models/retinanet.onnx and splits at the four feature pyramid network (FPN) feature maps, as shown by the 4 nodes with red arrows pointed to in Figure 2.3-1, together with four other auxiliary operations (two of which are pointed to by the blue arrows in Figure 2.3-1 and there are two similar ones on the right side of the graph but not shown) that provide the input image shape information for later stages of the network. Note that the split needs 8 split points, rather than a single split point, due to branching and joining present in the structure of RetinaNet. 
The splitting results in two partial models, called retinanet_part1.onnx and retinanet_part2.onnx, also in ONNX format. The input to part 1 is the input image. The feature maps in the output of part 1 is part of the input to part 2. The correct operation of part 2 needs additional input which is the shape of the input image. However, it makes no sense to feed the input image (together with the feature maps) as input to part 2. To resolve this problem, a dummy image of the same shape as the input image is used to generate the shape needed by part2. As a result, there is an overlap between part 1 and part 2. The overlap is chosen in such a way that only the portion of the graph directly contributing to generating the shape of the dummy image is included to minimize the additional processing. This is corroborated by the sizes of the models: 
· retinanet.onnx: 149.433MB
· retinanet_part1.onnx: 120.731MB
· retinanet_part2.onnx: 28.840MB
from which we see that the sum of the two partial models is only 0.14MB bigger than the size of the whole model, indicating that the overlap is negligible and so is the additional processing for generating the shape of the dummy image.
The two parts are fed into infer_split.py for split inference.
· infer_split.py: this script is used to run split inference. It is passed the two parts of the model. It runs the first part of the model and saves the results in numpy binary format NPZ. Then it proceeds to run inference using the second part of the model, which loads the NPZ files as input and produces the object detection results. A flag SAVE_FEATURES_IN_FILEs controls whether to write the FPN feature maps to the NPZ files, and it can be set to 0 to save storage, and in that case the feature maps out of the execution of part 1 are directly fed to part 2. This script also compares the performance between split inference and non-split inference in terms of normalized MSE.
· 
	usage: splitinfer.py [-h] [--mask] dataset_name model_part1_location model_part2_location
Run split inference using ONNX models
positional arguments:
  dataset_name          Dataset name
model_location       Path to the unsplit ONNX Model
  model_part1_location  Path to 1st part of the ONNX Model
  model_part2_location  Path to 2nd part of the ONNX Model
optional arguments:
  -h, --help            show this help message and exit
  --mask                Indicates if output of model is a Mask and needs to be converted


· calc_map.py: this script is used to calculate the mean Average Precision (mAP) score for the predictions. It compares the predicted labels and their bounding boxes to the ground truth annotations that are provided by the dataset.
	usage: calc_map.py [-h] [--ds DATASET_NAME] [--threshold THRESHOLD] video_name
Calculate the mAP for the object detection prediction.
positional arguments:
  video_name         The name of the video sequence, e.g. Kimono.
optional arguments:
  -h, --help            show this help message and exit
  --ds DATASET_NAME  Name of the dataset. Defaults to SFU-HW-Objects.
  --threshold THRESHOLD
                    The threshold for the prediction confidence to consider the prediction.



· visualize.py: The visualize script takes the ground truth annotations or the predictions and renders them on top of the video. This script is useful to inspect the prediction results.
	usage: visualize.py [-h] [--sleep_time SLEEP_TIME] video_fn annotation_path
Visualize Object Detection.
positional arguments:
  video_fn              Path to the video file
  annotation_path       Path to the folder with annotations/predictions
optional arguments:
  -h, --help            show this help message and exit
  --sleep_time SLEEP_TIME
                      Specifies the inteval between the display of 2 consecutive frames



Instructions to download the dataset with the annotations are provided in the README.md file of the datasets folder of the repo.
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Figure 10.3.8.1-1: 6 of the 8 split points of the RetinaNet shown in Netron. The 4 red arrows point to the 4 FPN layers corresponding to “FPN 6”, “FPN 2”, “FPN 1”, “FPN 0” in Table 2.3-1, respectively.
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Figure 10.3.8.1-2:  Zoom in of the node “/backbone/fpn/extra_blocks/p6/Conv” of the graph in Figure 10.3.3-1.

