3GPP TSG SA WG4 125	 S4-231331
Gothenburg, Sweden, 21st – 25th August 2023
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:		Samsung Electronics Co., Ltd. (Rapporteur)
[bookmark: _GoBack]Title:			[FS_AI4Media] Permanent Document v0.8.1
Version:		0.8.1
Agenda Item:		9.7
Document for:		Agreement
1	Introduction
During SA4#117-e the New Study Item on “Artificial Intelligence (AI) and Machine Learning (ML) for Media” in S4-220226 was agreed and afterwards approved in by SA#95e in SP-220328.
The objective of this study item are primarily to identify the media service architectures and relevant service flows, model operation configurations, data components including available data formats, and the data traffic characteristics in AI/ML for media related services. Key performance indicators and performance metrics are also identified.
The concrete objectives are as follows:
· List and describe the use cases for media-based AI/ML scenarios, based on those defined in TR 22.874.
· Describe the media service architecture and relevant service flows for the scenarios, identifying for each use case the impacts on the architecture, including any potential gaps with existing 5G media service architectures. Also describe the model operation configurations for each use case, including split AI/ML operations, identifying where certain AI/ML operations occur.
· Identify and document the available data formats and suitable protocols for the exchange of different data components of various AI/ML models, such as model data, metadata, media data, and intermediate data necessary for such model operation configurations. Also investigate the data traffic characteristics of these data components for delivery over 5G system, including whether there are any needs and potentials for data rate reduction.
· Identify and study key performance indicators for such scenarios, based on the initial considerations in TS 22.261, with additional emphasis on the use cases, model operation configurations and data components as identified in earlier objectives, focusing on objective performance metrics considering the KPIs identified.
· Identify potential areas for normative work as the next phase and communicate/align with SA2 as well as other potential 3GPP WGs on relevant aspects related to the study.
2	Related works
2.1	AI/ML work in 3GPP WGs
This clause documents the 3GPP activity related to AI/ML in other Working Groups.
-	SA1 has completed an initial study item on traffic characteristics and performance requirements for AI/ML model transfer in 5GS (FS_AMMT), documented in TR 22.874. This technical report describes a variety of different use cases for AI/ML in 5G, with many that are related to media services. The media related use cases described in TR 22.874 are used as a basis for those listed and described in clause 4.2 of this TR. Resulting from this study item, SA1 has completed related normative works by way of multiple CRs on TS 22.261 (AMMT), reflecting new service requirements and KPIs for AI/ML model transfer in 5GS. Leading from this initial work, SA1 has also subsequently established a Rel-19 study on AI/ML model transfer phase 2 (FS_AIML_MT_Ph2), the objectives of which are to study new use cases and potential service and performance requirements to support efficient AI/ML operations using direct device connection. This study avoids overlaps with stage-23 work ongoing in Rel-18.
-	SA2 is in progress of a study item on system support for AI/ML-based services (AIMLsys). The scope of this study is based on requirements from SA1, including 7 key issues related to the training and inference processes of AI/ML applications, namely monitoring of network resources to support application AI/ML operations, 5GC information exposure to UE and authorized 3rd party, enhancing external parameter provisioning, QoS and policy enhancements, among others.
-	SA3 has recently approved a study item on security and privacy of AI/ML-based services and applications in 5G (FS_AIML). The objectives are to identify what security and privacy management is needed for data transmission to application layer AIML, including authentication and authorization of data collection and sharing between UE, AF and the network, and securing of AIML-based services and operations.
-	SA5 has a study item on AI/ML management (FS_AIML_MGMT), related to automation and intelligence in 5G, including management and orchestration (e.g. MDA), 5GC (e.g., NWDAF), and NG-RAN. The objectives are to provide validation/testing of models and AIML enable functions, deployment of these models and functions, and configuration and performance evaluation of AIML enabled functions. The study will also investigate what coordination is needed between AIML management capabilities and 5GC AIML capabilities.
-	SA6 is in progress of a study on application data analytics enablement service (FS_ADAES), the goal is to study how to provide application layer data analytics as a possible new capability at the enablement layer for supporting the application specific layer to receive useful statistics/predictions for the application service, while complementing the analytics provided by the 5GS.
-	RAN1 is in progress of a study on the 3GPP framework for AI/ML for NR air interface. The goal of this study is to explore the benefits of augmenting the air-interface with features enabling improved support of AI/ML based algorithms for enhanced performance and/or reduced complexity/overhead. Enhanced performance here depends on the use cases under consideration and could be, e.g., improved throughput, robustness, accuracy or reliability, etc.
-	RAN3 has a study item on specify data collection enhancements and signalling support within existing NG-RAN interfaces and architecture (including non-split architecture and split architecture) for AI/ML-based Network Energy Saving, Load Balancing and Mobility Optimization (AIML_RAN). Normative work is expected to start in Q3 2022.
2.2	AI/ML work in MPEG WGs
MPEG currently has two working groups studying coding technologies optimized for machine vision tasks: Feature Compression for Video Coding for Machines (FC-VCM) and Video Coding for Machines (VCM). In the following the source content is referred to as video but the system can also be used with still images. The scope of these two groups differs in the inputs/outputs: the inputs to the encoder of VCM are videos or images, while the inputs and outputs to the FC-VCM codec are features extracted from the images or videos, which corresponds to the split-inference pipeline considered in this document.
VCM has issued a Call for Proposals (CfP) in Apr. 2022, and is currently performing Core Experiments (CE) to decide what should be included in the reference software. FC-VCM, on the other hand, is in a relatively earlier stage. It issued a CfP in April. 2023, the responses will be evaluated in October 2023.

2.2.1	MPEG Feature Compression for Video Coding for Machines (FC_VCM)
In the MPEG Requirements Working Group which explores new market needs, an ad-hoc group has been created to study the optimization of the Compression of Features in the context of Video Coding for Machine tasks (FC-VCM).
Intermediate data can consist of large tensors of floating-point values, which would require very large bitstream over 5G to enable split inference between the network and the UE. Therefore, compression may be required in this scenario. The FC-VCM encoder and the FC-VCM decoder would then be part of the intermediate delivery function and intermediate access function, respectively.
Figure 2.2.1-1 illustrates the considered pipeline where, like in the current study, a first part of the Neural-Network-based algorithm is split into two parts. The intermediate features are first encoded on the sender side and embedded in a bitstream, which is decoded at the receiver before inferring the second part of the Neural Network.
[image:]
[bookmark: _Ref126187396]Figure 2.2.1-1: FC-VCM pipeline

This standard, which targets use-cases matching the proposed Intermediate data transfer, is expected to be finalized by the end of 2025.
The current baseline considers the use of traditional video compression methods, e.g., the latest H.266/Versatile Video Coding (VVC) standard, to encode the features that are processed and packed into input frames to the codec. The activity has just started, and new methods are going to be proposed. As the AI models considered in this study rely on Neural Networks, it can be envisioned to optimize the compression of the intermediate features using trained auto-encoders as well, to minimize the size of the bitstreams to be transmitted over 5G, while conserving an acceptable accuracy of the inferred models.
2.2.2	MPEG Video Coding for Machines (VCM)
In the MPEG Video Working Group which explores video coding technologies, an ad-hoc group has been created to study the optimization of the Video Coding for Machine tasks (VCM).
Traditional coding methods aim for the best video reconstruction under certain bit-rate constraints for human consumption. However, with the rise of machine learning applications, along with the abundance of sensors, many intelligent platforms have been implemented with massive data requirements including scenarios such as connected vehicles, video surveillance, and smart city.
The sheer quantity of data being produced constantly leads previous methods with a human in the pipeline to be inefficient, and unrealistic in terms of latency and scale. There are additional concerns in transmission and archive systems which require a more compact data representation and low latency solution.
Figure 2.2.2-1 illustrates the considered pipeline where, like in the current study, videos are embedded in a bitstream, which is decoded to either a reconstructed video or a representation of the input video before inferring the task neural network.
VCM encoder
VCM decoder
Machine Analysis
Human Consumption
Video
Bitstream
Reconstructed Data

Figure 2.2.2-1: VCM pipeline

3	Definition of terms, symbols and abbreviations
3.1	Terms
For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].
AI/ML model: A trained AI/ML model.
Model inference: Process by which a deployed machine learning model generates a result [5].
Inference engine: Functionality that provides runtime environment for a machine learning
model and exposes corresponding machine learning model inference capability [5].
AI/ML model subset: An elementary element of an AI/ML model that can be inferred independently.
AI/ML model composition: The composition of an AI/ML Model into one or more AI/ML model subsets.
AI/ML model split points: The points in a DNN AI/ML model where it is split into multiple AI/ML model subsets.
AI/ML inference endpoint: UE or Network inference engine that infers a result from executing an AI/ML model, or a part of it.
Split AI/ML model: An AI/ML model composed of AI/ML subsets that are distributed to, and inferred on different inference endpoints.
Intermediate data: Output from the inference process of an AI/ML model that is not considered the final inference result.
Model update: Partial or full update of a trained model which may include its internal structure and/or related parameters (e.g. weight, biases).

4	Media-based AI/ML use cases and scenarios
TR 22.874 [1] has identified a set of use cases for AI/ML with the following key operations:
· [bookmark: MCCQCTEMPBM_00000086]AI/ML operation splitting between AI/ML endpoints: The AI/ML operation/model is split into multiple parts according to the current task and environment. The intention is to offload the computation-intensive, energy-intensive parts to network endpoints, whereas leaving the privacy-sensitive and delay-sensitive parts at the end device. The device executes the operation/model up to a specific part/layer and then sends the intermediate data to the network endpoint, the network endpoint then executes the remaining parts/layers and feeds the inference results back to the device. Alternatively, the network endpoint may firstly execute the operation/model up to a specific part/layer and then sends intermediate data to the device, which then executes the remaining parts/layers before consuming the inference results.
· AI/ML model/data distribution and sharing over 5G system: Multi-functional mobile terminals might need to switch the AI/ML model in response to task and environment variations. The condition of adaptive model selection is that the models to be selected are available for the mobile device. However, given the fact that the AI/ML models are becoming increasingly diverse, and with the limited storage resource in a UE, it can be determined to not pre-load all candidate AI/ML models on-board. Online model distribution (i.e. new model downloading) is needed, in which an AI/ML model can be distributed from a network endpoint to the devices when they need it to adapt to the changed AI/ML tasks and environments. For this purpose, the model performance at the UE needs to be monitored constantly.
· Distributed/Federated Learning over 5G system: The cloud server trains a global model by aggregating local models partially-trained by each end devices. Within each training iteration, a UE performs the training based on the model downloaded from the AI server using the local training data. Then the UE reports the interim training results to the cloud server via 5G UL channels. The server aggregates the interim training results from the UEs and updates the global model. The updated global model is then distributed back to the UEs and the UEs can perform the training for the next iteration.
These operations have been identified as they require exchange of ML and media data over 5G, and in some cases may have some requirements on the QoS for proper operation.
The use cases and scenarios listed in this technical report, which are described in this clause, are based on a selection of the media-based AI/ML use cases identified in TR 22.874 [1].
4.1	Object Recognition in Image and Video
Based on clause 5.1 and 5.2 of TR 22.874 [1], this set of use cases, images and video streams are processed to identify and recognize objects and extract some metadata, such as bounding boxes, object labels, movement counters, etc.
The uses cases are applicable for the different topologies described in clause 5.1, including UE inference only, network inference only and split inferences topologies.
The computationally intensive and memory and power consuming AI/ML inference used to perform this processing requires offloading some inference parts from the mobile device to the edge or a cloud data center.
Split inference of trained ML model(s) for object recognition is distributed between multiple endpoints, typically between the network and UE. Split points may depend on various factors including UE capabilities, network conditions, model characteristics, and user/task specific requirements:
· Device/UE capabilities on running whole or part of model such as the required memory, the processing capabilities, the energy consumption, and the inference latency.
· [bookmark: _Int_uSC9WpmE]Network conditions for delivering media and/or the intermediate data. This may include, for example the amount of data to transfer in one shot for an image or at a specific frame rate for video, the required bandwidth in UL and/or DL with different impact on the network load and the related UL and DL network latencies. Network inference latency is also to be considered.
· Model characteristics include split inference with a task-specific model head running on the UE for object recognition. For example, in one UE, the task is to recognize pedestrians, whereas in another it is to recognize traffic signs. The core of the network model as well as the input image/video are the same, but the tasks (and their required task-specific models) in the UEs are different.
· User or task specific requirements. For example, it may be necessary to perform some processing tasks on end-device in order to preserve privacy or because they are delay sensitive operations.
Two main scenarios, both involving either image or video processing are proposed:
a) The UE captures images or video and first feeds the input data to the UE inference model (e.g., to preserve privacy). The UE then uploads intermediate output data from the UE inference model to the network inference, which in turn executes the remaining part of the model (e.g., process the intensive computations) and finally returns the results or a processed image/video to the UE.
b) Unlike the previous scenario, the UE uploads the captures image or video to the network where a network inference processes inputs video/image, then sends back the intermediate data to the UE inference executing the remaining layers of the model (e.g., task specific operations) and returning the final results.
These scenarios involve the key operation of AI/ML model/data distribution and require the delivery of trained ML model(s) for object recognition to the UE in 5GS, including the selection of models for different tasks or environments and the possible selection of the split points based on the various factors described above
These scenarios also involve the distribution of distributed online training of image and video recognition models based on input from different UEs. Depending on the configuration of the ML training framework, different data may need to be delivered between the UEs and the network. Typically, a shared model in the network is calibrated continuously based on the training results from all UEs. This scenario involves all the three key operations related to AI/ML model distribution, splitting, and distributed/federated learning.
4.1.1 Scenario: Split inferenced human pose estimation
Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.
Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.
Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.
This scenario falls under the use case of Object Recognition in Image and Video.
4.1.1.1 Description of scenario
User A is wearing a pair of AR glasses, ready to start her daily mat yoga home fitness program. She does her workout in front of a mirror such that the AR glasses can capture her movements for the application to give better feedback by estimating the pose using spatial locations of key body joints (keypoints).
As a mobile fitness application, user A is able to do such a work out either at home, at a hotel room on a business trip, or elsewhere as long as she has a 5G connectivity and enough workout space. At the start of the application service, depending on user A’s AR glass processor capability, 5G connectivity as well as the AI model complexity and architecture, a split inference configuration is negotiated, and the required partial AI/ML model(s) are delivered from the service application in the network to her AR glasses device.
Connected to 5G, during the workout user A’s AR glasses partially inferences the video captured during the workout, before sending the intermediate data to a remote server where the rest of the inferencing is processed. The results of the inference are sent back to her AR glasses, interpreted by the fitness application, and displayed to her when necessary.
Depending on the AI/ML model used for the service as well as AR Glass processing capability and 5G Network bandwidth, appropriate split points are firstly identified by the application provider, before the selection of a suitable split point according to the characteristics of the service instance.
4.1.2 Scenario: Bit-incremental transmission and deployment of AI/ML models
4.1.2.1 Motivation and use case relevance
In many AI/ML mobile applications, end devices require very low latency to execute the model. End devices also have low bandwidth for model communication. Even the bandwidth from the server is limited. On the other hand, AI/ML models in many applications are very large in size and slow to transfer requiring a high amount of bandwidth. For example, consider the “object recognition in image and video” usecase considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO family of models or EfficientNet combined with EfficientDet, depending on the variant, may have 50-100M parameters. Transformer models are very successful models adopted in speech applications and their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models require a huge amount of bandwidth for transfer and high execution latency is expected in the UE.
Given these limitations, compression of AI/ML model data for distribution over 5G and splitting AI/ML model operation between endpoints are considered as two key operations for AI/ML related services. In an example scenario, assume that the server has access to different precisions of a model, e.g., a 32-bit floating-point precision of EfficientNet and a 16-bit precision of the same model for object recognition task. When requested by the UE, instead of delivering the AI/ML model in full precision, e.g., 32-bit precision, the server first sends the reduced precision, e.g., the 16-bit precision model. This version of the model is smaller in size and can be transferred faster. The UE starts running the model for the task at hand upon receiving this lower-bit precision model. This reduces the latency of receiving and executing the model by the UE.
Deploying a reduced precision model may negatively affect the task performance in the UE, e.g., object recognition using EfficientNet. To mitigate this, after the lower-bit version of the model is received by the UE, the server sends a model update to the UE. This model update is the difference between the full precision version of the model, e.g., the 32-bit version EfficientNet, and the lower-bit version of the model, e.g., the 16-bit version of the EfficientNet, as the base model. The update could be compressed using compression techniques and packages introduced in the PD. The two models, i.e., the smaller model and the update, are sent sequentially.
A caching mechanism is used when a full precision model update is received, allowing to load the updated model at once (i.e., all the nodes are updated and loaded afterwards). When mixed precision operation is allowed, the update model could be loaded incrementally, that is, for some nodes an update could apply where the implementation could involve a caching mechanism for applying an update to a subset of nodes that could be loaded into the memory after being updated. The cache could be temporarily created and released after the operations. It is expected that this type of operation allows having a working model deployed sooner which reduces the time for delivery to execution and having some results, i.e., the latency is expected to be reduced. It is expected that deploying an update does not break the continuity of process since the load operation happens in a fraction of a second. In critical tasks a buffer mechanism for inputs could be used to avoid disruption to the process continuity. Nonetheless, such a buffer may not be necessary in many use cases, e.g., in video processing missing one or two frames does not influence the video analytics significantly rather ability to start the task sooner with less latency may be more critical.
When compression is applied before transmission, it is expected that the total data size of the reduced precision model and model update will be smaller than the full precision model or compressed full precision model, since the model update is of sparse nature and thus more compressible. The bit-rate saving could be further studied using the evaluation framework.
The bit-incremental deployment allows running an operational lower-bit precision model until a higher-bit precision model is constructed using the rest of the lower-bit precision of the model which is communicated from the server to the UE as an update.
[image: A diagram of a cloud

Description automatically generated with medium confidence]
Figure 4.1.2-1: Graphical representation of bit-incremental AI/ML model transfer and adoption

4.2	Video Quality Enhancement in Streaming
4.2.1 Sender-receiver approaches
4.2.1.1 End-to-End neural network-based video coding
Based on clause 5.3 of TR 22.874 [1], in this use case, the sender and receiver apply parts of a DNN model (e.g. an autoencoder model) to enhance the quality of a video stream. An example of an autoencoder DNN is depicted in figure 4.2.1.1-1:
[image: 说明: A screenshot of a cell phone

Description automatically generated]
Figure 4.2.1.1-1
The sender is typically represented by various media functions in the network, which processes the high-fidelity video using the down-scaling part of a pre-trained DNN model to an intermediate data stream that is streamed together with a lower resolution encoding of the video. The receiver (UE) runs an inference algorithm (e.g. the up-scaling part of DNN model) on using the received intermediate data and video stream to produce a high-quality video for rendering.
The main scenario in this use case is about streaming intermediate data from the network for processing on the UE, involving AI/ML data distribution and operation splitting.
This use case covers all scenarios where intermediate data stream needs to be sent to the receiver, in addition to a low-resolution video.
4.2.1.2 Neural network based post-processing for video coding
A neural network (NN) applies post-processing to a decoded video sequence to enhance the quality of the decoded frames. The post-processing is performed outside the coding loop and does not impact the decoding process of the video. Possible post-processing algorithms include:
· Post-filtering: where the output of the video decoder is provided as input to a NN to improve the quality of the decoded frames. Such improvements include removal of video coding artifacts, subjective quality enhancement, etc.
· Super resolution: where a NN is used to increase the resolution of the output video sequence when the resolution of the display is greater than the resolution of the decoded frames. The use of NN-based approaches in super resolution resampling process increases the quality of the resulting resampled frames.
· NN-based HDR enhancement: a NN is applied for example to enhance a SDR video into an HDR-looking video.

