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Start of changes
6.2	Model data
6.2.1 	Model optimization techniques
Trained models consist of a graph representations of neural networks as well as millions of parameters/weights that are learned during the training phase. Table 6.21.1-1 depicts the characteristics of some of the state-of-the-art DNNs as provided by [6].
	Model
	#Parameters (M)
	Footprint (MB)
	#FLOPs (B)

	1.0 MobileNet-224
	3.3
	13.2
	0.28

	EfficientNet-B0
	5.3
	21.2
	0.39

	DenseNet-169
	14
	56
	3.5

	Inception-v3
	24
	96
	5.7

	ResNet-50
	26
	104
	4.1

	VGG-16
	138
	552
	16

	SSD300-MobileNet
	6.8
	27.2
	1.2

	EfficientDet-D0
	3.9
	15.6
	2.5

	FasterRCNN-MobileNet
	6.1
	24.4
	25.2

	SSD300-Deeplab
	33.1
	132.4
	34.9

	FasterRCNN-VGG
	138.5
	554
	64.3

	YOLOv3
	40.5
	122
	71


Table 6.12.1-1: State-of-the-art DNN characteristics [6]
Parameter pruning is one of the main techniques to control the size of a neural network model or an update thereof. Pruning works by removing individual weights or complete structures of a pre-trained model. We differentiate between structured and unstructured pruning. In unstructured pruning, the goal is to reduce the number of non-zero weights in a layer while approximately preserving the output of that layer. The assumption behind this technique is that only a small subset of the weights is dominant and impacts the performance of the model. The rest of the weights may potentially be ignored/removed. The technique starts by assigning a saliency score to each parameter and then removes the weights with a score below a certain threshold. The resulting network may require retraining to regain the original accuracy. However, this type of technique introduces unstructured sparsity into the neural network, but the resulting tensors of parameters have the same size and shape. The receiver may require special inference hardware or some pre-processing to reduce the inference computational complexity. 
In structured pruning, the model graph is altered by completely removing certain structures such as neurons and filters. This may be done by assigning an importance score to each neuron/filter based on the current weight or based on inference data. The neurons/filters with a score below a threshold are removed. Compared to unstructured pruning, this approach does not introduce sparsity but may not yield the same compression results. 
Low-rank decomposition is another technique to reduce the size of a model. In low-rank decompression, a tensor, representing the weights of a layer in the DNN, is replaced by a product of two lower-rank tensors in which reduces the number of element-wise multiplications potentially without sensibly altering the performance, providing a proper choice of rank. This technique can both speed up the inference and results in compression gains. Algorithms such as the Singular Value Decomposition (SVD) may be used to obtain the tensors corresponding to any desired rank.  
Quantization is another very efficient compression technique. It consists of decreasing the precision of the parameters of a model, thus reducing the required memory footprint. The parameters are mapped from a larger space of values into a smaller one, a concept widely used in image and video compression. Better performing quantization techniques may be context aware and operate in a non-linear manner to approximate the distribution of the weight values. Knowledge about the used quantization scale will be required to perform inverse quantization and recover the original weights. If non-linear quantization is used, the technique becomes non-transparent. The resulting parameters may further be losslessly entropy coded, e.g. using Huffman coding.
Knowledge distillation takes a different approach to reducing model size. The goal is to transfer knowledge from a trained network into a smaller model for inference. During the distillation process, the smaller model learns to mimic the output of the larger trained model by minimizing a loss function that takes into account both the hard output values and the soft values (i.e. prior to filter application). Knowledge distillation techniques have in several cases surpassed the accuracy of the original model.
The compression levels achieved by these techniques can be controlled to provide a set or “family” of adaptive trained models which perform the same task but meet different constraints (e.g., memory footprint, latency and/or computational cost). Furthermore, by minimizing the difference between the models during training, the family can be optimized to reduce its memory footprint or the transmission cost of model changes. Examples of such approaches include:
· Pruned models, where each neural network of the family (except the largest one) contains a subset of the neurons of the previous network in the ordered family
· Quantized models, where the family contains neural networks with increasing quantization level of the parameters.
· Early-exit models, where the neural network contains exit points before reaching the final output that generate intermediate predictions/results. 
Most of the aforementioned techniques are sender-only techniques that do not require processing on the receiver side. The burden is on the creator of the model to apply these techniques to produce a more compact representation of the model. Some techniques may require processing at the receiver side. The complexity of that processing and the amount of information required to recover the model may vary by technique.
6.2.2	Model update requirements and constraints
6.2.2.1	Evolving requirements and environment conditions after model selection
Use-cases and different workflows delivery comprises the selection and the distribution of adapted trained models or model subsets to the UE for performing AI inference. An offline supervised learning can provide a set of trained models adapted for the UE to environment conditions regarding a UE service requirement. Environment conditions in clause 4.1 or clause 4.3.1 describes different sets of conditions including UE capabilities and network limitations. The UE and the network share these environment parameters to select the trained model that fits best the current conditions to meet the requirements. The selection may depend for example on the current UE capabilities such as the available memory, the current power consumption, the current battery storage, the current computing power, as well as on the current network conditions such as the network load, the available or the allocated bandwidth to the UE. This may also depend on the service requirements, or on the user preferences on the expected quality of result and on the maximum UE resources such as the energy, memory, computing power for running the AI/ML service.
During the inference stage, environment conditions as listed above may change to such an extent that the selected trained model e.g., DNNs will no longer be appropriate or not optimal to meet the requirements. This will lead to a degraded QoE for the end user. This highlights the need for model updates to meet the new environment conditions.
6.2.2.2	Model accuracy deviation between the training phase and the delivery phase.
The discrepancy between the data seen during training and data used at the time of inference can lead to a decrease in accuracy performance. The actual accuracy of the system may vary depending on the current input data, environment, and context. Updates to the trained models are necessary to continue to meet the accuracy requirements.
6.2.2.3	Applying inference on evolving characteristics of the input media content 
The model to be applied can be adapted to the entire media content or sequence thereof, or to a spatial or temporal partition of an input media content, for example to a group of frames, frame slices, frame blocks. The model and/or model parameters such as biases and weights may be updated to adapt to the characteristics of the processed part of the content. The characteristics can relate to the resolution, light e.g., the noise introduced by the camera, content in dark areas, the type of scene. They can also relate to the current demand by the algorithm or the user in terms of expected accuracy or subjective quality of the produced content. 
6.2.3 	Model serialization
In computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g., files in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment).
The process of saving an AI/ML model to use it later is called serialization. After transmitting or storing the serialized data, it is possible to reconstruct the model later and obtain the exact same structure/object.
6.2.4	Classes of AI/ML models
6.2.4.1	Introduction
Depending on the training method selected, AI/ML models can operate various types of operations as depicted in the figure below:
Decision making
Clustering
Regression
Classification
Supervised learning
Unsupervised learning
Reinforcement learning
Machine Learning types