The following screenshots show examples of the object detection predictions and results.
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Figure 10.3.3-3: Examples of the object detection predictions and results.
For the SFU-HW-Objects data set, the difference between split inference and non-split inference in bounding box coordinates and in scores in terms of normalized MSE is less than 10-5 for 99.25% of all video frames. This shows that the performance is essentially the same, whether split inference is used or not.
Below are some exemplary feature maps (one shown for each FPN layer in the RetinaNet) for the first frame (frame 0) of the Traffic video sequence.
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Figure 10.3.3-4: Example feature maps.
The sizes of the intermediate data are:
Table 10.3.3-1: the size of the feature maps
	FPN Layer
	Size (assuming batch size of 1)

	0
	256 × 100 × 160

	1
	256 × 50 × 80

	2
	256 × 25 × 40

	6
	256 × 13 × 20



Note that the intermediate data is about 22MB of size per image. In contrast, the original image size is about 3MB. A better split point should be pursued with retraining of the model parts and compression of the intermediate feature maps.
[bookmark: _GoBack]10.3.8.2	 SSD300 scripts
· convert_ssd300_to_onnx.py
This script converts the pytorch ssd_300 model to ONNX.
Usage: python convert_ssd300model.py <output_path_to_directory>
Output: <output_path_to_directory>/ssd_resnet.onnx 
Example: From rt-ml-ai-evaluation-framework directory :
python scripts/objectdetection/ssd300/convert_ssd300model.py ./models

· split_onnx.py
This script splits an ONNX file at identified bottlenecks points.
Usage: python split_onnx.py <path_to_onnx file> <split_point_name> <split_flag>
split_flag :’before’ to split before the split_point_name , ‘after’ to split after the split_point_name 

Example: python split_onnx.py ./models/ssd_resnet.onnx /feature_extractor/feature_extractor/feature_extractor.4/feature_extractor.4.0/relu_2/Relu before

Output : First and second part of the split in “./models”
Special character “/” in split_point_name is replaced with a “_”.

Output example: /models/ssd_resnet_Part_I__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx
./models/ssd_resnet_Part_II__feature_extractor_feature_extractor_feature_extractor.4_feature_extractor.4.0_relu_2_Relu.onnx

· infer_onnx.py
This script is used to run the inference of ssd300 model on an image or on a video. 
It infers the first part and the second part of the model sequentially in GPU or in CPU.
The predictions are saved with the format [label top_left_x top_left_y bottom_right_x bottom_right_y confidence_score], compatible with the scripts visualize.py and calc_map.py
Intermediate data are saved in numpy binary format .npz. s
The visual prediction results, the image with the boxes, are saved with the .png format. For video, only the first visual prediction is saved.

Usage:  python infer_onnx.py [-h] [-c PATH_TO_CONFIG] [-s INPUT_SOURCE] [-loop LOOP] [-partI PARTI] [-partII PARTII] [-anchor ANCHOR] [-results_filename RESULTS_FILENAME] -results_dir RESULTS_DIR [-no_CPU_anchor] [-no_GPU_anchor] [-ref_split REF_SPLIT] [-no_split]
	
Help:
infer_onnx is a script that run the inference of a ssd resnet model, full model or split.
	Options:
  -h, --help            show this help message and exit
  -c PATH_TO_CONFIG, --path_to_config PATH_TO_CONFIG    Path to config file
  -s INPUT_SOURCE, --input_source INPUT_SOURCE          Path to input source
  -loop LOOP            loop inference
  -partI PARTI          Path to model part I
  -partII PARTII        Path to model part II
  -anchor ANCHOR        Path to model anchor
-results_filename RESULTS_FILENAME                    Path to results file  -results_dir RESULTS_DIR	Path to results directory hosting predictions
  -no_CPU_anchor        no inference with CPU on model anchor
  -no_GPU_anchor        no inference with GPU on model anchor
  -ref_split REF_SPLIT  reference split label
  -no_split             no split (just anchor for instance)