In contrast to 4.2.1.1, this approach does not use an intermediate data stream.

[image:]
Figure 4.2.1.2-1 Neural network based post-processing for video coding use-case

Figure 4.2.1.2-1 depicts a neural-network-based post-processing use-case where pre-trained NN models are used at the receiver to post-process the decoded video to improve the quality. The video encoder processes the input video source to produce and send content-related metadata to the receiver, based on video/image or block, for example. The content-related metadata can be used to select a pre-trained NN model to be applied to a piece of content and to activate or not the selected NN model on it.

4.3	Crowd-Sourcing Media Capture
This use case and its corresponding scenarios are based on clause 6.2 of TR 22.874 [1]. A set of users attending a live concert and capturing the event on their UEs, use a shared (or a set of shared) DNN model(s) to process and improve their respective captured video and/or audio. Audio and video data may be captured in a noisy environment or an environment with poor lighting conditions. Multiple tasks may then be performed on the processed video and/or audio for media content analysis, e.g. to extract lyrics, annotate the video, improve audio and video quality, translate language, anonymize a face, etc.
This use case involves two different scenarios based on either a device inference or a network inference.
4.3.1	Device inference
The main scenario is to improve the media capture of each UE by using an up-to-date model adapted to the context event.
This scenario may involve the distribution of multiple models to a large number of UEs in a short period of time. The UEs are heterogeneous, running with different types of operating systems (e.g., Android or iOS), supporting different AI/ML engines/frameworks or having different GPU/CPU/NPU and RAM capabilities available for running the AI/ML service on the UE. This will need the distribution of a huge amount of various AI/ML models adapted to the different device capabilities. Depending on each user’s UE, the UE may request the download of a set of DNN models for device inference.
Moving or changing the environment (localization, energy, processing unit, memory, etc.) may need AI/ML model updates, where the DNN models stored in the network may be adapted or updated during the service.
The AI/ML application may optimize the end-to-end latency (e.g., to achieve latency below 1s) or the expected accuracy level of the inference result (e.g., to achieve image recognition precision of 99%) by modifying the model. The desired latency and/or accuracy level can therefore impact the size of the AI/ML model to be distributed. This can be done by:
· optimizing the model accuracy and latency for on-device execution. The model accuracy and execution latency are known, and the optimization may result in bandwidth saving.
· compressing the model for reducing the bandwidth usage and improving the delivery latency. This may affect the accuracy of the model.
If an uncompressed model is sent, accuracy is not affected but delivery latency would depend on the size of the model and the network bandwidth.
The distribution of the AI/ML models for a large number of UEs at the same time may also need to serve the models from different endpoints (e.g., cloud, edge, or other UEs), and may use several or different communication links (e.g. unicast, multicast or broadcast).
4.3.2	Network inference
The main scenario may be the sharing of the input media from multiple sources for network inference, as well as the selection of suitable DNN models according to the UE and/or task.
This scenario requests the UE to upload the media data for network inference. Similarly, to the UE inference, DNN models stored in the network may be adapted or updated during the service for network inferences.
4.4	NLP on Speech
Based on clause 6.3 of TR 22.874 [1], this set of use cases covers a wide range of speech processing use cases, e.g. to perform automatic speech recognition, voice translation, voice commands, speech synthesis, etc.
The AI/ML models for NLP are improved with distributed/federated training using multiple UEs. As more users make use of the service, the quality and accuracy of the models improves. The results of the local training of the models by the UEs are shared with the network.
The main scenario here is about UE downloading a partially trained model identified with its training state for local training, and then sharing the results with the network for distributed/federated learning.
4.4.1	NLP on Speech in real-time communication
NLP on speech in real-time communication can be done on both UE and network, or fully on the network. A use case which is fully completed on network is described as below.
UE-B has subscribed intelligent translation service. UE-A initiates an audio/video call and establishes a connection between UE-A and UE-B through IMS network. When detecting that UE-B has intelligent translation service, the IMS serving for UE-B decodes the audio stream from UE-A, recognizes and translates into text of required language based on the AI recognition, then sends the text to UE-B through a new unidirectional channel.
[image: C:\Users\s00301411\AppData\Local\Microsoft\Windows\INetCache\Content.MSO\B4D1D471.tmp]
Figure 4.4.1-1: workflow for NLP on speech
4.5	Split model adjustment during ongoing AI/ML service
Based on clause 5.5 of TR 22.874 [1], this use case covers all the cases where when the AI/ML models are computing intensive, the work tasks can be fully or partially offloaded to the network and the AI/ML split points can be dynamically adjusted by considering various factors such as UE capabilities (e.g. processing capability/computation resources), service performance, intermediate data volume, and network conditions such as bandwidth etc.
The AI/ML models are set to have different candidate split points and each candidate split point has different workload and communication requirements, as well as intermediate data characteristics. A policy decision point for the media task will adjust the split points of the AI/ML model for an ongoing service based on the factors of current UE’s capabilities, communication performance, intermediate data volume, network conditions etc. to make sure that the media work task can be executed well, guaranteeing the UE experience and avoiding service interruption.
For the 5G media system, both UE capabilities and network conditions are required to be monitored and used as some of the considering factors when updating the AI/ML model split points for an ongoing service; the UE and network can then inference based on the newly updated AI/ML split models in real time.
4.6	Deployment options
AI4Media services can be categorized into one of four different deployment scenarios, depending on how AI/ML is used in the service, these four scenarios and their characteristics being:
1.	AI/ML used for media processing and/or handling:
-	Where both the source and output to the service are media data.
-	The AI/ML inference engine is typically inside that of a media-processing pipeline.
-	In this scenario, a media service may trigger an AI4Media service.
2.	AI/ML based service with media data as an input:
	-	Where the source to the service is media data and the output is non-media data.
	-	The AI/ML inference engine is typically outside that of a media-processing pipeline, and acts as a 			media consumer.
	-	In this scenario, an AI4Media service may trigger a media service.
3.	AI/ML used for media generation:
	-	Where the source to the service is non-media data and the output is media data.
	-	The AI/ML inference engine is typically inside that of a media-processing pipeline, and acts as a 			media generator.
	-	In this scenario, a media service may trigger an AI4Media service.
4.	AI/ML media service where a media pipeline is dedicated for the AI/ML framework:
	-	Where split AI/ML involves intermediate data having media characteristics.
	-	Where an AI/ML model is delivered in a streaming manner.
	-	In this scenario, an AI4Media service may trigger a media service.
Considering the use cases in this permanent document, the use cases may be mapped to the scenarios introduced as shown in the table below:
	
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Use cases
	Video Quality Enhancement in Streaming
Crowd-Sourcing Media Capture
	Object Recognition in Image and Video
	
	NLP on Speech
Use cases where split AI/ML or AI/ML model streaming is involved

From these scenarios, there is a need to consider both:
1) How an existing media service may support AI/ML, in particular how the media service may be triggered by an AI4Media application or service, or vice-versa. This is important if the media service is one that is supported by existing frameworks in SA4 (such as 5GMS), wherein the AI4Media service may need to be tightly coupled, or integrated into the existing media service framework (depending on the media pipeline).

2) AI/ML media services where a new AI/ML framework (including its related AI/ML data formats and delivery mechanisms), may need to be defined in order to support dedicated AI/ML media pipelines.

5	Media service architecture for AI/ML
5.1	AI/ML model composition
[bookmark: _Hlk102590833]Figure 5.1-1 depicts an AI/ML model composed of different AI/ML subsets based on various split points. Several compositions of the same AI/ML model are represented by the AI/ML subsets (M0, M1), (M’0, M’1), or (M “0, M “1, M “2) with split points highlighted in red. The same AI/ML subset may be used in different compositions depending on the configurations of the model composition (e.g. M’0 and M ’00 according to figure 5.1-1).

In figure 5.1-1, (a) and (b) are examples of AI/ML inference endpoints running an AI/ML model M composed of two subsets M0, M1. A endpoint (network/UE) may run the AI/ML model subset M0 while downloading the other subset M1.

Examples (c) and (d) demonstrate AI/ML split models where M0, M’0 run on the UE while M1, M1’ run on the network respectively.
[image:]
Figure 5.1-1 AI/ML model composition example

5.1.1 Split AI/ML model inference topologies
5.1.1.1 UE as media data source
Figure 5.1.1.1-1 depicts an example of split AI/ML model inference topology where the UE is the media data source and runs the first model subset M0 as described in scenario (a) of clause 4.1 (object recognition). Figure 5.1.1.1-2 depicts another example of a split AI/ML model inference topology where the UE is also the media data source but the network server runs the first subset M0 as described in scenario (b) of clause 4.1. Assuming that the necessary AI/ML model subsets are already available at each endpoint, figure 5.1.1.1-1 and figure 5.1.1.1-2 show the data exchanged between the different split inference endpoints, including input media data, intermediate data, and inference results.
The results can be a textual indication of the recognized object, an output score, a bounding box, enhanced media data, etc.
[image:]
[bookmark: _Ref102585439]Figure 5.1.1.1-1: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the UE

[image: D:\2022\3GPP\SA4\120\To submit\Final\image001.png]
Figure 5.1.1.1-2: Split AI/ML model inference where the UE is the media data source with first inference endpoint on the network

5.1.1.2 Provider/network as media data source
Figure 5.1.1.2-1 depicts examples of split model topologies where the network or the AI/ML provider ingests the media data, such as in the use-case of clause 4.2 (video quality enhancement).
[image:]
[bookmark: _Ref102585483]Figure 5.1.1.2-1: Split AI/ML Model inference where the network/ AI/ML service provider ingests the media data

5.2	Basic architectures and workflows
Considering the related use cases as documented in TR 22.874 and also as documented in the latest version of the Permanent Document, we can start from some basic scenarios for consideration of a basic architecture for AI/ML media services.
The basic starting scenarios are:
1) Delivery of a pre-trained AI/ML model from network to UE, typically at the start of an AI media service, but may also require updates during the service. At the most basic level AI/ML models can be delivered as a file (e.g. TensorFlow SavedModel, PDF5, ONNX file, NNEF file etc.) containing all the necessary information required for the UE to perform on device inference using the delivered model. For split scenarios, a (partial) AI model to be used in the UE may be delivered.

2) Split inference of a pre-trained AI/ML model(s) with two further sub-scenarios:

a) Basic scenario with an inference in the network or in the UE.
b) Split scenario with inferences between the network and the UE, where the intermediate data output from the network inference (resp. UE inference) is transferred to the UE (resp. network) to be used as the input for UE device inference (resp. network inference). Depending on the characteristics of the intermediate data, such as if the intermediate data is media content data, it may be practical to consider 5GMS architectures, procedures and/or protocols for the streaming delivery of such intermediate media data.

3) Distributed/federated learning using multiple UE devices with local training sets, and a central server in the network. Typically a central model is distributed to UEs for local training. UEs use local data available to the device for local training, and training result updates are sent back to the central server, which aggregates and updates the central model. Global updates on the central model are then distributed to the UE devices for continuous training.
NOTE: Compression aspects will be addressed once the digital representation of AI/ML models will be identified together with their associated service requirements (eg. traffic flow characteristics, latency, bitrate…).

5.2.1	Complete/Basic AI/ML model distribution
5.2.1.1	Basic architectures

[image:]
Figure 5.2.1.1-1: Basic architecture for AI/ML model delivery with inference in the UE
Figure 5.2.1.1-1 shows a simple basic architecture for AI/ML model delivery, as described in scenario 1) of clause 5.2, with an inference of a pre-trained AI/ML model in the UE, as described in scenario 2a) of clause 5.2.
In the network:
· An AI model in the repository is selected for the AI media service by the network application, and sent to the delivery function for delivery to the UE. Selection of an AI model could depend on UE and network characteristics, such as the memory and CPU capability/availability, as well as current network load and performance status.
· The AI model delivery function sends the AI model data to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of AI model data.
In the UE:
· A UE application provides an AI media service using the AI model inference engine and AI model access function.
· The AI model access function receives the AI model data via the 5G system, and sends it to the AI model inference engine. Receiver side optimization or decompression techniques for AI model data may be included.
· The AI model inference engine performs inference by using the input data from the data source (e.g. a camera, or other media source) as the input into the AI model received from the AI model access function. The inference output data is sent to the data destination (e.g. a media player).
Depending on the exact service scenario, AI model updates may be necessary during the service, and different AI model data delivery pipelines may be considered for such purposes. An AI model update may consist of a change in the AI model structure without disrupting the AI media service. If the AI model has requirements on UE memory, processing/computing capabilities or if running the AI model will increase the UE’s power consumption dramatically which will also influence the user experience of other services, it may actively request the update of the AI Model. For example, when the memory usage of the UE processing the AI Model exceeds a certain threshold, or if UE performance deteriorates, the UE can actively send a request to the network for an AI Model update. Alternatively, the network may also trigger the AI model update itself, where an interaction between the UE and network side might be needed to help the network collect current UE status information, e.g. Memory, CPU, current load, terminal location, current power consumption, current battery storage, etc.

5.2.1.2	Basic workflows
Figure 5.2.1.2-1 shows a basic workflow for AI/ML model delivery with inference in the UE. Steps for the procedures shown are described below.

Figure 5.2.1.2-1: Basic workflow for AI/ML model delivery with inference in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable AI/ML model for the service.
1. [bookmark: _Hlk119479297][bookmark: _Hlk119480594]The UE Application and Network Application communicate to trigger AI model delivery, using the information from the initialization and establishment step.
2. An AI model is selected between the UE Application and Network Application.
3. The Network Application identifies the selected AI model in the AI model Repository/Provider.
4. The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.
5. The AI Model Access Function receives the AI model.
6. The AI Model Access Function passes the AI/ML model to the AI model Inference Engine in the UE.
7. The Data Source passes media data to the AI model Inference Engine.
8. The AI Model Inference Engine performs AI inferencing.
9. The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.

5.2.2	Split AI/ML operation
5.2.2.1	Basic architectures

[image:]
Figure 5.2.2.1-1: Basic architecture for split inference between the network and UE, with media data source in the network or from the UE via the network
Figure 5.2.2.1-1 shows a simple basic architecture for split inferences between the network and the UE, as described in scenario 2b) of clause 5.2, where the media data source comes from the network, or from the network via the UE. The first part of the AI model is executed on the network side and the second part on the UE.
For the split inference (network-UE) scenario, additional components are required:
In the network:
· An AI model inference engine that receives both the network AI model subset(s), and input data, for network inference. The input data may come from the UE through the network.An intermediate data delivery function receives the partial inference output (intermediate data) from the network inference engine, and sends it to the UE via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring, as well as those related to the optimization or compression of intermediate data.
In the UE:
· An intermediate data access function receives the intermediate data from the network via the 5GS, and sends it to the UE inference engine for UE inference. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply the corresponding reconstruction or decompression techniques.
· The final inference output data is sent to the data destination (e.g. a media player).
[image:]
Figure 5.2.2.1-2: Basic architecture for split inference between the UE and network, with media data source in the UE
Figure 5.2.2.1-2 shows a basic architecture for split inferences between the UE and the network, as described in scenario 2b) of clause 5.2, where the media data source originates from the UE, the first part of the inference is performed in the UE, the second part in the network. The resulting output data is finally sent back to the UE.
For the split inference (UE - network) scenario, additional components are required:
In the UE:
· An AI model inference engine that receives both the network AI model subset(s), and input data (from a UE data source), for UE inference.
· An intermediate data delivery function receives the partial inference output (intermediate data) from the UE inference engine, and sends it to the network via the 5GS. This delivery function may also contain functionalities related to QoS requests and monitoring. If the intermediate data delivery function performs optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
· An inference output access function receives the inference output data from the network via the 5GS, and sends it to the relevant data destination according to the AI media service.
In the network:
· An intermediate data access function receives the intermediate data from the UE via the 5GS, and sends it to network inference engine for network inference. If the intermediate data delivery function applies optimization or compression on intermediate data, this function may apply corresponding optimization or decompression techniques.
The final inference output data is sent to the UE via the 5GS, through the inference output delivery function.

For both split inference scenarios, extra factors should be considered, including those such as:
· Configuration of the split inference between the network and UE. (e.g. definition and selection of the AI/ML model composition into “UE AI model subset” and “network AI model subset”)
· Resource allocation and management for network inference, including ingestion of network AI model data and media data
· Intermediate data delivery pipelines between the network and UE, in particular considering the use of 5GMS defined pipelines to stream intermediate data that is media content data.
· The functionalities of certain components in figure 5.2.1-1 and figure 5.2.2-1 may overlap, and depending on the use case a combined architecture may also be considered FFS.
· Certain components may also overlap with functions defined in 5GMS, clarifications FFS.

5.2.2.2	Basic workflows
Figure 5.2.2.2-1 shows a basic workflow for split inference between the network and UE, with media data source in the network. Steps for the procedures shown are described below.

Figure 5.2.2.2-1: Basic workflow for split inference between the network and UE, with media data source in the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1. The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2. A split AI model is selected between the UE Application and Network Application.
3. The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4. The AI Model Inference Engine in the network receives the network AI model subset.
5. The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6. The AI Model Access Function receives the UE AI model subset.
7. In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8. In the network, the Data Source passes media data to the AI model Inference Engine.
9. The network AI model Inference Engine performs network AI inferencing.
10. The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11. In the UE, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12. The AI Model Inference Engine in the UE performs AI inferencing.
13. The AI Model Inference Engine passes the inference output result to the UE Data Destination for consumption.
Figure 5.2.2.2-1 shows a basic workflow for split inference between the UE and network, with media data source in the UE.

Figure 5.2.2.2-2: Basic workflow for split inference between the UE and network, with media data source in the UE
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities (including split capabilities), AI/ML service information (e.g. service requirements, split AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable split AI/ML model configuration, and its associated UE and network AI model subsets, for the service.
1. The UE Application and Network Application communicate to trigger split AI model delivery, using the information from the initialization and establishment step.
2. A split AI model is selected between the UE Application and Network Application.
3. The Network Application identifies the selected UE and network AI model subsets in the AI model Repository/Provider.
4. The AI Model Inference Engine in the network receives the network AI model subset.
5. The AI Model Access Function establishes a UE AI model subset delivery session with the AI Model Delivery Function.
6. The AI Model Access Function receives the UE AI model subset.
7. In the UE, the AI Model Access Function passes the UE AI model subset to the AI model Inference Engine.
8. In the UE, the Data Source passes media data to the AI model Inference Engine.
9. The UE AI model Inference Engine performs UE AI inferencing.
10. The Intermediate Data Access Function establishes an intermediate data delivery session with the Intermediate Data Delivery Function.
11. In the network, the Intermediate Data Access Function receives intermediate data and passes it to the AI Model Inference Engine.
12. In the network, the AI Model Inference Engine performs network AI inferencing.
13. The UE Data Destination receives the inference output result from the network.

5.2.3	Distributed/federated learning
[image:]
Figure 5.2.3-1: Basic architecture for distributed/federated learning between the network and multiple UEs
Figure 5.2.3-1 shows a simple basic architecture for distributed/federated learning between the network and UE(s), as described in scenario 3) of clause 5.2.
In the network:
· A federated learning engine receives a partially trained model from the AI model repository, that is passed to the AI model delivery function for delivery to multiple UEs via the 5GS.
· Training results data from multiple UEs is also received by the federated learning engine via the 5GS, which is then aggregated for the continuous training of the global model.
· Updates to the global model (e.g. in terms of topology or weights) are delivered to the UEs during the learning process.
In the UE(s):
· AI model data is received by an AI model access function via the 5GS, which then passes the data to the AI training engine.
· An AI training engine in the UE trains the AI model using local device data as the training input.
· Training results (e.g. in the form of updated weights) are delivered to the network via the training results delivery function.