6.2.4.2	Supervised learning
As explained in [Cunningham, P., Cord, M., Delany, S.J. (2008). Supervised Learning. In: Cord, M., Cunningham, P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2] supervised learning accounts for a lot of research activity in machine learning and many supervised learning techniques have found application in the processing of multimedia content. The defining characteristic of supervised learning is the availability of annotated training data. The name invokes the idea of a ‘supervisor’ that instructs the learning system on the labels to associate with training examples. Typically, these labels are class labels in classification problems. Supervised learning algorithms induce models from these training data and these models can be used to classify other unlabelled data. The analysis of supervised learning can be seen as the theory of risk minimization. Vector machines and nearest neighbour classifiers are probably the two most popular supervised learning techniques employed in multimedia research.
6.2.4.3	Unsupervised learning
The goal of unsupervised learning is to find the underlying structure of dataset, group that data according to similarities, and represent that dataset in a compressed format. Unsupervised learning is important in the processing of multimedia content as clustering or partitioning of data in the absence of class labels is often a requirement. The absence of class labels in unsupervised learning makes the question of evaluation and cluster quality assessment more complicated than in supervised learning. 
6.2.4.4	Reinforcement learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.
Reinforcement learning differs from supervised learning in not needing labelled input/output pairs be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge).
6.62.5	Existing formats for AI/ML models
6.62.5.1.1	ONNX format
The Open Neural Network Exchange (ONNX) format [2] is an open specification that was developed to facilitate the exchange of machine learning models between different AI frameworks. ONNX consists of the following components:
· A definition of an extensible computation graph model.
· Definitions of standard data types.
· Definitions of built-in operators.
The ONNX format is built around the Protocol Buffers (Protobuf) open-source cross-platform serialization format that was developed initially by Google.
The ONNX Graph is structured as a list of nodes that form an acyclic graph. Each node of the graph represents one of the built-in operators and its attributes. As an example, a node could be a Convolution operation, and its attributes would contain information regarding the padding and stride that must be used. Each edge of the graph represents input or output data tensors. The top-level ONNX construct is a ‘Model.’, and is represented in protocol buffers as the type onnx.ModelProto. It provides metadata that is necessary for the reader to determine if they are able to process the stored model. Each model must explicitly name the operator sets that it relies on for its functionality. Operator sets defines a set of operators and their versions. An operator is identified through its unique operator type (op_type), which is a case-sensitive operator name. 
Built-in operators include a large list of widely used operators such as the following:
· Math operators such as Abs
· DNN operators such as Conv and LSTM
· Activation operators such Sigmoid and Relu
· Pooling operators such as MaxPool
· Other operators such as error computation and data reformatting operators
The following provides an example of an ONNX model in protobuf format:
	ir_version: 5
producer_name: "skl2onnx"
producer_version: "1.11"
domain: "ai.onnx"
model_version: 0
graph {
  node {
    input: "X"
    output: "Y"
    name: "Pa_Pad"
    op_type: "Pad"
    attribute {
      name: "mode"
      s: "constant"
      type: STRING
    }
    attribute {
      name: "pads"
      ints: 0
      ints: 1
      ints: 0
      ints: 1
      type: INTS
    }
    attribute {
      name: "value"
      f: 1.5
      type: FLOAT
    }
    domain: ""
  }
  name: "OnnxPad"
  input {
    name: "X"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
          }
          dim {
            dim_value: 2
          }
        }
      }
    }
  }
  output {
    name: "Y"
    type {
      tensor_type {
        elem_type: 1
        shape {
          dim {
          }
          dim {
            dim_value: 4
          }
        }
      }
    }
  }
}
opset_import {
  domain: ""
  version: 10
}