10.4	Split inferencing for hand gesture recognition
10.4.1	Motivation and use case relevance
Many fields and applications using artificial intelligence need to track and recognize hand gestures to trigger user’s control actions, such as applications based on XR technologies.
For example, an XR application running on AR glasses consists of placing virtual objects in a real physical environment. The detection and recognition of a hand gesture identifies the user's control actions over virtual objects, such as creating, deleting, selecting one or more virtual objects, and placing it within the scene. A field of application is a remote visual assistance where a remote expert guides a person through a physical task by recognizing hand gestures.
AR glasses usually have limited capabilities in term of processing power and battery to run one or several applications requiring high computing power. Offloading a part of an AIML inference from the AR glasses to the network (e.g., Edge) can help reducing the consumption of the resources of the limited device. Besides, an AI/ML service for XR starts with the capture of video content that may contain private real-life scene including that of the user, which should not be directly transmitted for privacy reason. XR application can include a split function service to offload part of XR functions to the Edge such as rendering and scene management. This could be the case for split inferencing as well.
The above points highlight the value of providing split inferencing for recognizing hand gesture. 
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1 of the technical report permanent document.
10.4.2	Description of the scenario
We emulate this scenario by applying models from the ResNet family to recognize a set of hand gestures, trained from a selected publicly available dataset. The scenario topology is similar to Figure 5.1.1.1-1 where a device with limited capabilities (e.g., AR glasses) captures the video data source including hand gestures, then runs the head part of the model (M0), sends the intermediate data directly or through the proxy device (UE) to a network device running the edge service and the tail part (M1) of the model. The result of the model feeds the XR functions running on the edge device or sent back to the device.
The scenario considers the splitting of one or several ResNet models at different layers to measure the performances and data characteristics of split inferencing between two nodes. Split configurations may include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression) as well as serialization/deserialization functions. 
The anchor/baseline of the scenario includes the full model running on the device, the full model running in the network and a split configuration such that most of the computations take place in the network leaving the limited device with a small part of the model to meet privacy preserving requirements The baseline includes a round-trip communication between the device and the network, even when the full model is executed in the device, as the resulting hand gesture action may need to be processed in the network.
We evaluate the delivery of the intermediate data characteristics/metrics for different split points with respect to different device capabilities. We may consider different ResNet models and other similar models (ResNeXt for example) to evaluate the impact on characteristics/metrics of processing more or fewer layers and parameters to achieve better results. Delivery latencies will be estimated from the output data size and the different bandwidths of the 5G network.
We provide a test data set, either an excerpt of a public data set comprising a selected set of hand gestures or our own test dataset. 
10.4.3	Supporting companies and 3GPP members
· Interdigital.
10.4.4	Anchor AI/ML DNN model(s) for the scenario
We evaluate one or several DNN models belonging to the table below:
	Model
	Size (MB)
	F1 score
	No. of parameters

	Resnet18
	45 MB
	93.51
	11 million

	Resnet152
	230 MB
	94.49
	60 million

	Resnext50 _32x4d

	96 MB
	95.20
	25 million

	Resnext101 32x8d

	339.59
	95.67
	89 million


Table 10.4.4-1: Anchor model(s) for the scenario
The numbers in the names of a ResNet or a ResNeXt model represent the total number of convolutional layers in each of the architectures (e.g., resnet18 includes 18 convolution layers)
The evaluated models above are inferred using the PyTorch framework [1] [2]. 
10.4.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.