5.2.3.2	Basic workflows
Figure 5.2.3.2-1 shows a basic workflow for distributed/federated learning with training in the UE, the results of which are aggregated in the network. Steps for the procedures shown are described below.

Figure 5.2.3.2-1: Basic workflow for distributed/federated learning between a UE and the network
During the initialization and establishment step, it is assumed that information related to the required features and detailed configurations are exchanged and negotiated between the network and UE. Information may include those related to UE device and network capabilities, AI/ML service information (e.g. service requirements, AI/ML model descriptions), and delivery methods. Such information may be used for the selection of a suitable partially trained AI/ML model for the service.
1. The UE Application and Network Application communicate to trigger distributed/federated learning, using the information from the initialization and establishment step.
2. A partially trained AI model is selected between the UE Application and Network Application.
3. The Network Application identifies the selected partially trained AI model in the AI model Repository/Provider.
4. The AI Model Access Function establishes an AI model delivery session with the AI Model Delivery Function.
5. The AI Model Access Function receives the partially trained AI model.
6. The AI Model Access Function passes the partially trained AI/ML model to the AI model Training Engine in the UE.
7. The Data Source passes the training input data to the AI model Training Engine.
8. The AI Model Training Engine performs AI training.
9. A training result delivery session is established between the Training Result Delivery Function and the Federated Learning Engine.
10. The Federated Learning Engine receives training results data from the UE.
11. The Federated Learning Engine performs training aggregation of training results from multiple UEs, and updates the partially trained AI model.
12. The updated partially trained AI model is delivered to the UE as from step 5.
5.3	Architecture for AI data delivery
5.3.1	AI data components
AI related user plane data include:
· AI model data, including data describing the topology/structure of the AI model, data related to the data nodes of the model, i.e. tensors, and other data which may be dependent on the format used for the AI/Ml model.
· Intermediate data, defined as the output data from the inference process of an AI/Ml model that is not considered the final inference result (depending on the service and output layer of the split AI model, certain intermediate data may have media characteristics, or even be media data). Intermediate data is typically required to be delivered to a second device or entity, as the input to a subsequent second split inference.
· Inference output data, which is the data corresponding to the output result of the final AI inference process for the service. Depending on the nature of the AI data inferencing for the given AI data service, this inference output data may include: labels for identifying recognition like tasks from media, actual media data such as video and/or audio, or perhaps XR related data such as 3D models.
5.3.2	AI4media data logical functions
User plane logical functions supporting the scenarios identified in the PD include:
· AI data delivery function
· AI data access function
· AI model inference engine
For split AI/ML, control plane functions in both the UE and network are needed for configuration, capability exchange and reporting:
· AI capability manager

5.3.3	Architecture for AI data delivery over 5G

[bookmark: _Ref127952926]Figure 5.3.3-1 AI data delivery general architecture

A possible architecture for AI data delivery over 5GS is shown in figure 5.3.3-1. The architecture shows AI/ML logical subfunctions potentially mapped to, or instantiated by 5GMS subfunctions described in TS 26.501 clause 4.2.2 and 4.3.2. These subfunctions may be core function, Metrics Collection and Reporting or Network Assistance and QoS.

The 5G AI data delivery system shown in figure 5.3.3-1 includes the following main functional blocks:
· 5G AI Client running on the UE contains two subfunctions:
· AI data Session Handler: A function on the UE that communicates with the network side 5G AI Application Function (AF) to establish and control the configuration of an AI data session. The function may include:
· AI capability manager subfunctions that monitors, shares and/or reports UE capabilities with/to the AI capability manager function of the 5G AI AF. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.
· AI Data Handler: A function on the UE that communicates with the 5G AI Application Server (AS) and the AI data Handler to establish an AI data delivery session. The function contains:
· An AI inference engine, which has the capability to perform the inferencing of received (split) AI models.
· An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data including
· Download the AI model data for inference process. This includes instantiating an AI data access client to access and retrieve AI models or AI model subsets from local files or over the network (e.g., by streaming or downloading the model from a remote server). The inference engine may comprise format decapsulation and model decoding functions as well as a runtime engine that executes the model from the memory.
· Access/deliver intermediate data when an inference is split between the UE and the network.
· Encode data to deliver with serialization and optionally compression techniques. Or conversely decode the received data with deserialization or optionally decompression techniques.
· 5G AI-Aware Application: An external function controlled by the external 5G AI application provider implementing the AI/ML application logic, which includes triggering the delivery of an AI model to the inference engine and obtaining inference results from the inference engine.
· 5G AI AS(Application Server): An Application Server that hosts 5G AI data functions. It includes
· An AI data access and delivery function, which handles the access and delivery of user plane AI/ML data, as well as conventional media data as described above.
· An AI inference engine, which has the capability to perform the inferencing of (split) AI models.
· 5G AI AF(Application Function): An Application Function that provides various control and configuration functions to the AI Data Session Handler on the UE and/or to the AI Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions via the NEF (Network Exposure Function). The Application function can include for example:
· AI capability manager subfunctions monitors, shares and/or reports Network capabilities with/to the AI capability manager function of the AI data Session Handler. This may be used for the selection of the model for a UE inference or for the selection of the UE model subset part for a split inference topology between the UE and the network.

5.3.4	Example procedure for Split AI/ML operation
Figure 5.3.4-1 shows an example procedure for split AI/ML operation, including three main parts:
· AI split inference management, and
· AI data delivery session
· Split inference processing

1. Service provisioning and announcement of AI data service on the network side, in particular between the 5GAI AF (application function) and the 5GAI application provider.

2. Service access information acquisition. During this step, the available or required AI model(s) for the service can be made known to the UE, by means of information made available via a URL link pointing to a file or manifest which may list such available AI models. Such additional information may contain AI model specific information, such as the structure, the size, complexity and latency requirements of the AI model.

AI split inference management:
3. Discovering AI data inferencing capabilities and functions in both the UE and network. In this step, the AI capability manger functions in the UE and in the network may use its capabilities to calculate the range of inference latencies for the AI model to be used for the split AI/ML inference service.

4. Requesting AI split inference. Either the UE or the network requests the other side for an AI split inference service. If information describing the AI model was not made known via the service access information in step 2, then such information may also shared during this step.

5. Negotiate splitting the AI inference process. A split point is negotiated between the UE and the network, using information from steps 2, 3 and 4, in order to satisfy the service, capability and AI model inference latency requirements. The decision of whether the split point is static or whether it can be updated dynamically during the service may be negotiated. Related metadata may be shared between the network and UE depending on the configuration.

6. Acknowledge the split and provide the AI data split inferencing access info. In this step, the network (5GAI AF) and UE (AI data session handler) both acknowledge the decided split point, and access information for the AI data is provided to the UE.

7. The split configuration outcome is notified to the 5GAI-aware application.

AI data delivery session
8. Request the start of AI data delivery. On confirmation, the application triggers the 5GAI client to request the start of AI data delivery using the AI data access information provided in step 7.

9. The 5GAI client request the AI data to be deliver from the 5GAI AS.

10. Pipelines for the delivery of AI model data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, or download delivery (such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

11. Start inference process in the UE. In this step, the 5GAI client triggers the inference process (the AI inference engine function), namely the UE side of the split inferencing as decided by the result of step 5.

12. Start inference process in the server. In this step, the 5GAI AF triggers the inference process in the 5GAI AS (the AI inference engine function), namely the network side of the split inferencing as decided by the result of step 5.

13. Pipelines for the delivery of intermediate data from the 5GAI AS to the 5GAI Client are setup, and suitable delivery sessions are established and initiated. Delivery may be in the manner of streaming delivery, such as that defined in TS 26.501, or any other form of delivery mechanism required by the AI data service.

Split inference processing
14. The split inference runs between the UE and the network. Depending on the specific split inference scenario, the UE and the network may deliver and/or access Intermediate data, Inference output data and/or metadata using the pipelines defined in the AI data delivery session.
Session reporting and update

1. The AI Data Session Handler may collect and send status reports regarding the UE’s AI media service status (for example AI inference status, latency, resource status, capability status, dynamic media properties etc.) to the 5GAI AF.
2. The 5GAI AS may send status reports regarding the network’s AI media service status to the 5GAI AF.

3. The AI Data Session Handler may receive network status, or network AI status reports from the 5GAI AF, as collected in step 16.

4. The AI Data Session Handler may receive media status reports either from the network or internally from the UE.

5. Depending on the configurations negotiated in step 5, as well as related information from the status reports in steps 16, 17 and 18, updates of the AI model selection, split point configuration or the AI data delivery pipelines for the session may take place between the UE and network.

6	Data components for AI/ML-based media services
6.1	Model data
6.1.1 	Model optimization techniques
Trained models consist of a graph representations of neural networks as well as millions of parameters/weights that are learned during the training phase. Table 6.1.1-1 depicts the characteristics of some of the state-of-the-art DNNs as provided by [6].
	Model
	#Parameters (M)
	Footprint (MB)
	#FLOPs (B)

	1.0 MobileNet-224
	3.3
	13.2
	0.28

	EfficientNet-B0
	5.3
	21.2
	0.39

	DenseNet-169
	14
	56
	3.5

	Inception-v3
	24
	96
	5.7

	ResNet-50
	26
	104
	4.1

	VGG-16
	138
	552
	16

	SSD300-MobileNet
	6.8
	27.2
	1.2

	EfficientDet-D0
	3.9
	15.6
	2.5

	FasterRCNN-MobileNet
	6.1
	24.4
	25.2

	SSD300-Deeplab
	33.1
	132.4
	34.9

	FasterRCNN-VGG
	138.5
	554
	64.3

	YOLOv3
	40.5
	122
	71

Table 6.1.1-1: State-of-the-art DNN characteristics [6]
Parameter pruning is one of the main techniques to control the size of a neural network model or an update thereof. Pruning works by removing individual weights or complete structures of a pre-trained model. We differentiate between structured and unstructured pruning. In unstructured pruning, the goal is to reduce the number of non-zero weights in a layer while approximately preserving the output of that layer. The assumption behind this technique is that only a small subset of the weights is dominant and impacts the performance of the model. The rest of the weights may potentially be ignored/removed. The technique starts by assigning a saliency score to each parameter and then removes the weights with a score below a certain threshold. The resulting network may require retraining to regain the original accuracy. However, this type of technique introduces unstructured sparsity into the neural network, but the resulting tensors of parameters have the same size and shape. The receiver may require special inference hardware or some pre-processing to reduce the inference computational complexity.
In structured pruning, the model graph is altered by completely removing certain structures such as neurons and filters. This may be done by assigning an importance score to each neuron/filter based on the current weight or based on inference data. The neurons/filters with a score below a threshold are removed. Compared to unstructured pruning, this approach does not introduce sparsity but may not yield the same compression results.
Low-rank decomposition is another technique to reduce the size of a model. In low-rank decompression, a tensor, representing the weights of a layer in the DNN, is replaced by a product of two lower-rank tensors in which reduces the number of element-wise multiplications potentially without sensibly altering the performance, providing a proper choice of rank. This technique can both speed up the inference and results in compression gains. Algorithms such as the Singular Value Decomposition (SVD) may be used to obtain the tensors corresponding to any desired rank.
Quantization is another very efficient compression technique. It consists of decreasing the precision of the parameters of a model, thus reducing the required memory footprint. The parameters are mapped from a larger space of values into a smaller one, a concept widely used in image and video compression. Better performing quantization techniques may be context aware and operate in a non-linear manner to approximate the distribution of the weight values. Knowledge about the used quantization scale will be required to perform inverse quantization and recover the original weights. If non-linear quantization is used, the technique becomes non-transparent. The resulting parameters may further be losslessly entropy coded, e.g. using Huffman coding.
Knowledge distillation takes a different approach to reducing model size. The goal is to transfer knowledge from a trained network into a smaller model for inference. During the distillation process, the smaller model learns to mimic the output of the larger trained model by minimizing a loss function that takes into account both the hard output values and the soft values (i.e. prior to filter application). Knowledge distillation techniques have in several cases surpassed the accuracy of the original model.
The compression levels achieved by these techniques can be controlled to provide a set or “family” of adaptive trained models which perform the same task but meet different constraints (e.g., memory footprint, latency and/or computational cost). Furthermore, by minimizing the difference between the models during training, the family can be optimized to reduce its memory footprint or the transmission cost of model changes. Examples of such approaches include:
· Pruned models, where each neural network of the family (except the largest one) contains a subset of the neurons of the previous network in the ordered family
· Quantized models, where the family contains neural networks with increasing quantization level of the parameters.
· Early-exit models, where the neural network contains exit points before reaching the final output that generate intermediate predictions/results.
Most of the aforementioned techniques are sender-only techniques that do not require processing on the receiver side. The burden is on the creator of the model to apply these techniques to produce a more compact representation of the model. Some techniques may require processing at the receiver side. The complexity of that processing and the amount of information required to recover the model may vary by technique.
6.1.2	Model update requirements and constraints
Evolving requirements and environment conditions after model selection
Use-cases and different workflows delivery comprises the selection and the distribution of adapted trained models or model subsets to the UE for performing AI inference. An offline supervised learning can provide a set of trained models adapted for the UE to environment conditions regarding a UE service requirement. Environment conditions in clause 4.1 or clause 4.3.1 describes different sets of conditions including UE capabilities and network limitations. The UE and the network share these environment parameters to select the trained model that fits best the current conditions to meet the requirements. The selection may depend for example on the current UE capabilities such as the available memory, the current power consumption, the current battery storage, the current computing power, as well as on the current network conditions such as the network load, the available or the allocated bandwidth to the UE. This may also depend on the service requirements, or on the user preferences on the expected quality of result and on the maximum UE resources such as the energy, memory, computing power for running the AI/ML service.
During the inference stage, environment conditions as listed above may change to such an extent that the selected trained model e.g., DNNs will no longer be appropriate or not optimal to meet the requirements. This will lead to a degraded QoE for the end user. This highlights the need for model updates to meet the new environment conditions.
Model accuracy deviation between the training phase and the delivery phase.
The discrepancy between the data seen during training and data used at the time of inference can lead to a decrease in accuracy performance. The actual accuracy of the system may vary depending on the current input data, environment, and context. Updates to the trained models are necessary to continue to meet the accuracy requirements.
Applying inference on evolving characteristics of the input media content
The model to be applied can be adapted to the entire media content or sequence thereof, or to a spatial or temporal partition of an input media content, for example to a group of frames, frame slices, frame blocks. The model and/or model parameters such as biases and weights may be updated to adapt to the characteristics of the processed part of the content. The characteristics can relate to the resolution, light e.g., the noise introduced by the camera, content in dark areas, the type of scene. They can also relate to the current demand by the algorithm or the user in terms of expected accuracy or subjective quality of the produced content.
6.1.3 	Model serialization
In computing, serialization (or serialisation) is the process of translating a data structure or object state into a format that can be stored (e.g., files in secondary storage devices, data buffers in primary storage devices) or transmitted (e.g. data streams over computer networks) and reconstructed later (possibly in a different computer environment).
The process of saving an AI/ML model to use it later is called serialization. After transmitting or storing the serialized data, it is possible to reconstruct the model later and obtain the exact same structure/object.
6.1.4	Classes of AI/ML models
6.1.4.1	Introduction
Depending on the training method selected, AI/ML models can operate various types of operations as depicted in the figure below:
Decision making
Clustering
Regression
Classification
Supervised learning
Unsupervised learning
Reinforcement learning
Machine Learning types

6.1.4.2	Supervised learning
As explained in [Cunningham, P., Cord, M., Delany, S.J. (2008). Supervised Learning. In: Cord, M., Cunningham, P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_2] supervised learning accounts for a lot of research activity in machine learning and many supervised learning techniques have found application in the processing of multimedia content. The defining characteristic of supervised learning is the availability of annotated training data. The name invokes the idea of a ‘supervisor’ that instructs the learning system on the labels to associate with training examples. Typically, these labels are class labels in classification problems. Supervised learning algorithms induce models from these training data and these models can be used to classify other unlabelled data. The analysis of supervised learning can be seen as the theory of risk minimization. Vector machines and nearest neighbour classifiers are probably the two most popular supervised learning techniques employed in multimedia research.
6.1.4.3	Unsupervised learning
The goal of unsupervised learning is to find the underlying structure of dataset, group that data according to similarities, and represent that dataset in a compressed format. Unsupervised learning is important in the processing of multimedia content as clustering or partitioning of data in the absence of class labels is often a requirement. The absence of class labels in unsupervised learning makes the question of evaluation and cluster quality assessment more complicated than in supervised learning.
6.1.4.4	Reinforcement learning
Reinforcement learning (RL) is an area of machine learning concerned with how intelligent agents ought to take actions in an environment in order to maximize the notion of cumulative reward. Reinforcement learning is one of three basic machine learning paradigms, alongside supervised learning and unsupervised learning.
Reinforcement learning differs from supervised learning in not needing labelled input/output pairs be presented, and in not needing sub-optimal actions to be explicitly corrected. Instead the focus is on finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge).

6.2	Intermediate data
6.2.1	Intermediate data transfer optimization techniques
Intermediate data consist of large tensors computed by the first part of a split neural network. The following table provides some examples of intermediate data sizes for a few neural networks taking an input image of size 224x224x3, i.e., a tensor containing 150,528 values):
	Model
	Layer
	Dimension
	Number of values

	squeezeNet
	maxpool4
	27x27x256
	186 624

	
	maxpool8
	13x12x512
	79 872

	mobileNet v3
	layer 7
	28x28x40
	31 360

	
	layer 14
	14x14×112
	21 952

	VGG
	layer 6
	112x112x128
	1 605 632

	
	layer 12
	28x28x512
	401 408

Some compression approaches (e.g., quantization, entropy coding, transformations) can be used to reduce the size of the transferred intermediate data and to adapt the split AI/ML operations between the UE and the network to changing conditions.
As a generic approach, the UE or the network endpoint selects a function among a set of compression and/or decompression functions built to adjust the characteristics of output intermediate data to the current network conditions or to meet the expected latency. For example, different functions can meet different bandwidth requirements.
6.3	Media data
6.4	Metadata
6.4.1	Distributed/Federated Learning
6.4.1.1	Control messages
6.4.1.1.2	General
This clause describes a set of control messages for managing the training process, synchronization the training rounds, and defining the selection criteria for participating devices, or monitoring the convergence of the training process, in federated learning.
Editor’s note: The messages and parameters in this clause need further alignment with clause 5.2.3.
6.4.1.2	Synchronization message
6.4.1.2.1	Definition
Synchronization messages are used to ensure that all devices start the training process simultaneously and progress at the same pace. For example, the server may send a synchronization message to all UEs to start a new round of training.
6.4.1.2.2	Behavior
From network server to device.
The server sends a synchronization message to all UEs to start a new round of training at the same time. The message contains the round number and may also contain a timestamp indicating when the training round should begin.
6.4.1.2.3	Parameters
1. The Round_number indicates the training round in a model training.
2. The Start_time indicates the start time of the training.
3. The Duration indicates the desirable duration of the training. This value just shows an indication of the desirable time for completing the training round.
6.4.1.3	Device eligibility message
6.4.1.3.1	Definition
Device eligibility messages are used to define the criteria for selecting the devices that will participate in the training process. For example, the server may send a device eligibility message to all devices that belong to the defined group by the application.
6.4.1.3.2	Behavior
From network server to device.
The server sends a device eligibility message to select the devices that meet certain criteria defined by the application. Depending on the number of criteria met, the application assigns a group id to the device. For example, the criteria could contain information about the device's operating system, processor speed, available memory, available image library (number of images…), geographical location of the device, language setting, and other attributes.
6.4.1.3.3	Parameters
1. The Group_id is used to assign a new id for the devices that meet the eligibility criteria of this message. If the device is eligible, it uses this value as one of its group ids and from now on, it reacts to messages with the same group id.
2. The Application_group_id, is assigned by the application on the device and if that value is equal to the value of this field, then the device is eligible.
3. The Hardware, Location, and Language parameters define the hardware, location, and language eligibility criteria respectively for the device.
4. The Data_library_id defines the data library an eligible device shall have.
Note that if more than one eligibility field exists, the device needs to meet all criteria to become eligible.
6.4.1.4	Model evaluation message
6.4.1.4.1	Definition
Model evaluation messages are used to evaluate the performance of the global model for each device and make decisions about the training process. After running the learning phase, a device sends a model evaluation message to the server that measures the accuracy of the model. The server can then decide whether to continue training for another round or stop.
Alternatively, this message can be used by the server to request the device to perform an evaluation of a newly downloaded global model.
6.4.1.4.2	Behavior
For the server to the device
The message contains the metrics to be used for evaluation.
From device to server
The message could contain a metric such as accuracy or precision.
6.4.1.4.3	Parameters
1. The Round_number shows the round after which the evaluation is performed.
2. The Metric_number shows the number of metrics included in this message body.
3. The Metric is one or more of the Name-Value pairs showing the name of the metric and the corresponding value obtained in the evaluation.
6.4.1.5	Model update message
6.4.1.5.1	Definition
Model update messages are used to update the model parameters on the devices after each round of training. For example, the server may send a model update message to all devices to update the global model with the new model parameters.
Model update messages are also used to update the global model on the server with the new parameters updated by the local training on the device.
6.4.1.5.2	Behavior
From server to device:
The server sends a model update message to all devices to update the AI/ML model with the new model parameters. The message contains the model id of the AI/ML model to be updated, the updated model parameters that the UE will use to train the model in the next round, and the new model id when the parameters are updated.
From device to server:
After running the training locally, each device may send a model update message to the server with the updated parameters. Together with the received model evaluation message, the server can decide if the global model needs to be updated or not. The model update message then only contains the model id of the AI/ML model used for local training and the updated parameters.
6.4.1.5.3	Parameters
1. The Parameters includes the new model vector of values.
2. The New_model_id is the id of the new model when the server sends the model to one or more devices.

