3GPP TSG SA WG4 125	 S4-231332
Gothenburg, Sweden, 21st – 25th August 2023
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:		Samsung Electronics Co., Ltd.
Title:		[FS_AI4Media] Split inferencing scenario update
Agenda Item:	9.7
Document for:	Agreement
1 Introduction
This contribution presents an update of the status for the split inferencing scenario in clause 10.2 of the AI/ML Evaluation PD v0.1, providing preliminary details on the following:
· Detailed test conditions
· For each anchor, and each split configuration, the following metrics:
· Intermediate data size
· [bookmark: _GoBack]Inference latency at each device
· Tools used for extraction and calculation of the metrics
2 Detailed test conditions
The scenario includes split inferencing between two devices, namely one low capability device and one high capability device. The specific devices used and detailed below are for reference only, since cross referencing on the same device hardware components is unpractical between different proponents.
Low capability device: Samsung A01 (hardware specifications: https://www.gsmarena.com/samsung_galaxy_a01-9999.php)
High capability device: Linux PC
	PRETTY_NAME="Ubuntu 22.04.2 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.2 LTS (Jammy Jellyfish)"
Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 46 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 40
 On-line CPU(s) list: 0-39
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz
 CPU family: 6
 Model: 85
 Thread(s) per core: 2
 Core(s) per socket: 10
 Socket(s): 2
 Stepping: 7
 CPU max MHz: 3200.0000
 CPU min MHz: 1000.0000
 BogoMIPS: 4400.00

The test environments used for each device include TensorFlow for Android and Linux respectively.
3 Metrics results
See Excel file attached to this contribution.
It is possible to cross-check the test split model files sizes and intermediate data sizes for each split point, however, cross-checking inference latency at each device (the processing time on UE/server respectively) is likely difficult due to differences in test device availability/capabilities and test setups.
Nevertheless an improvement in the UE processing time can be calculated as a percentage, when compared to not performing split inferencing, for each split point. This is calculated similarly for the improvement in the total process time.
Bandwidth and delivery related latencies are not considered.
In addition to PoseNet, results are also shown for a MIRNet model used to enhance low-light images.
4 Obtaining metrics
The intermediate data size from each layer in a specific AI model remains consistent irrelevant of the inputs fed into the model
In order to obtain the intermediate data size from each layer in the model:
· Use TFLite Python ‘Interpreter’ APIs to get the name and size of the output of each layer in the model. Use ‘interpreter.get_tensor_details()’ to get the ‘name’, shape, and ‘type’ of the outputs. Using ‘shape’ and ‘type’, calculate the size of the outputs. (Uses TFLite APIs with Python code)
For the measurement of performance (inference processing times), the BenchMark tool provided by Tensorflow was used for each split point configuration. The BenchMark tool is provided here: https://www.tensorflow.org/lite/performance/measurement#native_benchmark_binary
In detail, for obtaining the processing times on the two devices (for reference):
· Use the TFLite benchmark tool to measure the execution times of each layer of the model on the Linux PC and the Android device
· Make the benchmark data consistent by finding the common layers run on both platforms. We can find the common layers by matching the names of the layers. (Uses Python code)
· Calculate cumulative times from the benchmark data. Cumulative time till layer ‘x’ on a device is the sum of times from layer 1 to layer x. (Uses Python code)
· Find the total time for each split ratio. For example, if the split point is 20 out of a total of 100 layers, then the total time on the Android device will be the cumulative time till layer 20. The total time on the Linux PC will be the difference between the cumulative time till layer 100 and the cumulative time till layer 20. (Uses Python code)
5 Next steps
In this contribution we present some preliminary results and methods related to the split inferencing scenario.
As next steps, we intend to work further on the Python code before sharing, after checking with our company’s licensing policies.
In addition, we are also considering performing a similar feasibility evaluation for a different AI model, such as MIRNet for image/video processing.