Figure 10.4.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network. 
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.4.1.
The anchor model used is shown in Table 10.4.4-1.
Test network latencies are not considered to ensure scenario reproducibility. 
Multiple model split configurations are considered as described in clause 10.2.6.
10.4.6	Test configuration factors, constraints, and settings
Each ResNet model listed above is composed of 8 different aggregated layers resulting in 8 different possible split points where we can compare the results from each model. Additional specific split points may be considered as well. 
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions. 

. 
Figure 10.4.6-1 Testbed configuration

10.4.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network.   
10.4.8	Test dataset(s) and scripts for the scenario
For the evaluation of this split scenario, we use Hagrid dataset (HAnd Gesture Recognition Image Dataset) [3] which provides ResNet-based trained models based on the recognition of 18 classes of gestures. Hagrid provides pre-trained models for several candidate model architectures for testing. 
· Resnet18:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet18FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet18FF.pth 
· Resnet152:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet152FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet152FF.pth 
· Resnext50:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext50FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext50FF.pth 
· Resnext101:  HYPERLINK "https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext101FF.pth" https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext101FF.pth 
The terms of license are available at:  HYPERLINK "https://github.com/hukenovs/hagrid/blob/master/license/en_us.pdf" https://github.com/hukenovs/hagrid/blob/master/license/en_us.pdf 
Test dataset and scripts to be provided at an ad-hoc meeting in October.
10.4.9	Detailed test conditions
TBD.
10.4.10	Interoperability considerations for the scenario
None.
10.4.11	External performance data
None.
10.4.12	Expected time plan for the scenario completion
Test datasets, scripts and first results in SA4 # 126, November, 2023
10.4.13	Additional information
None.
10.4.14	References for the scenario
[1] Pytorch ResNet  HYPERLINK "https://pytorch.org/vision/main/models/resnet.html" https://pytorch.org/vision/main/models/resnet.html  
[2] Pytorch ResNeXt  HYPERLINK "https://pytorch.org/vision/main/models/resnext.html" https://pytorch.org/vision/main/models/resnext.html 
[3] Hagrid  HYPERLINK "https://github.com/hukenovs/hagrid/tree/master" https://github.com/hukenovs/hagrid/tree/masterScenario merged with 10.3 at SA4#126.

10.5	Video super resolution in video call
10.5.1	Motivation and use case relevance
With the popularization of 5G networks, video-based call experience is rapidly developing, such as video ring back tone service, data channel related service, and XR service, etc. Currently, the resolution of video calls typically is 480p. In the future, more immersive XR call experiences are required, the video resolution needs to be improved to 720p or even 1080p or higher.
Due to a large number of existing mobile phone do not support 720p or 1080p or even higher video resolution, AI-based video super-resolution solution is a short cut which can bring better communication experience. The AI-based video super-resolution model can be deployed on IMS network to reduce the requirement and impact on the UE. 