6.4.1.6	Failure reporting message
6.4.1.6.1	Definition
Error messages are used to handle unexpected errors or exceptions that may occur during the training process. For example, the server may send an error message to all devices to handle a device failure or network disruption.
6.4.1.6.2	Behavior
From server to device:
The server sends a request to all devices to report a device failure or network disruption. For example, if a device fails to send its model parameters back to the server, the device should notify the server so that the device has been removed from the training process.
From device to server:
The device sends a failure message to the server if a failure occurs.
6.4.1.6.3	Parameters
The Message describes the reason for the failure.

6.5	Existing frameworks for AI/ML
6.5.1	TensorFlow
TensorFlow is an open-source platform for creating and deploying machine learning models. It provides a wide range of tools (e.g., mode optimization) and libraries (decision forests, Ranking extensions…) for building and training models, and supports several formats for model distribution, including TensorFlow SavedModel, TensorFlow Lite, and TensorFlow.js. These formats allow models to be easily distributed across different platforms and devices, making it easier to deploy machine learning models in various applications.
6.5.1.1	Tensor
In machine learning, a tensor is a multi-dimensional array of numerical data. A tensor may have any number of dimensions, and each dimension represents a specific feature or attribute of the data. For example, a 1-dimensional tensor usually represents a vector of values, such as a list of numbers, while a 2-dimensional tensor can represent a matrix of values, such as an image.
Tensors are are used to represent the input data and the parameters of the machine learning model. For example, in image recognition, the input data is often represented as a tensor of pixel values, while the parameters of the model, such as the weights and biases, are represented as tensors as well.
Operations applied to tensors can be addition, multiplication, and convolution. These operations are used to perform mathematical computations on the tensors, which are then used to train the machine learning model.
In summary, a tensor is a multi-dimensional array of numerical data that is a fundamental data structure used in many machine learning frameworks. It is used to represent the input data and the parameters of the machine learning model and is manipulated using mathematical operations to train the model.
6.5.1.2	Usage of TensorFlow
The following steps are usually defined:
Definition of the computational graph: In TensorFlow, a machine learning model is represented as a computational graph, which is a series of operations (nodes) that are connected by edges. The nodes represent mathematical operations, such as addition, multiplication, or convolution, and the edges represent the flow of data between the nodes. To define the graph, developers use the TensorFlow API to create nodes and connect them in a specific order.
[image: Un graphique TensorFlow simple]
Source: https://www.tensorflow.org/guide/intro_to_graphs?hl=fr
TensorFlow graphs can be used in environments that don't have a Python interpreter, like mobile applications, embedded devices, and backend servers.
Variables Initialization: Before running the computational graph, the variables used in the graph need to be initialized. These variables represent the parameters of the machine learning model, such as weights and biases, and are updated during training to improve the model's performance.
Session execution: To execute the computational graph, a TensorFlow session is created. The session runs the graph by feeding input data into the graph and calculating the output. During training, the session updates the variables in the graph based on the loss function and optimization algorithm.
Model serialization: Once the model is trained, it can be saved in various formats for later use, such as TensorFlow SavedModel, TensorFlow Lite, or TensorFlow.js. These formats allow the model to be easily deployed on various platforms and devices, including mobile devices, web browsers, and embedded systems.
NOTE: it is expected to analyze:
· The different distribution AI/ML formats that can be used with the TensorFlow framework.
· The impacts of the selection of TensorFlow framework in terms of interoperability of the corresponding AI/ML formats.

Model deployment: To deploy the model, the saved model can be loaded into a new TensorFlow session and used to make predictions on new data. This can be done on a single machine, a cluster of machines, or in the cloud.
6.5.2	PyTorch
PyTorch is based on the concept of tensors, which are multi-dimensional arrays of numerical data. Similarly to TensorFlow, Tensors are a fundamental data structure used in PyTorch to represent the input data and the parameters of the machine learning model. PyTorch provides a range of operations for manipulating tensors, such as addition, multiplication, and convolution.

PyTorch also supports dynamic computation graphs, which allow for more flexibility in building and training machine learning models. This means that the computational graph can be modified on-the-fly during runtime, which makes it easier to build complex models and experiment with different architectures. Additionally, PyTorch provides a high-level API called TorchScript, which allows for models to be exported to a portable format that can be executed on various platforms.
6.5.2.1	PyTorch for model distribution
PyTorch provides several formats for distributing machine learning models, such as PyTorch JIT (Just-In-Time) and TorchScript. PyTorch JIT allows for models to be compiled on-the-fly, which provides performance benefits for large models or when deploying to resource-constrained environments. TorchScript allows for models to be exported to a portable format that can be executed on various platforms, such as mobile devices, web browsers, and embedded systems.
PyTorch also supports ONNX (Open Neural Network Exchange), which is an open format for exchanging machine learning models between different frameworks. ONNX allows for models to be trained in PyTorch and then exported to be executed in other frameworks, such as TensorFlow or Caffe2
NOTE: it is expected to analyze:
· The different distribution AI/ML formats that can be used with the PyTorch framework.
· The impacts of the selection of PyTorch framework in terms of interoperability of the corresponding AI/ML formats.
6.5.2.2	Main differences with TensorFlow
Computational graph: TensorFlow uses a static computational graph, which means that the graph is defined and compiled before the training begins. On the other hand, PyTorch uses a dynamic computational graph, which allows for more flexibility in building and modifying the graph during runtime.
Ease of use: PyTorch is generally considered to be more user-friendly and simpler than TensorFlow. This is partly due to its dynamic computational graph, which makes it easier to experiment with different models and architectures. PyTorch also has a more Python-like syntax, which is familiar to many developers.
Visualization: TensorFlow provides a comprehensive visualization tools, which allows users to monitor the training progress and visualize the model's performance. PyTorch does not have a built-in visualization tool, but there are several third-party libraries available, such as PyTorch Lightning and Visdom.
Ecosystem: TensorFlow has a larger ecosystem than PyTorch, with more resources and community support. TensorFlow also has better support for deploying models on mobile devices and in production environments. However, PyTorch has been gaining popularity in recent years and has a growing ecosystem.
Research: PyTorch is more popular in the research community, as it allows for faster prototyping and experimentation due to its dynamic computational graph. TensorFlow is more commonly used in industry for production-level applications due to its static graph and better support for deployment.
6.6	Existing formats for AI/ML models
6.6.1	ONNX format
The Open Neural Network Exchange (ONNX) format [2] is an open specification that was developed to facilitate the exchange of machine learning models between different AI frameworks. ONNX consists of the following components:
· A definition of an extensible computation graph model.
· Definitions of standard data types.
· Definitions of built-in operators.
The ONNX format is built around the Protocol Buffers (Protobuf) open-source cross-platform serialization format that was developed initially by Google.
The ONNX Graph is structured as a list of nodes that form an acyclic graph. Each node of the graph represents one of the built-in operators and its attributes. As an example, a node could be a Convolution operation, and its attributes would contain information regarding the padding and stride that must be used. Each edge of the graph represents input or output data tensors. The top-level ONNX construct is a ‘Model.’, and is represented in protocol buffers as the type onnx.ModelProto. It provides metadata that is necessary for the reader to determine if they are able to process the stored model. Each model must explicitly name the operator sets that it relies on for its functionality. Operator sets defines a set of operators and their versions. An operator is identified through its unique operator type (op_type), which is a case-sensitive operator name.
Built-in operators include a large list of widely used operators such as the following:
· Math operators such as Abs
· DNN operators such as Conv and LSTM
· Activation operators such Sigmoid and Relu
· Pooling operators such as MaxPool
· Other operators such as error computation and data reformatting operators
The following provides an example of an ONNX model in protobuf format:
	ir_version: 5
producer_name: "skl2onnx"
producer_version: "1.11"
domain: "ai.onnx"
model_version: 0
graph {
 node {
 input: "X"
 output: "Y"
 name: "Pa_Pad"
 op_type: "Pad"
 attribute {
 name: "mode"
 s: "constant"
 type: STRING
 }
 attribute {
 name: "pads"
 ints: 0
 ints: 1
 ints: 0
 ints: 1
 type: INTS
 }
 attribute {
 name: "value"
 f: 1.5
 type: FLOAT
 }
 domain: ""
 }
 name: "OnnxPad"
 input {
 name: "X"
 type {
 tensor_type {
 elem_type: 1
 shape {
 dim {
 }
 dim {
 dim_value: 2
 }
 }
 }
 }
 }
 output {
 name: "Y"
 type {
 tensor_type {
 elem_type: 1
 shape {
 dim {
 }
 dim {
 dim_value: 4
 }
 }
 }
 }
 }
}
opset_import {
 domain: ""
 version: 10
}

6.6.2	NNEF format
The Neural Network Exchange Format (NNEF) [3] is a Khronos developed standard that defines a data format for facilitating the exchange of trained network models. The NNEF format enables the encapsulation of both the structure of the neural network model as well as the associated data. NNEF stores the data in structures that are independent of the training environment that was used for training the network, which will facilitate its consumption on any execution platform. NNEF offers itself as an intermediary between deep learning frameworks, which export into NNEF, and neural network accelerator libraries, which will import and compile the NNEF model for hardware-optimized inference.
The NNEF container consists of the following files:
· a textual file that describes the structure of the neural network
· a binary data file for each variable tensor. These files are structured hierarchically into sub-folders associated with the corresponding operation. Each tensor may have different representations, each matching a different quantized version.
· a quantization file that contains details about the quantization algorithm that is used for quantizing the exported tensors.
The NNEF network structure is described through a computational graph. The computational graph is a directed graph. The nodes of the graph may be data nodes or operation nodes. A directed edge from a data node to an operation node indicates the data is input to the operation. A directed edge from an operation node to a data node indicates the data node is an output.
Data nodes are tensors of different ranks and shapes and may be external, constant, variable, or intermediate/regular tensors. external, constant, and variable tensors all provide an explicit declaration of their shapes. Other tensors shapes will be determined based on the input and operation that is applied to them to produce that tensor. This is commonly known as shape propagation.
The NNEF operation nodes may have attributes that describe the exact computation that needs to be performed. Operations may be composed together to produce more compound operations. Primitive operations are operations that cannot be broken down into simpler operations.
The following is an excerpt from an NNEF graph representation of the VGG-16 network model:
	version 1.0;

graph VGG_ILSVRC_16_layers(data) -> (prob)
{
 variable_15 = variable<scalar>(label = 'conv4_1_blob2', shape = [1, 512]);
 variable_14 = variable<scalar>(label = 'conv4_1_blob1', shape = [512, 256, 3, 3]);
 variable_13 = variable<scalar>(label = 'conv3_3_blob2', shape = [1, 256]);
 variable_31 = variable<scalar>(label = 'fc8_blob2', shape = [1, 1000]);
 variable_30 = variable<scalar>(label = 'fc8_blob1', shape = [1000, 4096]);
 variable_29 = variable<scalar>(label = 'fc7_blob2', shape = [1, 4096]);
 variable_28 = variable<scalar>(label = 'fc7_blob1', shape = [4096, 4096]);
 variable_27 = variable<scalar>(label = 'fc6_blob2', shape = [1, 4096]);
 variable_26 = variable<scalar>(label = 'fc6_blob1', shape = [4096, 25088]);
 variable_25 = variable<scalar>(label = 'conv5_3_blob2', shape = [1, 512]);
 variable_24 = variable<scalar>(label = 'conv5_3_blob1', shape = [512, 512, 3, 3]);
 variable_23 = variable<scalar>(label = 'conv5_2_blob2', shape = [1, 512]);
 variable_22 = variable<scalar>(label = 'conv5_2_blob1', shape = [512, 512, 3, 3]);
 variable_21 = variable<scalar>(label = 'conv5_1_blob2', shape = [1, 512]);
 variable_20 = variable<scalar>(label = 'conv5_1_blob1', shape = [512, 512, 3, 3]);
 variable_19 = variable<scalar>(label = 'conv4_3_blob2', shape = [1, 512]);
 variable_18 = variable<scalar>(label = 'conv4_3_blob1', shape = [512, 512, 3, 3]);
 variable_17 = variable<scalar>(label = 'conv4_2_blob2', shape = [1, 512]);
 variable_16 = variable<scalar>(label = 'conv4_2_blob1', shape = [512, 512, 3, 3]);
 variable_12 = variable<scalar>(label = 'conv3_3_blob1', shape = [256, 256, 3, 3]);
 variable_10 = variable<scalar>(label = 'conv3_2_blob1', shape = [256, 256, 3, 3]);
 variable_9 = variable<scalar>(label = 'conv3_1_blob2', shape = [1, 256]);
 variable_8 = variable<scalar>(label = 'conv3_1_blob1', shape = [256, 128, 3, 3]);
 variable_6 = variable<scalar>(label = 'conv2_2_blob1', shape = [128, 128, 3, 3]);
 variable_11 = variable<scalar>(label = 'conv3_2_blob2', shape = [1, 256]);
 variable_5 = variable<scalar>(label = 'conv2_1_blob2', shape = [1, 128]);
 variable_4 = variable<scalar>(label = 'conv2_1_blob1', shape = [128, 64, 3, 3]);
 variable_2 = variable<scalar>(label = 'conv1_2_blob1', shape = [64, 64, 3, 3]);
 variable_1 = variable<scalar>(label = 'conv1_1_blob2', shape = [1, 64]);
 variable_7 = variable<scalar>(label = 'conv2_2_blob2', shape = [1, 128]);
 variable = variable<scalar>(label = 'conv1_1_blob1', shape = [64, 3, 3, 3]);
 variable_3 = variable<scalar>(label = 'conv1_2_blob2', shape = [1, 64]);
 data = external<scalar>(shape = [10, 3, 224, 224]);
 conv = conv(data, variable, variable_1, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu = relu(conv);
 conv_1 = conv(relu, variable_2, variable_3, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_1 = relu(conv_1);
 max_pool = max_pool(relu_1, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_2 = conv(max_pool, variable_4, variable_5, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_2 = relu(conv_2);
 conv_3 = conv(relu_2, variable_6, variable_7, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_3 = relu(conv_3);
 max_pool_1 = max_pool(relu_3, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_4 = conv(max_pool_1, variable_8, variable_9, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_4 = relu(conv_4);
 conv_5 = conv(relu_4, variable_10, variable_11, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_5 = relu(conv_5);
 conv_6 = conv(relu_5, variable_12, variable_13, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_6 = relu(conv_6);
 max_pool_2 = max_pool(relu_6, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_7 = conv(max_pool_2, variable_14, variable_15, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_7 = relu(conv_7);
 conv_8 = conv(relu_7, variable_16, variable_17, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_8 = relu(conv_8);
 conv_9 = conv(relu_8, variable_18, variable_19, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_9 = relu(conv_9);
 max_pool_3 = max_pool(relu_9, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 conv_10 = conv(max_pool_3, variable_20, variable_21, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_10 = relu(conv_10);
 conv_11 = conv(relu_10, variable_22, variable_23, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_11 = relu(conv_11);
 conv_12 = conv(relu_11, variable_24, variable_25, border = 'constant', dilation = [1, 1], groups = 1, padding = [(1, 1), (1, 1)], stride = [1, 1]);
 relu_12 = relu(conv_12);
 max_pool_4 = max_pool(relu_12, border = 'ignore', padding = [(0, 0), (0, 0), (0, 0), (0, 0)], size = [1, 1, 2, 2], stride = [1, 1, 2, 2]);
 reshape = reshape(max_pool_4, shape = [10, -1]);
 linear = linear(reshape, variable_26, variable_27);
 relu_13 = relu(linear);
 linear_1 = linear(relu_13, variable_28, variable_29);
 relu_14 = relu(linear_1);
 linear_2 = linear(relu_14, variable_30, variable_31);
 prob = softmax(linear_2, axes = [1]);
}

6.6.3	Neural Network Coding (NNC) format
The Neural Network Coding (NNC) standard [4] has been developed by ISO/IEC for transmission and storage of machine learning models for multimedia description and analysis. It specifies a compressed representation format for neural network data and processes for its decoding. As shown in Figure 6.5.7-1, NNC follows a toolbox approach: It offers a variety of options to represent and code neural network (NN) data, which can be flexibly selected based on the requirements of a particular use case. In particular, NNC defines data structures and syntax elements to support the following:
· Packaging of NN data of different types in neural network representation (NNR) units for access from a system or application layer.
· Signaling of metadata related to various methods of pre-processing for data reduction
· Compression of NN weights/tensor coefficients using quantization and entropy coding
· Interoperability with other exchange (e.g. NNEF [2], ONNX [3]) or native formats (PyTorch, TensorFlow).
For access from a systems or application layer, NNC packages the NN data in neural network representation (NNR) units. NNR units that can carry different types of NN data: NNR parameter set and NNR layer parameter set units convey metadata and information related to the entire NN and individual NN layers, respectively. NNR topology units contain information on the NN topology, e.g. the connections between layers/tensors. The actual tensor data is conveyed in NNR quantized information and NNR compressed data units. Finally, NNR aggregate units allow to combine several NNR units of different types that are related.
NNC allows to signal metadata related to typical pre-processing and parameter reduction methods in NNR parameter set units or NNR layer parameter set units. More specifically, NNC supports inclusion of parameters related to sparsification, pruning, low-rank decomposition, unification, batch norm folding, and local scaling.
NNC represents the NN weights/tensors in NNR compressed or NNR quantized information data units. Tensor/weight coefficients can be signaled as raw data or quantized with different methods, which are uniform, codebook, or dependent quantization. Furthermore, the quantized coefficients can be binarized and entropy coded using a context adaptive arithmetic coder, called DeepCABAC.
NNC can be used as complement to other native (e.g. PyTorch, TensorFlow) or exchange (e.g. NNEF, ONNX) representation formats. This can be done by two means: First, NNC allows to embed topology information of other formats into an NNR bitstream. More specifically, the byte sequences of other formats can be signaled in NNR topology units, which are then conveyed together with NNR compressed data or NNR quantized information units representing the coded or quantized tensors/weights. Second, NNR units representing coded tensors/weights can be embedded in the containers of other formats. Informative recommendations on how to use NNC in combination with PyTorch, TensorFlow, NNEF, and ONNX are given in the Annexes A to E of the standard [4].
SC29 WG04 is also already working on a second edition of ISO/IEC 15938-17, of which a Draft International Standard (DIS) has been completed. The second edition adds the functionality to compress incremental updates of neural networks, which can e.g. be applied to sending updates of neural networks or to federated learning scenarios.