6.6.22.5.2	NNEF format
The Neural Network Exchange Format (NNEF) [3] is a Khronos developed standard that defines a data format for facilitating the exchange of trained network models. The NNEF format enables the encapsulation of both the structure of the neural network model as well as the associated data. NNEF stores the data in structures that are independent of the training environment that was used for training the network, which will facilitate its consumption on any execution platform. NNEF offers itself as an intermediary between deep learning frameworks, which export into NNEF, and neural network accelerator libraries, which will import and compile the NNEF model for hardware-optimized inference.
The NNEF container consists of the following files:
· a textual file that describes the structure of the neural network
· a binary data file for each variable tensor. These files are structured hierarchically into sub-folders associated with the corresponding operation. Each tensor may have different representations, each matching a different quantized version.
· a quantization file that contains details about the quantization algorithm that is used for quantizing the exported tensors.
The NNEF network structure is described through a computational graph. The computational graph is a directed graph. The nodes of the graph may be data nodes or operation nodes. A directed edge from a data node to an operation node indicates the data is input to the operation. A directed edge from an operation node to a data node indicates the data node is an output.
Data nodes are tensors of different ranks and shapes and may be external, constant, variable, or intermediate/regular tensors. external, constant, and variable tensors all provide an explicit declaration of their shapes. Other tensors shapes will be determined based on the input and operation that is applied to them to produce that tensor. This is commonly known as shape propagation.
The NNEF operation nodes may have attributes that describe the exact computation that needs to be performed. Operations may be composed together to produce more compound operations. Primitive operations are operations that cannot be broken down into simpler operations.   
The following is an excerpt from an NNEF graph representation of the VGG-16 network model:
	version 1.0;