Figure 10.5.1-1 :Workflow for Network based Video Super Resolution in Video call

The UE-A sends low-resolution video bitstream to IMS network when UE-A and UE-B are in a video call. IMS network detects that UE-B has provisioned video super resolution service, then IMS decodes the video, and performs AI processing using NN model to generate high-resolution video, finally encodes to high-resolution video bitstream and sends to the UE-B, UE-B can see the high-resolution video of the UE-A.
10.6	Bit-incremental transmission and deployment of AI/ML models
10.6.1	Motivation and use case relevance
Even after compression, AI//ML models can have large sizes, which may lead to high transmission times and thus a significant startup delay for inference. For example, consider the “object recognition in image and video” use case considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO with EfficietNet backbone, may have 50-100M parameters. Another example is the transformer models, which are very successful models adopted primarily in speech and vision applications. Their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models may take a significant amount of time to download; therefore, high startup latency is expected in the UE. However, in many time-critical use cases, it may be preferable to start performing inference rapidly, even if that occurs at the expense of the task accuracy. 
In addition to compression, model sizes can be reduced further by training models with lower precision, e.g., FP16 instead of FP32, or quantizing the trained models to obtain a lower precision version. In this way, a low-precision model can be sent to the client to reduce the startup time. However, there is typically a trade-off between the model accuracy and precision of the model weights. Therefore, a model update mechanism may be necessary to update a low-precision model to a higher precision to improve the model accuracy, if needed. This scenario describes such a bit-incremental transmission scenario for AI/ML model delivery.
It should be noted that the described technique is not specific to any of the scenario categories listed in the current PD. For evaluation purposes, the technique is applied to a binary image classification use case.
10.6.2	Description of the scenario
The scenario consists of two UEs and a server. The server has different versions of a model with different bit width in its local storage, e.g., two versions of the model described in Section 2.4: (i) a low-precision version of type 16-bit integer, and (ii) a full-precision version of type 32-bit integer. The UEs send request to the server to access the CNN model introduced in Section 2.4. UE1 requests a bit-incremental transmission of the full-precision model, while UE2 requests direct transmission of the full-precision model, which is considered as the anchor. In the anchor, the server sends the full-precision model directly to the UE2, while for UE1, the server sends the low-precision version of the model first, and then a model update is sent to the UE comprising the difference between the full-precision and low-precision versions. 
Transmission of the models is done in the compressed form to further save bandwidth. Compression here refers to any technique used to reduce the size of the model such as sparsification, pruning, quantization, entropy coding, etc. The compressed full/low precision models and the compressed model update all are passed through an entropy coder for further (lossless) compression. In the presented scenario, ISO/IEC 15938-17, namely the Neural Network Compression (NNC) standard is used to carry out compression. However, the proposed scenario is not tied any particular compression tool and can be realized with model compression algorithms available in other ML frameworks such as Pytorch.
10.6.3	Supporting companies and 3GPP members
· Nokia Corporation
· Fraunhofer HHI
10.6.4	Anchor AI/ML DNN model(s) for the scenario
In this scenario, one possible CNN model that may be used for the experiment is a VGG16 pre-trained on ImageNet and loaded from Pytorch Model Zoo [1] as the feature extractor, followed by two additional fully connected layers. The feature extraction part of the model consists of five layers as shown in Figure 1.
NOTE: Other models may be used by proponents of the evaluation of this scenario.
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Figure 1: Feature extractor part (VGG16) of the model used in this scenario. The light green part of each cube demonstrates the convolution layer, and the dark green part of the cube shows the ReLu layer. The brown cube determines the MaxPool layer.
Dimensions of each layer of the feature extractor is shown in Table 1. It should be noted that the original VGG16 model loaded from Pytorch model zoo consists of three fully connected layers after the five convolution layers. However, since we build our code based on the NNC standard’s code, we used two fully connected layers instead of three as in the original VGG16 model. The model contains in total more than 138M parameters and its file size is 527.8 MB. 
Table 1: Dimensions of each convolutional layer (in_channel, out_channel, kernel_height,kernel_width) of the feature extractor part of the model.
	Layer 1
	Conv1
	