[image: D:\home\NNR\3GPP\2206XX-SA4_119_Post\overview.png]
Figure 6.5.7-1: Generation of a neural network representation (NNR) bitstream consisting of NNR units. Tools for pre-processing, parameter reduction, quantization, and entropy coding can be selected based on the complexity and compression requirements of a given use case.

6.7 Existing optimization and compression tools for AI/ML models
6.7.1 AIMET library
Qualcomm has recently released the AI Model Efficiency Toolkit (AIMET). AIMET is a library that provides advanced model quantization and compression techniques for trained neural network models. The library focuses on unilateral (sender-only) techniques that do not require any decoding on the receiver side.
The following figure depicts the concept of the AIMET library.

The library is designed to work with trained PyTorch and Tensorflow/Keras models and can automate the optimization without significant loss in accuracy. The library supports advanced quantization and compression techniques that contribute to faster inference and lower memory footprint.
The following python code shows how the library may be used to compress a trained DNN:
	from aimet_torch.compress import ModelCompressor
ssvd_compressed_model, ssvd_comp_stats = ModelCompressor.compress_model(model=model, 	eval_callback=eval_callback, 	eval_iterations=1, 	input_shape=(1, 3, 224, 224), 	compress_scheme=CompressionScheme.spatial_svd, 	cost_metric=CostMetric.mac, 	
 parameters=params)
print(ssvd_comp_stats)

The source code may be found in [7].

7 AI/ML evaluation framework
Editor’s Note: This clause is to be moved to a separate Permanent Document containing all evaluation aspects of the study.
7.1	Introduction
The evaluation framework is designed to accommodate different scenarios for the different use cases for the usage and deployment of AI/ML over 5G networks. A scenario describes the evaluation for a specific use case. Use cases have been identified as part of the SA1 study and a selected subset is documented in TR26.927.

7.2	General aspects regarding the AI/ML software framework
For AI/ML evaluations, the following data is needed for the agreed scenarios:
· Test material (E.g. media datasets) including labels/annotations
· AI/ML models
· Md5 files for the test metrical and AI/ML models
· Scripts implementing the evaluation pipelines
· Code of (potential) optimization/compression methods
· Dockerfiles (specific version to be tracked)
· Definitions of the metrics for evaluation

For reproducibility on different systems, Dockerfiles implementing the evaluation pipelines should be provided. Dockerfiles, datasets, scripts, and code should be provided in a way that allows building Docker images from scratch. To avoid Docker images getting too large due to datasets, an image per scenario might be considered.

Test material might be referenced on an external server or might be copied to a common local server. Jsonfiles for annotations might be used for online documentation of the available data.

Potential options to host scripts and data are:
· Private GitHub (Imed 1st option and 5G-MAG eventually) no software possible without licensing aspects clarified
· 3GPP GitHub (maybe for scripts, only small files)
· 5G-MAG
· Akamai large file size
· Imed (1st option, https://github.com/ibouazizi/sa4aiml)

Considering licensing aspects, the evaluation software needs to be BSD-3 approved by some members.

Considering reproducibility, cross checks validating the accuracy of results should be performed and Md5 files should be provided. The tolerance for each metric needs to be defined for validation of crosscheck results.

[bookmark: _Ref135797416]7.2.1	Currently available scripts / containers
This section lists the currently available scripts and containers that might be used as basis for further development of the AI/ML evaluation framework.
7.2.1.2	Docker container with scripts and datasets
A docker image container is available to collect all scripts and datasets that will be used as part of the SA4 evaluation framework for FS_AI4Media study.
The docker container is an Ubuntu image with an initial installation of a python environment that includes the key deep learning frameworks: PyTorch and Tensorflow2.
The docker image is currently hosted on a personal server under the following URL:
	https://bouazizi.dev/aiml/aiml_docker_image_05152023.tar.gz

A more suitable location to host the docker image should be arranged.
The container image is built on an Ubuntu 22.04 base image and can be loaded as follows:
	docker load -i aiml_docker_image_05152023.tar

 The container may leverage underlying GPUs for better inference. If the host machine is equipped with a suitable GPU, then it is recommended to first run the following command:
	apt install -y nvidia-docker2

It is assumed here that the host machine is running an Ubuntu distribution.
To run the container, the following command should be executed:
	docker run -it --gpus all -t aiml aiml_docker_image_05152023

7.2.1.2.1	Datasets and scripts
The container comes with an image detection dataset, namely the SFU-HW-Objects dataset and its associated annotations.
The video sequences are encoded in HEVC lossless INTRA-only mode and are available under the videos subfolder. The following table shows the list of video sequences:

	Class
	Sequence name
	Width x Height
	Frame count
	# Object Classes

	A
	Traffic
	2560x1600
	150
	2

	A
	PeopleOnStreet
	2560x1600
	150
	4

	B
	BQTerrace
	1920x1080
	600
	9

	B
	BasketballDrive
	1920x1080
	500
	4

	B
	Cactus
	1920x1080
	500
	1

	B
	Kimono
	1920x1080
	240
	2

	B
	ParkScene
	1920x1080
	240
	4

	C
	BQMall
	832x480
	600
	3

	C
	BasketballDrill
	832x480
	500
	4

	C
	PartyScene
	832x480
	500
	6

	C
	RaceHorses
	832x480
	300
	2

	D
	BQSquare
	416x240
	600
	7

	D
	BasketballPass
	416x240
	500
	4

	D
	BlowingBubbles
	416x240
	500
	3

	D
	RaceHorses
	416x240
	300
	2

	E
	KristenAndSara
	1280x720
	600
	3

	E
	Johnny
	1280x720
	600
	3

	E
	FourPeople
	1280x720
	600
	4

The annotations can be found under the ground-truth subfolder. These are one text file per frame of the video, where each file provides the ground truth annotations.
The annotation files have the following format per line:
	<object_label> <box_topleft_x> <box_topleft_y> <box_width> <box_height>

The predictions are expected to have the following format:
	<object_label> <prediction_confidence> <box_topleft_x> <box_topleft_y> <box_width> <box_height>

The labels that are supported by this dataset are the following:

	Class ID
	Object
	Class ID
	Object
	Class ID
	Object

	0
	Person
	17
	Horse
	56
	Chair

	1
	Bicycle
	24
	Backpack
	58
	Potted plant

	2
	Car
	25
	Umbrella
	60
	Dining table

	5
	Bus
	26
	Handbag
	63
	Laptop

	7
	Truck
	27
	Tie
	67
	Cell phone

	8
	Boat
	32
	Sports ball
	74
	Clock

	13
	Bench
	41
	Cup
	77
	Teddy bear

An inference model that uses a different class ids/labels must have its results converted into the above format prior to evaluation.
The prediction results must be stored as a 1 file per image under the predictions folder.
The dataset is courtesy of the multimedia lab of SFU (SFU, Multimedia Lab, http://multimedia.fas.sfu.ca/data/). The video sequences are MPEG-JVET video sequences.
Currently, the images comes with a few scripts, which are still under development:
· visualize.py: visualizes the annotations with the corresponding video sequence
· infer.py: a demo script that loads a torchivision trained ResNet-50 FPN model and produces predictions for a given video sequence
· map_calc.py: a script that calculates the mAP for the predictions
Please report any bugs/errors to the author.
More datasets for other tasks such as tracking will be added as part of building this evaluation framework.
7.2.1.3	Scripts for evaluation of compressed AI/ML model transmission
At the Video SWG post 123 online meeting, a first scenario for the evaluation framework for AI/ML was proposed in S4aV230020, which included python code implementing an initial evaluation pipeline for this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). This clause presents a revised version of this software. Key feature of the software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement. In future, the scripts will also be included to a Docker image.
7.2.1.3.1	Main evaluation process
Figure 7.2.1.3.1-1shows the evaluation process schematically in simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).

 scenario = scenario_factory.get(cfg)
 coder = coder_factory.get(cfg, scenario)

 anc_model = scenario.get_model()

 results["anc_size"] = get_size(anc_model)
 results["anc_perf"] = scenario.get_performance(anc_model)

 bit_stream = coder.encode(anc_model)
 rec_model = coder.decode(bit_stream)

 results["rec_size"] = get_size(bit_stream)
 results["rec_perf"] = scenario.get_performance(rec_model)

 write_to_csv(results)

Figure 7.2.1.3.1-1: The main evaluation process (simplified pseudo-code)
7.2.1.3.2	Configuration
The process can be configured as shown in Table 7.2.1.3.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name
	Name of the compression method
	C,R

	scenario_name
	Name of the scenario
	S,R

	data_set_name
	Name of the dataset
	S,R

	model_name
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir
	Directory to store the csv-file the bitstreams and other output data to
	

	data_dir
	Directory to model data and datasets
	S

	batch_size
	Evaluation batch size (currently ignored)
	S

	workers
	Number of workers for the data loader
	S

	disable_progress_bar
	Disable progress bar
	C, S

	eval_compression
	Compress and evaluate reconstructed model
	R

	eval_anchor
	Evaluate anchor model
	R

	download_only
	Only download models and datasets
	

Table 7.2.1.3.2-1: Configuration parameters
7.2.1.3.3	Result csv-file
Table 7.2.1.3.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 7.2.1.3.2-1 are added.

	Name
	Description
	Unit

	anc_size
	Size of the anchor model
	byte

	rec_size
	Size of the bitstream
	byte

	compress_ratio
	rec_size / anc_size
	-

	metric_name
	Name of the metric
	-

	anc_perf
	Performance of anchor model
	Unit of metric_name

	rec_perf
	Performance of reconstructed model
	Unit of metric_name

	anc_eval_time
	Evaluation time for anchor model
	seconds

	rec_eval_time
	Evaluation time for reconstructed model
	seconds

	enc_time
	Encoding time
	seconds

	dec_time
	Decoding time
	seconds

[bookmark: _Ref135006258]Table 7.2.1.3.3-1: Results written to the csv-file

7.2.1.3.4	Scenario module interface
The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 7.2.1.3.4-1. The parameters marked with S in Table 7.2.1.3.2-1 are forwarded to the init function of the Scenario class within the opts variable.
class Scenario():
 def __init__(self, opts):
 self.metric_name = "MetricOfScenario"
 # Input:
 # - opts: an object with members defining the scenario configuration
 # Should:
 # - define self.metric_name as string denoting the performance metric of
 # the scenario, which will be forwarded to the result csv-file
 # - init object from opts

 def get_model(self, pre_trained):
 # Input:
 # - pre_trained a boolean indicating whether to provide the pre-trained model
 # Should download model data and datasets, when not already done
 # Output:
 # - If pre_trained is true, model should be a pre-trained model,
 # Otherwise, model should be an un-initialized model
 return model

 def download_data_and_models(self):
 # Should download model data and datasets, when not already done

 def get_perf(self, model, partition, enforce_higher_is_better=False):
 # Inputs:
 # - model: the model to get the performance for
 # - partition: the partition of the dataset used for evaluation:
 # - "test" The test partition for final performance measurement should be used
 # - "valid" The validation partition for data-driven methods should be used
 # - enforce_higher_is_better: if true perf should be increasing with increasing
 # model performance
 # Outputs:
 # - perf: the performance
 # - infer_time: the inference plus measurement time
 return perf, infer_time

[bookmark: _Ref135006611]Figure 7.2.1.3.4-1: Interface required to be implement for new scenarios
7.2.1.3.5	Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 7.2.1.3.5-1. The parameters marked with C in Table 7.2.1.3.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
 def __init__(self, opts):
 self.__opts = opts
 # Inputs:
 # - opts: an object with members defining the coder configuration:
 # - opts.file_names["bit"]: the bitstream filename
 # - opts.file_names["dec"]: the decoded model filename
 # - opts.scenario: the scenario object
 # Should init the coder object from the opts object

 def encode(self, model):
 # Inputs:
 # - model: the model to encode
 # Should:
 # - Encode the state_dict() of model to the file given in
 # self.__opts.file_names["bit"]

 def decode(self, rec_model):
 # Inputs:
 # - rec_model: the model to write the reconstructed parameters to
 # Should:
 # - decode the bitstream file given in self.__opts.file_names["bit"]
 # - store the decoded parameters in the state_dict of rec_model

[bookmark: _Ref135006862]Figure 7.2.1.3.5-1: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use:
· the encode function to write optimized model parameters in a raw-byte format to the bitstream
· the decode function to read them back to rec_model.
7.2.1.3.6	Currently implemented scenarios and compression methods

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.

Table 7.2.1.3.6-1: Implemented scenarios and compression methods

7.2.1.3.7	Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.

7.3	Scenario template
A scenario should provide the following information (aligned with TR 26.955, Annex A):
· Scenario name <give the scenario a catchy name>
· Motivation for the scenario and its use case relevance:
Why is the scenario relevant for AI/ML multimedia services? Under which of the following use cases does the scenario fall?
· Object Recognition in Image and Video
· Video Quality Enhancement in Streaming
· Crowd-Sourcing Media Capture
· NLP on Speech
· Description of the scenario:
This provides a description of the scenario addressing potentially the relation to the three AI/ML evaluation framework objectives, including AI/ML model split points, AI/ML model checkpoints and updates, and AI/ML model data compression. The description should be more specific than the use case description as provided in TR26.927. Predominantly the description should allow to develop a baseline solution.
· Supporting companies and 3GPP members:
a.	This documents the 3GPP members that support this scenario in terms of providing the information, test material, test requirements and the characterization for the tests. For each of the identified necessities, a tick box is created in the template.
b.	Preferably several 3GPP members are included in the support.
c.	Cross-verification is preferably done by the supporters of the scenario
· Anchor AI/ML DNN model(s) for the scenario:
Give the name and details of the trained AI/ML DNN model(s) that will serve for building anchors for this scenario, as well as the data set used for its training. Such trained AI/ML models are not only limited to readily available base AI/ML models, but can also include models developed using transfer learning. There may be more than one candidate anchor AI/ML model for the scenario. As an example, details may include:
a.	Base model used (including links to such base model)	
b.	Framework language used (e.g. TFLite, Pytorch)
c.	Architecture/model type (e.g. CNN, RNN)
d.	Number of layers
e.	Number of parameters
f.	Model size
g.	Details of data set used for training
· Testbed architecture and anchors
Describe and detail the testbed architecture and anchors to be used for the scenario. The architecture and anchors should be based on the ones as defined in clause 7.4, with modifications matched to the scenario.
· Test configuration factors, constraints and settings:
Describe the test configuration factors, constraints and settings for the scenario. Depending on the nature of the scenario, examples are shown below.
AI/ML model split configuration factors, constraints and settings:
For scenarios considering the feasibility of AI/ML split points, many factors may contribute to the split point decision for the scenario, including those related to device/network status and conditions, as well those related to the AI/ML model used, such as its architecture and complexity. Possible split point decision factors may include:
	Categories
	Parameters
	Details

	Devices Involved
	CPU/GPU
	Device processor capabilities

	
	Battery
	Device battery status

	
	Heat
	Device heating / user health considerations

	Network
	Cellular
	Network selection, bandwidth, latency

	
	Mobility
	Network handover and mobility

	Intermediate Data
	Size
	Data transmission decision, data weights

	
	Type
	Video, Audio/Speech, Text, Binary etc.

	Model Type
	Architecture
	CNN, RNN, GAN, LSTM, etc.[endnoteRef:1] [1:]

	User focus
	APP KPI
	Latency Requirement , Service criticality

	
	Data Privacy
	Data transmission allowed or not

	
	Cost of hosting
	Deployment cost at cloud/server

	Data flow
	Topologies[footnoteRef:1] [1:]

	Media data source, intermediate data in uplink or downlink

	
 Studies and experiments about splitting operations shall focus on CNN. Splitting for GAN/RNN/LSTM is FFS.
2 Topologies comprise the next cases:
1. Local source data – local initial inference
2. Local source data – remote initial inference
3. Remote source data – remote initial inference
The scenario may also describe split point constraints, such as limiting split points to those that do not change the model topology and its parameters, splitting only at the layers of the AI/ML model, etc.
Compression or optimization constraints and settings:
For scenarios considering the compression or optimization of the AI/ML model, and/or the intermediate data (where applicable to split inference scenarios), describe the compression or optimization constraints and settings.
· Feasibility/performance evaluation metrics and requirements:
Depending on the scenario, feasibility and performance metrics may be either related to model performance, or to the test bitstream (the nature of which depends on the use case scenario).
List and describe the relevant feasibility/performance evaluation metrics for the scenario. A list of possible metrics is detailed in clause 7.5.
· Test dataset(s) and scripts for the scenario:
Describe and provide data sets that will be used for the evaluation of this scenario. This should include a description of the license, access procedure, and the dataset annotation format. Same test datasets may be used for similar scenarios falling under the same use case, as listed in 2.
Also provide scripts that will be used for performing the evaluation and calculating the metrics.
Further details are provided in clause 7.6.
· Detailed test conditions:
Provide the detailed test conditions, in particular the descriptions of the input and outputs of the task.
· Interoperability considerations for the scenario:
Interoperability considerations for the scenario may include those related to the delivery considerations for the AI model and other corresponding data (such as intermediate data), including delivery methods, protocols and packetization methods.
a) AI/ML model delivery formats, methods and pipelines: encapsulation formats for AI model data (if necessary), related to the delivery methods and pipelines which may be considered (e.g. download, streaming). This may be related to model update requirements and constraints.
b) AI/ML model optimization methods: methods of model optimization which are not considered under the evaluation methods described under the AI/ML model data compression evaluation defined.
c) Intermediate data compression, delivery formats, methods and pipelines.
d) Related to a and c above: streaming protocols such as TCP / UDP
e) Related to a and c above: packetization methods such as RTP
· External performance data
References to external performance data that can be added, for example other SDOs, public documents and so on.
· Expected time plan for the scenario completion
· Additional information

7.4	Prioritizing scenarios
Due to the complexity of this evaluation work, scenarios should be prioritized based on their feasibility within a reasonable time frame. A higher priority should be given to scenarios for which the use case is actual, i.e. already being deployed and used.
Priority should also be given to scenarios that are based on mobile phones and devices, compared to others based on e.g. automotive or UAVs (drones).
Finally, precedence should be given to evaluating the aspects and solutions that are considered in the SA1 study as documented in TR22.874. These are:
· AI/ML operation splitting between AI/ML endpoints
· AI/ML model/data distribution and sharing over 5G system
· Distributed/Federated Learning over 5G system

7.5	Testbed architectures and anchors
Unless proven otherwise, a common set of architectures is assumed for the evaluation framework, irrespective of the scenario.
The anchor architectures are as follows:
· Running inference completely on the device
· Receiving a compressed video (e.g. from the device), and running inference completely at the network and potentially sharing the inference results with the device.