graph VGG_ILSVRC_16_layers(data) -> (prob)
{
    variable_15 = variable<scalar>(label = 'conv4_1_blob2', shape = [1, 512]);
    variable_14 = variable<scalar>(label = 'conv4_1_blob1', shape = [512, 256, 3, 3]);
    variable_13 = variable<scalar>(label = 'conv3_3_blob2', shape = [1, 256]);
    variable_31 = variable<scalar>(label = 'fc8_blob2', shape = [1, 1000]);
    variable_30 = variable<scalar>(label = 'fc8_blob1', shape = [1000, 4096]);
    variable_29 = variable<scalar>(label = 'fc7_blob2', shape = [1, 4096]);
    variable_28 = variable<scalar>(label = 'fc7_blob1', shape = [4096, 4096]);
    variable_27 = variable<scalar>(label = 'fc6_blob2', shape = [1, 4096]);
    variable_26 = variable<scalar>(label = 'fc6_blob1', shape = [4096, 25088]);
    variable_25 = variable<scalar>(label = 'conv5_3_blob2', shape = [1, 512]);
    variable_24 = variable<scalar>(label = 'conv5_3_blob1', shape = [512, 512, 3, 3]);
    variable_23 = variable<scalar>(label = 'conv5_2_blob2', shape = [1, 512]);
    variable_22 = variable<scalar>(label = 'conv5_2_blob1', shape = [512, 512, 3, 3]);
    variable_21 = variable<scalar>(label = 'conv5_1_blob2', shape = [1, 512]);
    variable_20 = variable<scalar>(label = 'conv5_1_blob1', shape = [512, 512, 3, 3]);
    variable_19 = variable<scalar>(label = 'conv4_3_blob2', shape = [1, 512]);
    variable_18 = variable<scalar>(label = 'conv4_3_blob1', shape = [512, 512, 3, 3]);
    variable_17 = variable<scalar>(label = 'conv4_2_blob2', shape = [1, 512]);
    variable_16 = variable<scalar>(label = 'conv4_2_blob1', shape = [512, 512, 3, 3]);
    variable_12 = variable<scalar>(label = 'conv3_3_blob1', shape = [256, 256, 3, 3]);
    variable_10 = variable<scalar>(label = 'conv3_2_blob1', shape = [256, 256, 3, 3]);
    variable_9 = variable<scalar>(label = 'conv3_1_blob2', shape = [1, 256]);
    variable_8 = variable<scalar>(label = 'conv3_1_blob1', shape = [256, 128, 3, 3]);
    variable_6 = variable<scalar>(label = 'conv2_2_blob1', shape = [128, 128, 3, 3]);
    variable_11 = variable<scalar>(label = 'conv3_2_blob2', shape = [1, 256]);
    variable_5 = variable<scalar>(label = 'conv2_1_blob2', shape = [1, 128]);
    variable_4 = variable<scalar>(label = 'conv2_1_blob1', shape = [128, 64, 3, 3]);
    variable_2 = variable<scalar>(label = 'conv1_2_blob1', shape = [64, 64, 3, 3]);
    variable_1 = variable<scalar>(label = 'conv1_1_blob2', shape = [1, 64]);
    variable_7 = variable<scalar>(label = 'conv2_2_blob2', shape = [1, 128]);
    variable = variable<scalar>(label = 'conv1_1_blob1', shape = [64, 3, 3, 3]);
    variable_3 = variable<scalar>(label = 'conv1_2_blob2', shape = [1, 64]);
    data = external<scalar>(shape = [10, 3, 224, 224]);
    conv = conv(data, variable, variable_1, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu = relu(conv);
    conv_1 = conv(relu, variable_2, variable_3, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_1 = relu(conv_1);
    max_pool = max_pool(relu_1, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
    conv_2 = conv(max_pool, variable_4, variable_5, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_2 = relu(conv_2);
    conv_3 = conv(relu_2, variable_6, variable_7, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_3 = relu(conv_3);
    max_pool_1 = max_pool(relu_3, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
    conv_4 = conv(max_pool_1, variable_8, variable_9, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_4 = relu(conv_4);
    conv_5 = conv(relu_4, variable_10, variable_11, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_5 = relu(conv_5);
    conv_6 = conv(relu_5, variable_12, variable_13, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_6 = relu(conv_6);
    max_pool_2 = max_pool(relu_6, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
    conv_7 = conv(max_pool_2, variable_14, variable_15, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_7 = relu(conv_7);
    conv_8 = conv(relu_7, variable_16, variable_17, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_8 = relu(conv_8);
    conv_9 = conv(relu_8, variable_18, variable_19, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_9 = relu(conv_9);
    max_pool_3 = max_pool(relu_9, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
    conv_10 = conv(max_pool_3, variable_20, variable_21, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_10 = relu(conv_10);
    conv_11 = conv(relu_10, variable_22, variable_23, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_11 = relu(conv_11);
    conv_12 = conv(relu_11, variable_24, variable_25, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
    relu_12 = relu(conv_12);
    max_pool_4 = max_pool(relu_12, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
    reshape = reshape(max_pool_4, shape = [10, -1]);
    linear = linear(reshape, variable_26, variable_27);
    relu_13 = relu(linear);
    linear_1 = linear(relu_13, variable_28, variable_29);
    relu_14 = relu(linear_1);
    linear_2 = linear(relu_14, variable_30, variable_31);
    prob = softmax(linear_2, axes = [1]);
}