	
	Conv2
	

	Layer 2
	Conv1
	

	
	Conv2
	

	Layer 3
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 4
	Conv1
	

	
	Conv2
	

	
	Conv3
	

	Layer 5
	Conv1
	

	
	Conv2
	

	
	Conv3
	



It is expected that the proposed technique provides benefit for all model architectures. More recent models (e.g. models with ResNet backbone) can be considered for evaluation subject to time constraints. Larger models can show the benefit better as the savings in terms of inference start-up latency and bandwidth will be greater.
10.6.5	Testbed architecture and anchors
The architecture considered for the scenario is shown in the Figure 2. For UE1 (left), the server first sends the low-precision version of the model () to the UE at time . The UE starts deploying the model in the task at hand upon receiving the model at time . Later the server sends a model update  comprising the difference between the full-precision model () and the low-precision model. For UE2 (right), the server directly sends the full-precision model at time . The UE starts deploying it after it received the model completely at time .
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Figure 2: Architecture of the scenario.
It should be noted that, in one variant of this scenario, the server may have both the lower-bit precision, e.g., 16-bit integer and the higher bit-precision, e.g., 32-bit integer versions of the requested model at hand. In another variant of the scenario, as in our implementation, the server may quantize the original (floating point) model into 16-bit and 32-bit integer models and then start sending them to the UEs. We followed this approach and quantized the 32-bit float model into a 16-bit and a 32-bit integer model, respectively, since we don’t have access to ready-to-use integer models with different bit widths,
10.6.6	Test configuration factors, constraints and settings
See section 10.6.9.
10.6.7	Feasibility/performance evaluation metrics and requirements
In the scenario, two alternatives for model transfer from the server and deployment in the client are considered:
1. Transmitting the original full-precision model. This setting is considered as the anchor.
2. Transmitting first a low-precision model and then transmitting a model update, which is added to the low-precision model to reconstruct the full-precision model in the client.
Considering these two alternatives, the following metrics are considered when comparing the two approaches:
· Original task accuracy: Accuracies of the original uncompressed high/low precision model in the server
· In case the model is encoded (entropy coded) in the sender for further compression : 
· Accuracies of the decoded high/low precision models in the client
· Accuracy of the model obtained after the decoded model update is added to the decoded low-precision model
NOTE: If the model is not encoded (entropy coded) in the server, accuracies of the compressed (quantized) high/low precision models at the server and client will be the same.
· Start-up latency: The time in seconds it takes for the client to start performing inference using the model transmitted from the server.
· Model size: Size of the model transmitted from the server to the client. In case the model is encoded in the sender, this will be the size of the compressed bitstream.
10.6.8	Test dataset(s) and scripts for the scenario
The Chest X-ray 2017 images dataset, which is publicly available and can be fetched from [2]. The dataset is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). The dataset is often used for detection of pneumonia based on neural networks. The dataset contains two classes: Normal and Pneumonia. There are in total 5,856 JPEG images in the dataset and total size of the dataset is 1.15 GB. The dataset is divided into the following splits:
· Train: 5,216
· Validation: 320
· Test: 320
We adopt half of the train data set (2,620 samples) as training data for retraining the model introduced in Section 2.4. Both UEs and the server have access to the same test data with 320 samples and evaluate the original and decoded models using this dataset.
Further datasets may be considered for evaluation subject to time constraints.
10.6.9	Detailed test conditions
The inputs to the model are the DNN architecture, the path to the dataset, the quantization method used for quantizing the float models (in case the input model is not integer), and the optimization parameters used for retraining of the models, e.g., batch size, learning rate, number of processors to be used for running the experiments. The outputs are the bitstreams of the compressed model and the measured metrics introduced in Sec. 10.6.7.
It is important to note that the metrics introduced in Sec. 2.7 are not tied to any compression tools. However, we adopted NNC since it provides the tools (e.g. encoding, bitstream generation) required to compute these metrics.
Each float model is first converted into integer models using uniform quantization. Then, the quantized model is encoded using DeepCABAC [3], and the generated bitstream is saved into the memory and sent to the UEs. In each UE, the received bitstream is first decoded and reconstructed using the NNC decoder and then adopted for the task at hand.
10.6.10	Interoperability considerations for the scenario
It is expected that the model data is downloaded, possibly using HTTP.
10.6.11	External performance data
None.
10.6.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
10.6.13	Additional information
None.
10.6.14	References for the scenario
[1]https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16.html#torchvision.models.vgg16
[2] Chest X-ray 2017 images dataset, https://data.mendeley.com/datasets/rscbjbr9sj/2
[3] Wiedemann, S., Kirchhoffer, H., Matlage, S., Haase, P., Marban, A., Marinč, T., Neumann, D., Nguyen, T., Schwarz, H., Wiegand, T., Marpe, D., Samek, W. (2020). DeepCABAC: A universal compression algorithm for deep neural networks. IEEE Journal of Selected Topics in Signal Processing, 14(4), 700-714.
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