These anchor architectures are depicted by the following figure:
 [image:]
In the figure, the left hand side represents the anchor for running the inference at the device side. The right hand side shows the architecture for the anchor where the inference is run on the network side. The anchor model for running on the device should be derived from the anchor model running on the network.
The derivation process may include:
· Quantization to match the device’s inference engine, e.g. converting the weights and inputs to fixed point or unsigned integers.
· Re-training of the converted model to optimize for the inference platform. This is allowed but should be accompanied by results without re-training.
· Conversion to an exchange format such as ONNX
The supported model libraries are PyTorch and Keras/Tensorflow2.

7.5.1	Split inference intermediate data testbed architecture
A testbed architecture for the evaluation of split inference intermediate data is represented in figure 7.4.1-1. The anchor model is split into two, split model part 1 and 2, each existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.

Figure 7.4.1-1 Split inference intermediate data testbed architecture

The testbed architecture includes the following main functional blocks:

· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· AI framework/library: The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.
· Model split configuration: The configuration of split points for the anchor model which are to be evaluated. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 7.2.
· Local inferencing: Where the anchor model fully runs on the local node.
· Remote inferencing: Where the anchor model fully runs on the remote node.
· Split inferencing: Where an anchor model is split into two parts, each run on a local and a remote node respectively.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation.
· Test split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: Typically emulating an end-device such as a UE.
· Remote inference node: Typically emulating a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test network: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.

7.5.2	Model data testbed architecture
A testbed architecture for the evaluation of model data compression is represented in figure 7.4.2-1. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.

Figure 7.4.2-1 Model data testbed architecture

The testbed architecture includes the following main functional blocks:

· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.

7.6	Metrics
In the process of AI/ML, no matter on the training set or on the new sample, there is always some difference between the output result of the model and the real value. Model evaluation is a process of using different evaluation metrics to understand the performance of artificial intelligence/machine learning models and its advantages and disadvantages. It is an indispensable part of the model development phases which can help to discover the appropriate model to express the data and evaluate the performance of the selected model.
Different AI/ML work tasks have different evaluation metrics, and the same machine learning task will also have different evaluation metrics, each metric has different emphasis, e.g., classification, regression, ranking, clustering, recommendation, etc.
Given that most scenarios that we’re dealing with in the scope of this study involve computer vision tasks, for model performance metrics, the evaluation framework should reuse existing metrics that are well-established in the research community. There exists different metrics depending on the type of task performed by the model.
Classification model evaluation is the process of assessing and measuring the performance of a machine learning model that has been used for classification tasks. its goal is to divide different images into different categories, to achieve the minimum classification error.
Confusion matrix is a table used in classification tasks that summarizes the performance of a machine learning model on a set of data for which the true values are known. It consists of rows and columns where each row represents the true class of the samples and each column represents the predicted class. The confusion matrix displays the number of samples that are classified correctly (true positives and true negatives) and incorrectly (false positives and false negatives) by the model.
	Confusion Matrix
	Predicted Value

	
	Positive
	Negative

	True Value
	Positive
	True Positives (TP)
	False Negatives (FN)

	
	Negative
	False Positives (FP)
	True Negatives (TN)

True Positives (TP): predict an observation belongs to a class and it actually does belong to that class;
True Negatives (TN): predict an observation does not belong to a class and it actually does not belong to that class;
False Positives (FP): predict an observation belongs to a class but it does not belong to that class;
False Negatives (FN): predict an observation does not belong to a class but it does belong to that class.

For object classification tasks, the following metrics are used to evaluate or measure the performance of a classification model:
1. Accuracy: Accuracy is the simplest metric for evaluating classification performance. It measures the percentage of correctly classified objects out of the total number of objects in the dataset. While accuracy is easy to understand and compute, it can be misleading if the dataset is imbalanced, or the cost of misclassifying different categories is not equal. Accuracy measures how often the classifier makes the correct predictions, it is defined as the ratio between the number of correct predictions and the number of total predictions.

2. Precision: Precision measures the proportion of true positives among all the objects that the model classified as positive. It is useful when the cost of false positives is high, and it is essential to avoid misclassifying objects. Since precision measures the proportion of predicted positive results that are actually positive, it is defined as the fraction of examples (true positives) among all of the examples which were predicted to belong in a certain class (positive).

3. Recall: Recall measures the proportion of true positives among all the objects that belong to the positive class in the dataset. It is useful when the cost of false negatives is high, and it is essential to detect all objects in the dataset. Since recall measures how much the classifier can predict in an actual positive sample, it is defined as the fraction of examples which were predicted to belong to a class with respect to all of the examples that truly belong in the class.

4. F1 Score: The F1 score is the harmonic mean of precision and recall and provides a balanced view of the model's performance. F1-score is a combination of precision and recall, providing a balanced measure of the model's ability to find all true positive cases and its ability to avoid false positives.

For object detection tasks, the metrics are:
1. Intersection over Union (IoU): IoU is one of the most commonly used metrics for evaluating object detection algorithms. It measures the overlap between the ground truth bounding box and the predicted bounding box. IoU is computed as the ratio of the intersection of the two boxes to the union of the two boxes. A higher IoU score indicates better object detection accuracy.
2. Precision and Recall: Precision measures the fraction of true positives (correctly identified objects) out of all predicted positives (objects identified by the algorithm). Recall measures the fraction of true positives out of all ground truth positives (objects that should have been identified). A high precision score indicates that the algorithm is correctly identifying objects, while a high recall score indicates that the algorithm is not missing any objects.
3. Average Precision (AP): AP is a commonly used metric for evaluating object detection algorithms. It measures the precision at different levels of recall and then averages them. AP provides a single number that summarizes the overall performance of the algorithm. A higher AP score indicates better object detection accuracy.
4. F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a single number that summarizes the overall performance of the algorithm. A higher F1 score indicates better object detection accuracy.
For object tracking tasks, the metrics are:
1. Intersection over Union (IoU): IoU is also commonly used for evaluating object tracking algorithms. In this case, it measures the overlap between the ground truth bounding box and the predicted bounding box for each frame in the sequence. A higher IoU score indicates better object tracking accuracy.
2. Precision and Recall: Precision and recall can also be used to evaluate object tracking algorithms. In this case, precision measures the fraction of frames where the algorithm correctly identified the object, while recall measures the fraction of frames where the algorithm correctly tracked the object.
3. Mean Average Precision (mAP): mAP is a commonly used metric for evaluating object tracking algorithms. It measures the average precision at different levels of overlap between the ground truth and predicted bounding boxes over the entire sequence. A higher mAP score indicates better object tracking accuracy.
4. Tracking Precision (TP) and Tracking Recall (TR): TP measures the fraction of frames where the predicted bounding box overlaps with the ground truth bounding box by a certain threshold, while TR measures the fraction of ground truth bounding boxes that were successfully tracked. A high TP score indicates that the algorithm is accurately tracking the object, while a high TR score indicates that the algorithm is not losing track of the object.
AI regression model evaluation is the process of measuring the accuracy and performance of a regression model developed using artificial intelligence (AI) techniques. Regression analysis is a statistical method used to predict the relationship between dependent and independent variables. Some of the most commonly used evaluation metrics for regression models are listed as following:
1. Mean Squared Error (MSE): measures the average squared error between the predicted and actual values. It's represented as the average of the squared differences between the predicted and actual values.

2. Root Mean Squared Error (RMSE): the square root of the mean squared error, this metric indicates the deviation of the predicted values from the actual values.

3. Mean Absolute Error (MAE): measures the average absolute difference between the predicted and actual values. This metric is robust to outliers.

4. R-squared (R2): determines how well the regression line fits the data by measuring the proportion of the variance explained by the model.
For other non-object related tasks, examples model performance metrics may include:
· Ranking Model Metrics (MRR, DCG, NDCG)
· Statistical Model Metrics (Correlation)
· Computer Vision Model Metrics (PSNR, SSIM, IoU)
· NLP Model Metrics (Perplexity, BLEU score)
For split inference and model compression related scenarios, other feasibility/performance metrics that should also be considered are:
· Video quality: depending on the scenario, the input or output video quality should also be documented. For example, a video super resolution scenario has to evaluate the quality of the resulting video. For the tasks, the impact of the quality of the input video on the accuracy should also be evaluated.
· Complexity: complexity of the entire process, including video compression and decompression, model compression and decompression (where relevant), and inference process.
· Bitrate: the total bitrate needed for performing the task. This may be 0 for the device anchor. For the network anchor, this includes the video bitrate for the uplink and the bitrate for sharing the task results back to the device. For split inference related scenarios, this should include the intermediate data bitrate.
· Split model size: model size and comparison ratio of the test split model to be delivered (compared to anchor model)
· Intermediate data size or bitrate: a comparison ratio of the intermediate data to be delivered (compared to the data size or bitrate of the relevant data from the anchors)
· Compressed model size: the compression ratio of the compressed model compared to the original reference model.
· Compressed intermediate data ratio: compression ratio of the compressed intermediate data bitstream compared to the original intermediate data bitstream
· Latency: the latency requirements for each scenario must also be taken into account to evaluate the feasibility of the proposed solutions, in particular for split inference scenarios, such as:
· Inference latency metrics
· local inference time
· Remote inference time
· Total local and inference time
· End to end latency
· Other latency metrics
· Encoding/decoding time.
· intermediate data delivery time
· Resources metrics of UE and/or DN:
· Computing power consumption on node
· CPU time
· GPU time
· Memory usage
· Energy consumption

7.7	Datasets and scripts
It is recommended to build a docker container that comes with the necessary scripts for downloading the models and datasets, and running the evaluation for each agreed scenario. The Dockerfile should be hosted on a publicly accessible location to all 3GPP members. As example for software management refer to TR 26.955, Annex E.
Potential openly accessible video datasets are:
· YouTubeVIS: Video Instance Segmentation - YouTube-VOS
· SFU-HW-Objects-v1: SFU Multimedia Lab
· TVD: Tencent Video Dataset (TVD) - Tencent Media Lab
For some of the scenarios, companies may be asked to provide a suitable annotated data set to perform the evaluation. This may follow the principle in Annex B of TR 26.955 as well as the test sequence collection in Annex C of TR 26.955.
We offer to collect the data sets, anchors, etc here: https://dash-large-files.akamaized.net/WAVE/3GPP/AIML.

7.8	AI/ML frameworks and libraries
An AI/ML framework brings a set of services which are interfaces, libraries or tools. They are used to create models, train them and/or to infer input data and deliver a prediction.
Hereafter is a short list:
1. TensorFlow
2. PyTorch
3. Caffe
4. Keras
5. MXNET
6. Darknet

Some frameworks are especially designed for on-device (Mobile Phones) deep Learning, we may present the two main ones:
1. TensorFlow Lite [8]
2. PyTorch Live [9]

Note: Keras is running on top of TensorFlow, and both together provide a high-level APIs to make a more user-friendly framework. For the rest of the document TensorFlow and Keras frameworks are considered as one entity noted TensorFlow/Keras.
AI/ML frameworks can be completed and enriched with libraries, for example to provide optimization and compression tools such as:
· NNC : clause §6.5.7
· AI Model Efficiency ToolKit (AIMET) clause §6.6.

Both libraries support TensorFlow/Keras and PyTorch environments.

7.8.1	Framework popularity
PyTorch and Tensorflow/Keras are the two major and most popular frameworks for Deep Learning.
PyTorch appears significantly more in academics as shown in the next graph [11]
[image: Chart

Description automatically generated]
On the other hand, Tensorflow is much more popular in industry.
The TensorFlow eco-system comprises some deployment-oriented applications like TensorFlow Serving and TensorFlow Lite for AI/ML application to be deployed on cloud, edge, server, mobile or IoT devices.
PyTorch has filled the gap by proposing TorchServe [12] and PyTorch Live [9].

7.8.2	Detailed framework characteristics
Framework or library tools available (compression, quantization etc.):
· TensorFlow and Pytorch natively support optimization and quantization tools.
Hardware accelerator support:
List of tools for optimizing the ML models.
· It is very likely that the model performance will be evaluated with various processing conditions, being CPU, GPU, TPU or others like DSP.
· TensorFlow/Keras and PyTorch already integrate such capabilities:
· TensorFlow/Keras GPU or TPU usage in respectively [13] and [14]
· PyTorch GPU or TPU usage in respectively [15] and [16]
Supported models.
Natively both frameworks TensorFlow/Keras and PyTorch integrate many pre-trained models, this is described in document “models for evaluation”. If the model is not available, it can be reconstructed from its known architecture and trained.
A list of pre-trained model support is proposed for keras in [17], and for Pytorch in [18].
Split function
Splitting functionality shall be evaluated to point out the benefits it can bring to the 5G system (latency, energy, privacy), but also to measure and characterize the intermediate data. Therefore, the framework shall offer APIs/functions to split some models. This function is already available in TensorFlow/Keras framework as described in doc Split scenarios for evaluation and TensorFlow based split evaluation platform.
Mobile or on-device versions
Both PyTorch and TensorFlow/Keras have their own mobile solutions TensorFlow Lite [8] and PyTorch Live [9].
Language
Both PyTorch and TensorFlow/Keras are Python based.
TensorFlow supports additionally JavaScript, C++ and Java.
Supported format for AI/ML models
PyTorch and TensorFlow/Keras support Open Neural Network eXchange (ONNX) and Neural Network Exchange Format (NNEF).
· ONNX: Tensorflow models (including Keras and TensorFlow Lite models) can be converted to ONNX [19]. PyTorch models can be exported to the ONNX format [20]. ONNX support tools for porting PyTorch model into TensorFlow or vice-versa.
· NNEF: supported by Khronos and designed to support both PyTorch and TensorFlow. NNEF tools can convert trained models from/to ONNX format [21].

7.9	AI/ML models
There may be several cases for the availability of AI/ML models:
1. Pre-trained models available from the AI/ML frameworks and libraries
2. Pre-trained models not available from the frameworks but from an external source, for instance GitHub
3. Non-trained models
4. New models

Case 1) can be illustrated by the ResNet50 model which is available from both PyTorch and TensorFlow/Keras frameworks.
Case 2) can be illustrated with the EDSR model, where the model authors proposed a PyTorch implementation of their model which is available from a GitHub repository.
Case 3) is where proponents want to perform experiments from a well-known model and retrain it with a specific dataset corresponding to the use case to be evaluated. For example, YOLO or AlexNet are not available in TensorFlow/Keras.
Case 4) is for proponents who propose new model architecture.
For case 2), the proponent shall share the information on how to get the model, and how to run the experiments.
For cases 3) and 4), the proponents shall share the AI/ML model data (dataset, hyperparameters, etc.…) and describe how they train the AI/ML model.

7.9.1	Model characteristics
Several characteristics that may define an AI/ML model:
· Model Popularity within scientific community: The model is often cited in scientific papers and as such is recognized as an efficient model by many frameworks, in particular the frameworks listed in doc “Frameworks for evaluation”. ResNet50 or MobileNet are good examples of such models.
· Availability as a pre-trained version: Pre-trained version of the model as proposed by the framework should be preferred. Untrained models are possible under conditions above.
· AIML model Task: It depends on the use cases and scenarios to evaluate. The preferred domain is computer vision, which include object detection, image recognition, segmentation, pose estimation, image classification.
· Format: By default, the model format is the framework model format to be supported, for example ONNX and/or NNEF.
· Splitability: Ability to split/partition the model in two subsets. Some models may be easier to split than others depending on the complexity of the relations between the layers.

7.9.1	Pre-trained model repositories
ModelZoo [22] is a popular repository providing open-source deep learning code and pre-trained models for a range of different frameworks (e.g., TensorFlow, Pytorch) and for different model tasks categories (e.g. computer vision, NLP).
TensorFlow proposes a collection of pre-trained models in [23], [24] and [25].
Keras Applications [24] are deep learning models that are made available alongside pre-trained weights. These models can be used for prediction, feature extraction, and fine-tuning.

7.10	Scenarios
7.10.1	Transmission of compressed AI/ML model data for automatic speech recognition
7.10.1.1	Motivation and use case relevance
AI/ML model data distribution and sharing over 5G system has been identified in TR 22.874 [1] as one of the three key operations for AI/ML related services. Reason for this is that UEs might need a great variety of AI/ML models to respond to different tasks and environments, while not being able to store all needed AI/ML models due to memory storage constraints, so that a frequent context adaptive down-loading of AI/ML model data is necessary.
To tackle this problem, methods for model compression have been proposed (see clause 6), which provide the benefits that they 1) lower bandwidth requirements or latencies for model data distribution, and 2) reduce the memory footprint of the AI/ML models on the UEs. However, besides the reduction of the model size, compression can also lead to a decrease of the AI/ML model performance. Which performance-compression trade-offs can be reached by different AI/ML model compression methods is thus an important question when defining AI/ML related services and is thus investigated in this scenario.
From the media-based AI/ML use cases defined in clause 4, the following require the transmission of AI/ML model data and thus could benefit from model compression:
1. Full or partial transfer of models for object recognition in image and video (clause 4.1)
2. Transfer of models for post-filtering for video coding (clause 4.2.1.2)
3. Transfer of models for crowd-sourcing media capture (clause 4.3.1)
4. Transfer of models for NLP on speech (clause 4.4)

This scenario evaluates the transmission of the wav2vec 2.0 [3] and the HuBERT [4] AI/ML models for automatic speech recognition (ASR), which derive a transcript of a given speech sequence. The transmission of compressed AI/ML models for ASR is relevant in the following use cases defined in clause 4:
· Crowd-Sourcing Media Capture (clause 4.3.1): To adapt to background noise or for lyrics recognition, specialized AI/ML models for ASR need to be transferred to a huge number of UEs for device inference.
· NLP on Speech (clause 4.4.): An initial ASR model needs to be down-loaded to the UE; then updated model data needs to be shared frequently with other UEs for distributed/federated learning.

7.10.1.2	Description of the scenario
In this scenario, a pre-trained AI/ML model for ASR, wav2vec 2.0 [3] or HuBERT [4], is transmitted to an UE as shown in Figure 2.3-1. To reduce bandwidth requirements or latencies the model is compressed before transmission. The compression method might be implemented as sender-only compression/optimization technique or might comprise an encoder at the sender-side and a decoder at the receiver-side.

[image: framework2]

[bookmark: _Ref134222221]Figure 7.9.1.2-1: Transmission of the ASR model
How the ASR model can be employed by an UE to derive a transcript of a speech sequence is shown in Figure 2.3-2, which comprises the following entities:
· A speech sequence stored as uncompressed audio file sampled with 16kHz.
· The ASR model inferring a classification for the speech sequence.
· A vector sequence representing the classification. Each vector comprises 29 elements specifying the probability (represented as logits) of the 29 labels: '-', ' ', 'E', 'T', 'A', 'O', 'N', 'I', 'H', 'S', 'R', 'D', 'L', 'U', 'M', 'W', 'C', 'F', 'G', 'Y', 'P', 'B', 'V', 'K', ''', 'X', 'J', 'Q', and 'Z'.
· A label selector selecting the most probable labels from the vector sequence.
· The predicted transcript, i.e. the sequence of selected labels.