6.6.32.5.3	Neural Network Coding (NNC) format
The Neural Network Coding (NNC) standard [4] has been developed by ISO/IEC for transmission and storage of machine learning models for multimedia description and analysis. It specifies a compressed representation format for neural network data and processes for its decoding. As shown in Figure 6.5.7-1, NNC follows a toolbox approach: It offers a variety of options to represent and code neural network (NN) data, which can be flexibly selected based on the requirements of a particular use case. In particular, NNC defines data structures and syntax elements to support the following:
· Packaging of NN data of different types in neural network representation (NNR) units for access from a system or application layer.
· Signaling of metadata related to various methods of pre-processing for data reduction
· Compression of NN weights/tensor coefficients using quantization and entropy coding
· Interoperability with other exchange (e.g. NNEF [2], ONNX [3]) or native formats (PyTorch, TensorFlow).
For access from a systems or application layer, NNC packages the NN data in neural network representation (NNR) units. NNR units that can carry different types of NN data: NNR parameter set and NNR layer parameter set units convey metadata and information related to the entire NN and individual NN layers, respectively. NNR topology units contain information on the NN topology, e.g. the connections between layers/tensors. The actual tensor data is conveyed in NNR quantized information and NNR compressed data units. Finally, NNR aggregate units allow to combine several NNR units of different types that are related. 
NNC allows to signal metadata related to typical pre-processing and parameter reduction methods in NNR parameter set units or NNR layer parameter set units. More specifically, NNC supports inclusion of parameters related to sparsification, pruning, low-rank decomposition, unification, batch norm folding, and local scaling. 
NNC represents the NN weights/tensors in NNR compressed or NNR quantized information data units. Tensor/weight coefficients can be signaled as raw data or quantized with different methods, which are uniform, codebook, or dependent quantization. Furthermore, the quantized coefficients can be binarized and entropy coded using a context adaptive arithmetic coder, called DeepCABAC.
NNC can be used as complement to other native (e.g. PyTorch, TensorFlow) or exchange (e.g. NNEF, ONNX) representation formats. This can be done by two means: First, NNC allows to embed topology information of other formats into an NNR bitstream. More specifically, the byte sequences of other formats can be signaled in NNR topology units, which are then conveyed together with NNR compressed data or NNR quantized information units representing the coded or quantized tensors/weights. Second, NNR units representing coded tensors/weights can be embedded in the containers of other formats. Informative recommendations on how to use NNC in combination with PyTorch, TensorFlow, NNEF, and ONNX are given in the Annexes A to E of the standard [4]. 
SC29 WG04 is also already working on a second edition of ISO/IEC 15938-17, of which a Draft International Standard (DIS) has been completed. The second edition adds the functionality to compress incremental updates of neural networks, which can e.g. be applied to sending updates of neural networks or to federated learning scenarios.
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Figure 6.52.5.37-1: Generation of a neural network representation (NNR) bitstream consisting of NNR units. Tools for pre-processing, parameter reduction, quantization, and entropy coding can be selected based on the complexity and compression requirements of a given use case.
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