[image: audio]

[bookmark: _Ref132127302]Figure 7.9.1.2-2: Prediction of a transcript with the reconstructed ASR model

7.10.1.3	Supporting companies and 3GPP members
· Fraunhofer HHI
· Nokia Corporation
7.10.1.4	Anchor AI/ML DNN model(s) for the scenario
Several pre-trained AI/ML models for ASR are provided by the TorchAudio library [5] under MIT License. For evaluation, the models listed in Table 7.9.1.4-1 should be used.
	TorchAudio name
	numParam [M]
	sizeAnc [Mbit]
	werAnc[%]

	WAV2VEC2_ASR_BASE_960H
	94.4
	3021
	3.4

	HUBERT_ASR_LARGE
	315.5
	10095
	2.1

[bookmark: _Ref134157465]Table 7.9.1.4-1: Number of parameters (numParam), size (sizeAnc) and word error rates (werAnc) of the anchor models
The WAV2VEC2_ASR_BASE_960H [6] model consist of several convolutional layers for feature extraction and a transformer. It is pre-trained 960 hours of audio data from the Librispeech data set [8][9] and has been fine-tuned on 960 hours of audio data from the same set.
The HUBERT_ASR_LARGE [7] is a modified version of the wav2vec 2.0 model. It is pre-trained on 60.000 hours of unlabeled audio data from the Libri-Light [10] dataset and has been fine-tuned on 960 hours of audio data from the Librispeech data set [8][9]. It achieves a lower word error rate, but has more parameters.

7.10.1.5	Testbed architecture and anchors
The testbed architecture corresponds to the example testbed architecture defined in clause 7.4.2 and shown in Figure 7.4.2-1. The following applies for the shown functional blocks:
· The test encoder can also be a sender-only optimization/compression technique.
· The test decoder might be absent for sender-only optimization techniques.
· The reference data set is the test-clean dataset as shown in Table 2.9-1.
· The anchor model is one of the models shown in Table 2.5-1.
· The inference output processor corresponds to the pipeline shown in Figure 2.3-2.
· Metrics computation derives the word error rate (wer) and the model size (size) as defined in clause 2.8.

7.10.1.6	Test configuration factors, constaints and settings
For encoding, data-dependent optimization techniques might be used. The Librispeech dev-clean dataset, as shown in Table 2.9-1, might be used for optimization.
7.10.1.7	Feasibility/performance evaluation metrics and requirements
The anchor model and test bitstream are provided as files containing the model parameters. The file size (size) combined with the word error rate (wer) achieved by the reconstructed ASR model after inference are employed to determine the efficiency of a compression method.
File Size
The anchor model and test bitstream can be stored as follows:
a) The anchor model is provided as data file containing numParam uncompressed model parameters individually represented as N-byte floating-point values.
b) For encoder-only compression methods, the test bitstream is provided as data file containing numParam quantized and/or reduced model parameters individually represented as N-byte values.
c) For methods requiring a decoder, the test bitstream is a coded representation encoding the parameters jointly.

For all cases, size can be determined by measuring the file size. For cases a) and b), the size in bit can also be determined as numParam * 8 * N.
Word Error Rate
To quantify the performance of the anchor and the reconstructed model, the word error rate (wer) is used, which has also been applied in the original publication of the wav2vec 2.0 model [3]. The word error rate is determined on a set of data pairs. Each pair comprises
· a speech sequence stored as uncompressed audio file, and
· a reference transcript of the audio sequence stored as text file.
Using the dataset, the wer value is determined in two steps:
1) A word error rate is derived for each pair of the dataset as follows:
· The AI/ML model is applied as shown in Figure 2.3-2 using the speech sequence as input and obtaining a predicted transcript as output.
· The predicted and reference transcripts are split into a predicted and a reference list of words, respectively.
· The word error rate of the predicted word list with respect to the reference word list is derived as follows

with , , and denoting the number of word substitutions, word deletions, and word insertions in the predicted word list and denoting the number of words in the reference list.
2) The total word error rate wer is derived as follows:

7.10.1.8	Test dataset(s) and scripts for the scenario
Evaluations use the Librispeech [8][9] datasets, which are available under Creative Commons Attribution 4.0 International License and shown in Table 2.9-1. To quantify the performance of the anchor and the test model, the word error rate (wer) is determined based on the test-clean dataset. For data-dependent encoder optimizations, the dev-clean dataset might be used. The datasets can be automatically down-loaded, e.g. by using the exemplary python-script shown in Figure 7.9.1.8-1.

	Name
	Number of sequences
	Hours of audio

	test-clean
	2620
	5.4

	dev-clean
	2864
	5.4

[bookmark: _Ref134157550]Table 7.9.1.8-1: Datasets considered in the scenario
The exemplary script derives word error rate and file size of the anchor models. Further scripts to create and evaluate the reconstructed models can be obtained from TBD [Ed.: A link to a “framework repository” might be added here, currently the scripts are attached to the document]. They can be generically extended by different compression methods.

import torch # Version 2.0.0 required
import torchaudio # Version 2.0.1 required
import torchaudio.datasets as datasets
from torchaudio.functional import resample
from torcheval.metrics import WordErrorRate

test_dir = "D:\\data" # This directory should exist, datasets will be stored here.
device = "cpu" # or "cuda"

def eval_test_case(test_case, bundle):
 print('Evaluating test case {test_case}'.format(test_case=test_case))

 ####### Get Model ##############################
 model = bundle.get_model()
 sample_rate = bundle.sample_rate
 labels = bundle.get_labels()

 ####### Get Data Loader Model ##################
 val_loader = torch.utils.data.DataLoader(
 datasets.LIBRISPEECH(test_dir, "test-clean", "LibriSpeech", True),
 batch_size=1, shuffle=False, num_workers=1, pin_memory=True)

 ####### Evaluate Model #########################
 model.eval()
 model.to(device)
 metric = WordErrorRate()
 blank = 0

 with torch.inference_mode():
 for speech_sequence, cur_sample_rate, reference_transcript, *dump in val_loader:

 # Resample speech sequence if necessary
 if cur_sample_rate != sample_rate:
 speech_sequence = resample(speech_sequence, cur_sample_rate, sample_rate)

 speech_sequence = speech_sequence.reshape((1,-1))
 speech_sequence = speech_sequence.to(device)

 # Apply the ASR model
 vetor_sequence, _ = model(speech_sequence)

 # Select labels
 idcs = torch.argmax(vetor_sequence[0], dim=-1)
 idcs = torch.unique_consecutive(idcs, dim=-1)
 idcs = [i for i in idcs if i != blank]
 predicted_transcript = "".join([labels[i] for i in idcs])
 predicted_transcript = predicted_transcript.replace("|"," ")

 # Update error
 metric.update(predicted_transcript, reference_transcript[0])

 wer_Anc = metric.compute()
 print(' wer_Anc: {wer_Anc:.3f} %'.format(wer_Anc=wer_Anc*100))

 ####### Get Model Size #########################
 num_parameters = 0
 for param in model.parameters():
 num_parameters += param.numel()

 # Each parameter is stored as 32 bit float, so multiply by four
 size_Anc = num_parameters * 4 * 8
 print(' size_Anc: {size_Anc:.3f} Mbit'.format(size_Anc=size_Anc/1000/1000))

if __name__ == '__main__':
 eval_test_case(1, torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H)
 eval_test_case(2, torchaudio.pipelines.HUBERT_ASR_LARGE)

[bookmark: _Ref134157799]Figure 7.9.1.8-1: Exemplary python script for determining sizeAnc and werAnc.

7.10.1.9	Detailed test conditions
A compression method under test is evaluated using the test cases shown in Table 7.9.1.9-1.
	Test case
	Model
	wer range

	1
	WAV2VEC2_ASR_BASE_960H
	3.4% to 8.4%

	2
	HUBERT_ASR_LARGE
	2.1% to 7.1%

[bookmark: _Ref134157837]Table 7.9.1.9-1: Test cases and respective wer ranges. werAnc and sizeAnc are given in Table 7.9.1.4-1.

To characterize a compression method under test in a given test case, it is evaluated using different test configurations T, which might be produced by varying encoder parameters, e.g. quantization parameters or sparsification ratios. More specifically, for each test configuration T from a set of test configurations, a data pair (cSize, wer) is derived with
· cSize denoting the size of the test bitstream size divided by the size of anchor model sizeAnc and
· wer denoting the word error rate of the test model.

If possible, the set of test configurations should contain at least 5 test configurations T that produce word error rates in the range of werAnc to werAnc+0.05 as shown in Table 2.10-1.
For comparison, (cSize, wer) pairs, as well as werAnc, might be reported graphically, as shown in Figure 2.10-1.
[image: RDPlot]
[bookmark: _Ref132128795]Figure 7.9.1.9-1: Example for the characterization of a compression method for different test configurations T

7.10.1.10	Interoperability considerations for the scenario
Download (possibly via TCP) of the model data is expected.
7.10.1.11	External performance data
None.
7.10.1.12	Expected time plan for the scenario completion
Evaluations are expected to be completed within the time plan of the feasibility study on AI/ML for Media.
7.10.1.13	Additional information
The wav2vec 2.0 model has been successfully employed for ASR on mobile devices: An Android-based implementation can be downloaded from [11]. An evaluation of the wav2vec 2.0 model on a device with limited computational performance can be found in [12].
7.10.1.14	References for the scenario
[1] [bookmark: _Ref134444835][bookmark: _Ref132134545][bookmark: _Ref126845156]3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2] [bookmark: _Ref134156937]S4-230648 [FS_AI4Media] Permanent Document v0.7, April 2023.
[3] [bookmark: _Ref134157052][bookmark: _Ref134156970][bookmark: _Ref132125699][bookmark: _Ref126845184]A. Baevski, H. Zhou, A. Mohamed and M. Auli, “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations”, arXiv, 2006.11477, 2020
[4] [bookmark: _Ref134157081]W.-N. Hsu, B. Bolte, Y.-H. Tsai, K. Lakhotia, R. Salakhutdinov, and A. Mohamed. “Hubert: self-supervised speech representation learning by masked prediction of hidden units”, arXiv, 2106.07447, 2021
[5] [bookmark: _Ref132125728]TorchAudio: An audio library for Pytorch [Computer software], https://github.com/pytorch/audio, V2.0.1
[6] [bookmark: _Ref132128434]TorchAudio: WAV2VEC2_ASR_BASE_960H, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.WAV2VEC2_ASR_BASE_960H.html
[7] [bookmark: _Ref134157270][bookmark: _Ref132125708][bookmark: _Ref123731535]TorchAudio: HUBERT_ASR_LARGE, [Computer software] https://pytorch.org/audio/stable/generated/torchaudio.pipelines.HUBERT_ASR_LARGE.html
[8] [bookmark: _Ref134157238]V. Panayotov, G. Chen, D. Povey and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Australia, 2015
[9] [bookmark: _Ref134157240]OpenSLR, LibriSpeech ASR corpus [Online], https://www.openslr.org/12
[10] [bookmark: _Ref134157305][bookmark: _Ref132125712]J. Kahn, M. Rivière, W. Zheng, E. Kharitonov, Q. Xu, P. E. Mazaré, J. Karadayi, V. Liptchinsky, R. Collobert, C. Fuegen, T. Likhomanenko, G. Synnaeve, A. Joulin, A. Mohamed, and E. Dupoux. “Libri-light: a benchmark for ASR with limited or no supervision”. IEEE Int. Conf. on Acoustics, Speech and Sig. Proc. (ICASSP), 7669–7673. 2020. https://github.com/facebookresearch/libri-light.
[11] [bookmark: _Ref134157361]Pytorch: Speech Recognition on Android with Wav2Vec2 Low complexity implementation [Computer Software], https://github.com/pytorch/android-demo-app/tree/master/SpeechRecognition
[12] [bookmark: _Ref134157369]S. Gondi, "Wav2vec2.0 on the edge: Performance evaluation", arXiv, 2202.05993, 2022

7.10.2	Split inferencing for human pose estimation
7.10.2.1	Motivation and use case relevance
Many state of the art XR applications require some form of human body part movement for a given service. At the most basic level, human movement recognition and estimation or arms, hands, fingers, as well as facial parts such as eyes, nose, and ears are essential tools, which can be used as a form of device input for UI control when wearing a head mounted display or glasses type device.
Another trend seen during the covid19 lockdown period, and even post-covid19, is the increase in home fitness applications. Such home wellness applications benefit from the use of advanced motion/pose recognition during exercise and activity recognition, to more simple techniques such as movement counters.
Targeting lightweight and low processing devices such as AR glasses and home IoT devices, splitting the inference process with a network or centralized entity reduces the computational requirements of such lightweight/mobile devices.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1.
7.10.2.2	Description of the scenario
In this scenario, a pre-trained AI/ML model for human pose estimation, PoseNet (MobileNetV1 backbone, FP32) [1], is split into two different parts (split models) for split inferencing. The first part is inferenced on a low-capability device (e.g. Samsung A series, TBC), and the second part is inferenced on a high-capability device (e.g. Samsung Galaxy S23, TBC) which simulates a network resource entity. The scenario corresponds to the topology shown in figure 5.1.1.1-1, the split AI/ML model inference topology where the UE is the media data source with first inference endpoint on the UE. Prior to the service, the (split) pre-trained model (anchor model) is assumed to be available on the high-capability device, and the inference input data (test dataset) is assumed to be available on the low-capability device.
The scenario considers the splitting of PoseNet at different layers in order to measure the overall performance and data characteristics of split inferencing between two nodes of differing computational capabilities.
As part of the scenario, the delivery of AI/ML data from between the two devices are taken in account, more specifically:
- Delivery of the split model from the high-capability device (network) to the low-capability device
- Delivery of the intermediate data (output of first split inference) from the low-capability device to the high-capability device
The inference output of PoseNet for the scenario will be to detect, in an instance-agnostic fashion, all visible keypoints belonging to any person in a corresponding input image.
7.10.2.3	Supporting companies and 3GPP members
· Samsung Electronics Co., Ltd.
7.10.2.4	Anchor AI/ML DNN model(s) for the scenario
For the evaluation of this scenario, the PoseNet (MobileNetV1 backbone, FP32) model is used. PoseNet as a reference implementation of a TensorFlow Lite pose estimation model is available from TensorFlow [1] and is licensed under the Creative Commonds Attribution 4.0 License.
	Model
	Size (MB)
	mAP
	No. of layers
	No. of parameters

	PoseNet (MobileNetV1 backbone, FP32)
	13.3MB
	45.6
	31
	1,180,147

Table 2.5-1: Anchor model(s) for the scenario

7.10.2.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.

Figure 2.6-1 Testbed architecture for the scenario
The split configurations for the scenario are compared to two anchors:
1. Where the anchor model is inferenced completely on the low capability device
2. Where the anchor model is inferenced completely on the high capability device (simulating a network entity), with the test dataset and inference output delivered via the test network
The anchor model used is that shown in table 2.5-1.
Multiple model split configurations are considered as described in clause 2.7.

7.10.2.6	Test configuration factors, constraints and settings
PoseNet is composed of 31 different layers, resulting in 32 different possible split point configurations between the two inference nodes, including the two anchors as mentioned in clause 2.6 (layers inference on first node : layers inferenced on second node):
· 0:31
· 1:30
· 2:29
· …
· 31:0
The scenario aims to evaluate each of the 32 split point configurations, with each split configuration tested at a range of different network bandwidth configurations (specific bandwidths TBC).
Latencies due to any pre-processing (e.g. downscaling/upscaling) required on the test dataset for the input into PoseNet will not be taken into consideration as part of the scenario metrics.
Processing capability related configurations are dependent on the devices used for the scenario as described in clause 2.3.
7.10.2.7	Feasibility/performance evaluation metrics and requirements
For each split point configuration, the following metrics are computed:
· Test split model file sizes
· Intermediate data size or bitrate
· Inference latency at each device
· Optionally, additional performance measurements (complexity) at each device
Performance measurements may use the native benchmark binary or Android benchmark app as provided by TensorFlow (or scripted developed independelty) in order to measure: certain KPIs which may include, but are not limited: initialization time, inference time of warmup state, inference time of steady state, memory usage during initialization time and overall memory usage.

7.10.2.8	Test dataset(s) and scripts for the scenario
The test dataset is comprised of a subset of images from COCO (Common Objects in Context) [2].
The annotations in the COCO dataset belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License, whilst the images are also under a Creative Commons license, the use of which must abide by the Flickr Terms of Use.
Test dataset and scripts to be provided by SA4 #125 (August, 2023).
7.10.2.9	Detailed test conditions
TBD.
7.10.2.10	Interoperability considerations for the scenario
None.
7.10.2.11	External performance data
None.
7.10.2.12	Expected time plan for the scenario completion
Provide test dataset and scripts – SA4 #125, August, 2023
Completion – SA4 # 126, November, 2023
7.10.2.13	Additional information
None.
7.10.2.14	References for the scenario
[1] https://www.tensorflow.org/lite/examples/pose_estimation/overview
[2] https://cocodataset.org/#home

8	Traffic characteristics
8.1	Complete/Basic AI/ML model distribution
8.2	Split AI/ML operation
8.2.1	Examples of split point references
8.2.1.1	Feature Maps used in MPEG FC-VCM (Feature Compression for Video Coding for Machines) Track 1
The pipeline that is considered for feature compression for video coding for machines is described in Figure 8.2.1.1-1.:
[image:]
Figure 8.2.1.1-1: FC-VCM pipeline

The video or image is first analyzed to extract the feature maps, which will be compressed by FC-VCM. For the standardization process, a so-called anchor model has been defined, to which proponents will compare to evaluate the responses of the Call for Proposal and the upcoming reference software. It corresponds to the implementation of the pipeline of Figure 8.2.1.1-1 using exiting tools and standards. The state-of-the-art H.266/MPEG VVC codec is then used to compress the feature maps. Some pre-processing maybe needed, for example to pack all channels of the feature map into a single atlas map and 10-bit quantization to fit VVC input format. FC-VCM proposals will be measured against this basic approach.
Task networks and corresponding split points that are currently used in the Common Test Conditions for FC-VCM are:
· Mask R-CNN p-layer split point for object segmentation,
· Faster R-CNN p-layer split point for object detection, and
· JDE-1088x608 Darknet-53 split point for object tracking.
Mask R-CNN and Faster R-CNN implementations are part of the detectron2 framework that can be found at https://github.com/facebookresearch/detectron2. JDE (Joint Detection and Embedding) is a multiple object tracker that can be accessed at https://github.com/Zhongdao/Towards-Realtime-MOT.

Anchor results for each task and split point are described by the following graphs. For both object detection and instance segmentation, mean Average Precision (mAP) shall be used to measure the performance of the network Video/Image anchor results correspond to the encoding of input videos/images using VVC and running the entire task network on decoded images/videos as performed in MPEG VCM test configurations. As the extracted features at the proposed split points are larger than input images/videos and VVC is tailored to compress pixel content, one can note that the naïve approach used for feature anchors currently underperforms the compression of input images/videos. New feature compression technologies will be proposed to the CfP and analyzed at the October 2023 meeting.

[image:]
Figure 8.2.1.1-1: Instance Segmentation on OpenImages dataset using Mask R-CNN P-layer split point
[image:]
Figure 8.2.1.1-2: Object Detection on OpenImages Dataset using Faster R-CNN P-layer split point
[image:]
Figure 8.2.1.1-3: Object Detection on SFU Dataset using Faster R-CNN P-layer split point
[image:]
Figure 8.2.1.1-4: Object Tracking on TVD Dataset using JDE Darknet-53 split point
[image:]
Figure 8.2.1.1-5: Object Tracking on Hieve Dataset using JDE Darknet-53 split point

8.3	Distributed/federated learning

9	KPIs

10	References
[1]	3GPP TR 22.874, Study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS
[2]	Open Neural Network Exchange (ONNX), https://onnx.ai
[3]	The Khronos NNEF Working Group, “Neural Network Exchange Format”,	https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.5.html
[4]	“Text of ISO/IEC FDIS 15938-17 Compression of Neural Networks for Multimedia Content Description and Analysis”, MPEG document N00080, ISO/IEC JTC 1/SC 29/WG 04, April 2021.
[5]	Y.3179: Architectural framework for machine learning model serving in future networks including IMT-2020
[6]	Agiollo A., et al., “Load Classification: A Case Study for Applying Neural Networks in Hyper-Constrained Embedded Devices” Journal of Applied Sciences, December 2021
[7]	AI Model Efficiency Toolkit (AIMET), https://github.com/quic/aimet
[8]	https://www.tensorflow.org/lite
[9]	https://playtorch.dev/
[10]	https://github.com/quic/aimet
[11]	https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2023/
[12]	https://pytorch.org/serve/?ref=assemblyai.com
[13]	https://www.tensorflow.org/guide/gpu
[14]	https://www.tensorflow.org/guide/tpu
[15]	https://pytorch.org/docs/stable/notes/cuda.html /GPU
[16]	 https://pytorch.org/xla/release/2.0/index.html XLA/TPU
[17]	 https://modelzoo.co/framework/keras 	
[18]	 https://modelzoo.co/framework/pytorch 	
[19]	 https://onnxruntime.ai/docs/tutorials/tf-get-started.html 	
[20]	 https://pytorch.org/docs/stable/onnx.html 	
[21]	 https://www.khronos.org/api/nnef
[22]	 https://modelzoo.co/frameworks
[23]	 https://github.com/tensorflow/models/tree/master/official
[24]	 https://keras.io/api/applications/
[25]	 https://tfhub.dev/
image3.png
iduesey

image4.png
UE (Decoder side)
NN model(s) + NN updates

Content-related

Network
(Encoder side)

Video
decoder

Post-Processing
NN

metadata

Encoded
video

Video
encoder

Input video

source

image5.png
English Audio/Video| English Audio/Video Call
cal hinese Text over a new unidirectional channel
—
Ms

UE-A UE-B

image6.png
Al/ML Model composition

Al/ML
Subset

.

plit points Split AI/IlVIL model inference

[\

network Network Network

endpoint endpoint endpoint
UE UE UE

endpoint endpoint endpoint

a) b) o) d)

image7.png
a
=%
<

P
3
©
©
©
2
Q
£

image8.png
media data

image9.png
media data

intermediate data

image10.png
UE application

UE (Al enabled device)

data

A4

Data source
Input (e:6. camera)

Almodel
inference
engine

Inference
output
data

Almodel
delivery
function

Almodel
access.
function

5G System
5G System

Network

Network application

repository /

image11.wmf
U

E

U

E

D

a

t

a

D

e

s

t

i

n

a

t

i

o

n

U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

/

P

r

o

v

i

d

e

r

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

T

r

i

g

g

e

r

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

2

:

S

e

l

e

c

t

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

A

I

m

o

d

e

l

4

:

E

s

t

a

b

l

i

s

h

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

5

:

A

I

/

M

L

m

o

d

e

l

d

e

l

i

v

e

r

y

6

:

P

a

s

s

A

I

/

M

L

m

o

d

e

l

f

o

r

i

n

f

e

r

e

n

c

i

n

g

7

:

I

n

p

u

t

m

e

d

i

a

d

a

t

a

8

:

A

I

i

n

f

e

r

e

n

c

i

n

g

9

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject1.bin

image12.png
UE (Al enabled device)

UE application

Almodel
UE|aImodel
= access
function

Inference
output
data

inference
engine

Intermediate
data access
function

> Data destination
(e.g. media player)

5G System

5G System

Network

Network application

UE Almodel

Almodel subset(s]
dolvery 4 L0
function P

NetworkAl

model

Subsetts)
Intermediate Almodel
datdelvery 4——— inference
function engine

partialinference
output (intermediate
data)

Data source

(e.g. media
repository)

image13.png
Network

UE (Al enabled device)

Network application

UE application
UE Almodel
Almode Almodel | subsetls
UEAImodel le UE Almodel . Almod|
data access G delivery |« repositol
function function P
Network Al
: model
inference
g Intermediate e c subset(s
gine data delivery bl g Amodel |
function 2 | intermediatg| . Intermediate mode
ot & | deaccess P inference
Q Q function i
Partialinference output A 2 engine
Datasource | (intermediatedata)
(e.g. camera)
Inference - - ot
outputaccess ot e eyt [(inferenceresu]
function outputdata ny ence result)

image14.wmf
U

E

U

E

D

a

t

a

D

e

s

t

i

n

a

t

i

o

n

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

D

a

t

a

S

o

u

r

c

e

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

T

r

i

g

g

e

r

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

2

:

S

e

l

e

c

t

s

p

l

i

t

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

A

I

m

o

d

e

l

s

u

b

s

e

t

s

4

:

P

a

s

s

n

e

t

w

o

r

k

A

I

/

M

L

s

u

b

s

e

t

f

o

r

i

n

f

e

r

e

n

c

e

i

n

g

5

:

E

s

t

a

b

l

i

s

h

U

E

A

I

m

o

d

e

l

s

u

b

s

e

t

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

6

:

U

E

A

I

/

M

L

m

o

d

e

l

s

u

b

s

e

t

d

e

l

i

v

e

r

y

7

:

P

a

s

s

U

E

A

I

/

M

L

m

o

d

e

l

s

u

b

s

e

t

f

o

r

i

n

f

e

r

e

n

c

i

n

g

8

:

I

n

p

u

t

m

e

d

i

a

d

a

t

a

9

:

A

I

i

n

f

e

r

e

n

c

i

n

g

1

0

:

E

s

t

a

b

l

i

s

h

i

n

t

e

r

m

e

d

i

a

t

e

d

a

t

a

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

1

1

:

I

n

t

e

r

m

e

d

i

a

t

e

d

a

t

a

d

e

l

i

v

e

r

y

1

2

:

A

I

i

n

f

e

r

e

n

c

i

n

g

1

3

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject2.bin

image15.wmf
U

E

U

E

D

a

t

a

D

e

s

t

i

n

a

t

i

o

n

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

A

c

c

e

s

s

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

A

I

M

o

d

e

l

I

n

f

e

r

e

n

c

e

E

n

g

i

n

e

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

T

r

i

g

g

e

r

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

2

:

S

e

l

e

c

t

s

p

l

i

t

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

A

I

m

o

d

e

l

s

u

b

s

e

t

s

4

:

P

a

s

s

n

e

t

w

o

r

k

A

I

/

M

L

s

u

b

s

e

t

f

o

r

i

n

f

e

r

e

n

c

e

i

n

g

5

:

E

s

t

a

b

l

i

s

h

U

E

A

I

m

o

d

e

l

s

u

b

s

e

t

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

6

:

U

E

A

I

/

M

L

m

o

d

e

l

s

u

b

s

e

t

d

e

l

i

v

e

r

y

7

:

P

a

s

s

U

E

A

I

/

M

L

m

o

d

e

l

s

u

b

s

e

t

f

o

r

i

n

f

e

r

e

n

c

i

n

g

8

:

I

n

p

u

t

m

e

d

i

a

d

a

t

a

9

:

A

I

i

n

f

e

r

e

n

c

i

n

g

1

0

:

E

s

t

a

b

l

i

s

h

i

n

t

e

r

m

e

d

i

a

t

e

d

a

t

a

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

1

1

:

I

n

t

e

r

m

e

d

i

a

t

e

d

a

t

a

d

e

l

i

v

e

r

y

1

2

:

A

I

i

n

f

e

r

e

n

c

i

n

g

1

3

:

I

n

f

e

r

e

n

c

e

o

u

t

p

u

t

r

e

s

u

l

t

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject3.bin

image16.png
Modeltopology
& global updates
(e.g.weights) etc

UE (Al enabled device) Network

ork application

UE application

| Aimodel |
UE|aImodel Almodel
- access - delivery
function function
m 5 5
Altraining H Z
engine & & Federated
g 9 learning
engine
Training Trainigresuts Trainin Pa
results deliveryfuncton resultedata trainedmodel
Almodel
repository

Other UEs

image17.wmf
U

E

D

a

t

a

S

o

u

r

c

e

U

E

A

p

p

l

i

c

a

t

i

o

n

A

I

M

o

d

e

l

T

r

a

i

n

i

n

g

E

n

g

i

n

e

T

r

a

i

n

i

n

g

R

e

s

u

l

t

s

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

A

c

c

e

s

s

F

u

n

c

t

i

o

n

N

e

t

w

o

r

k

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

F

u

n

c

t

i

o

n

A

I

M

o

d

e

l

R

e

p

o

s

i

t

o

r

y

F

e

d

e

r

a

t

e

d

L

e

a

r

n

i

n

g

E

n

g

i

n

e

N

e

t

w

o

r

k

A

p

p

l

i

c

a

t

i

o

n

I

n

i

t

i

a

l

i

s

a

t

i

o

n

&

e

s

t

a

b

l

i

s

h

m

e

n

t

1

:

T

r

i

g

g

e

r

d

i

s

t

r

i

b

u

t

e

d

l

e

a

r

n

i

n

g

2

:

S

e

l

e

c

t

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

3

:

I

d

e

n

t

i

f

y

s

e

l

e

c

t

e

d

p

a

r

t

i

a

l

l

y

t

r

a

i

n

e

d

A

I

m

o

d

e

l

4

:

E

s

t

a

b

l

i

s

h

U

E

A

I

m

o

d

e

l

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

5

:

A

I

/

M

L

m

o

d

e

l

d

e

l

i

v

e

r

y

6

:

P

a

s

s

U

E

A

I

/

M

L

m

o

d

e

l

f

o

r

t

r

a

i

n

i

n

g

7

:

T

r

a

i

n

i

n

g

i

n

p

u

t

d

a

t

a

8

:

A

I

t

r

a

i

n

i

n

g

9

:

E

s

t

a

b

l

i

s

h

t

r

a

i

n

i

n

g

d

a

t

a

d

e

l

i

v

e

r

y

s

e

s

s

i

o

n

1

0

:

T

r

a

i

n

i

n

g

r

e

s

u

l

t

s

d

a

t

a

d

e

l

i

v

e

r

y

1

1

:

T

r

a

i

n

i

n

g

a

g

g

r

e

g

a

t

i

o

n

a

n

d

m

o

d

e

l

u

p

d

a

t

e

1

2

:

U

p

d

a

t

e

d

m

o

d

e

l

f

o

r

d

e

l

i

v

e

r

y

(

l

o

o

p

t

o

s

t

e

p

5

)

h

t

t

p

:

/

/

m

s

c

-

g

e

n

e

r

a

t

o

r

.

s

o

u

r

c

e

f

o

r

g

e

.

n

e

t

v

7

.

2

oleObject4.bin

image18.emf
DN

UE

5GAI client

AI Data Handler

AI Data Session

Handler

AI Inference

Engine

AI Data

Access/Delivery

5GAI-Aware Application

5GAI Application

Provider

5GAI AF

AI Capability

Manager

5GAI AS

PCF

NEF

5GAI

External

5GMS Scope

5GS Scope

Out of scope

5GS

AI Inference

Engine

AI capability

manager

Metrics collection

&reporting

Network assistance

an QoS

Core Function

Data

encoding/

decoding

AI Data

Access/Delivery

5GMS

Data

encoding/

decoding

Microsoft_Visio_Drawing.vsdx
DN
UE
5GAI client
AI Data Handler
AI Data Session Handler
AI Inference Engine
AI Data
Access/Delivery
5GAI-Aware Application
5GAI Application Provider
5GAI AF
AI Capability Manager
5GAI AS
PCF
NEF
5GAI
External
5GMS Scope
5GS Scope
Out of scope
5GS
AI Inference Engine
AI capability manager
Metrics collection &reporting
Network assistance an QoS
Core Function
Data encoding/decoding
AI Data
Access/Delivery
5GMS
Data encoding/decoding

image19.wmf
5

G

A

I

-

A

w

a

r

e

A

p

p

l

i

c

a

t

i

o

n

5

G

A

I

C

l

i

e

n

t

A

I

D

a

t

a

S

e

s

s

i

o

n

H

a

n

d

l

e

r

A

I

D

a

t

a

H

a

n

d

l

e

r

5

G

A

I

A

F

5

G

A

I

A

S

5

G

A

I

A

p

p

l

i

c

a

t

i

o

n

P

r

o

v

i

d

e

r

1

:

5

G

A

I

p

r

o

v

i

s

i

o

n

i

n

g

2

:

S

e

r

v

i

c

e

A

c

c

e

s

s

I

n

f

o

r

m

a

t

i

o

n

a

c

q

u

i

s

i

t

i

o

n

3

:

A

I

m

e

d

i

a

c

a

p

a

b

i

l

i

t

i

e

s

a

n

d

f

u

n

c

t

i

o

n

s

d

i

s

c

o

v

e

r

y

C

a

p

a

b

i

l

i

t

y

d

i

s

c

o

v

e

r

y

4

:

R

e

q

u

e

s

t

A

I

s

p

l

i

t

i

n

f

e

r

e

n

c

e

5

:

N

e

g

o

t

i

a

t

e

s

p

l

i

t

t

i

n

g

t

h

e

A

I

i

n

f

e

r

e

n

c

e

p

r

o

c

e

s

s

N

e

g

o

t

i

a

t

i

o

n

6

:

A

c

k

n

o

w

l

e

d

g

e

t

h

e

s

p

l

i

t

a

n

d

p

r

o

v

i

d

i

n

g

A

I

d

a

t

a

a

c

c

e

s

s

i

n

f

o

7

:

A

c

k

n

o

w

l

e

d

g

e

t

h

e

s

p

l

i

t

c

o

n

f

i

g

u

r

a

t

i

o

n

8

:

R

e

q

u

e

s

t

s

t

a

r

t

i

n

g

A

I

d

a

t

a

d

e

l

i

v

e

r

y

9

:

R

e

q

u

e

s

t

s

t

a

r

t

i

n

g

A

I

d

a

t

a

d

e

l

i

v

e

r

y

5

G

M

S

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

o

r

o

t

h

e

r

d

e

f

i

n

e

d

d

a

t

a

p

i

p

e

l

i

n

e

s

1

0

:

U

E

A

I

M

o

d

e

l

D

e

l

i

v

e

r

y

P

i

p

e

l

i

n

e

s

1

1

:

C

r

e

a

t

e

a

n

d

i

n

i

t

i

a

l

i

z

e

U

E

A

I

i

n

f

e

r

e

n

c

e

r

u

n

t

i

m

e

1

2

:

C

r

e

a

t

e

a

n

d

i

n

i

t

i

a

l

i

z

e

n

e

t

w

o

r

k

A

I

i

n

f

e

r

e

n

c

e

r

u

n

t

i

m

e

5

G

M

S

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

o

r

o

t

h

e

r

d

e

f

i

n

e

d

d

a

t

a

p

i

p

e

l

i

n

e

s

1

3

:

I

n

t

e

r

m

e

d

i

a

t

e

D

a

t

a

D

e

l

i

v

e

r

y

P

i

p

e

l

i

n

e

s

S

p

l

i

t

i

n

f

e

r

e

n

c

e

b

e

t

w

e

e

n

t

h

e

U

E

a

n

d

t

h

e

n

e

t

w

o

r

k

1

4

:

S

p

l

i

t

i

n

f

e

r

e

n

c

e

p

r

o

c

e

s

s

i

n

g

S

p

l

i

t

A

I

D

a

t

a

S

e

s

s

i

o

n

1

5

:

U

E

A

I

s

t

a

t

u

s

r

e

p

o

r

t

i

n

g

1

6

:

N

e

t

w

o

r

k

A

I

s

t

a

t

u

s

r

e

p

o

r

t

i

n

g

1

7

:

N

e

t

w

o

r

k

s

t

a

t

u

s

/

n

e

t

w

o

r

k

A

I

s

t

a

t

u

s

r

e

p

o

r

t

1

8

:

M

e

d

i

a

s

t

a

t

u

s

r

e

p

o

r

t

1

9

:

U

p

d

a

t

e

s

p

l

i

t

c

o

n

f

i

g

u

r

a

t

i

o

n

&

m

o

d

e

l

d

e

l

i

v

e

r

y

p

i

p

e

l

i

n

e

s

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

7

.

3

.

1

oleObject5.bin

image20.png
identity._.

image21.png
Original Neural Network

Pre-processing/
Parameter Reduction

b

Sparsification Qllapkizaton

Pruning . Entropy Coding
Local Scaling ‘ Uniform
LR-Decomposition ™7 Codebook . Binarization
Unification —>
Dependent Context Modeling

Batchnorm Folding
Arithmetic Coding

=% NN Data «!" NNR Units

NNR Bitstream

image22.png
Al Model Efficiency Toolkit
(AIMET)

Compression

Quantization

image23.png
Test Transmit

Anchor
Anchor Dataset compressed Model
Model video Network
device
Inference

Inference

1§

Evaluation

¥

image24.emf
Tail Node

Head Node

Anchor

Model

(UE Device)

Model Split

configuration

Split

Model

Part 1

Split

Model

Part 2

Metrics Logs/Computation

Test Metrics

Test Bitstream

(Intermediate

Data)

Test Dataset Pre-processor

AI Framework

/

Library

Test Dataset

Test Encoder Test Decoder

Test Network

Inference

Output

Processor

Inference Output

Processor

Network

configuration

Anchor

Model

(Network)

Test Network

Inference Output

Processor

Microsoft_Visio_Drawing1.vsdx
Tail Node
Head Node
Anchor
Model
(UE Device)
Model Split configuration
Split Model Part 1
Split Model Part 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Encoder
Test Decoder
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(Network)
Test Network
Inference Output Processor

image25.emf
Anchor

Model

Test Encoder

Test Bitstream

(Compressed

Model)

Test Decoder Test Model

Test

Configuration

Metrics Logs & Computation

Test Metrics

Test Dataset Pre-processor

Inference Output

Processor

Inference Output

Processor

Test Dataset

Test Network

AI Framework / Library

Microsoft_Visio_Drawing2.vsdx
Anchor
Model
Test Encoder
Test Bitstream (Compressed Model)
Test Decoder
Test Model
Test Configuration
Metrics Logs & Computation
Test Metrics
Test Dataset Pre-processor
Inference Output Processor
Inference Output Processor
Test Dataset
Test Network
AI Framework / Library

image26.png
Percentage

Fraction of Papers Using PyTorch vs. TensorFlow

100%

75%

50%

25%

TensorFlow

0%
2017 2018

2019

Year

2020

2021

image27.png
—

Decoder
ASR Model Encoder Bitstream j‘} (optional)

.~ 7

Reconstructed
ASR Model

image28.png
Speech Reconstructed Vector Label j‘> Predicted
Sequence ASR Model Sequence Selector Transcript

image29.png
wer [%)]

WAV2VEC2_ASR_BASE_960H;

test-clean; sizeRef = 3020Mbit
T T T

I

cSize [%)] ;
werRe;

image30.emf
High-capability device

Low-capability device

Anchor

Model

(Low Capa

Device)

Model Split

configuration

Test Split

Model 1

Test Split

Model 2

Metrics Logs/Computation

Test Metrics

Test Bitstream

(Intermediate

Data)

Test Dataset Pre-processor

AI Framework

/

Library

Test Dataset

Test Network

Inference

Output

Processor

Inference Output

Processor

Network

configuration

Anchor

Model

(High Capa

Device)

Test Network

Inference Output

Processor

Microsoft_Visio_Drawing3.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor

image31.emf
Video

Neural
Network Task
(part 1)

FC-VCM Encoder

Feature
Encoding

Bit-stream

FC-VCM Decoder

Feature

Decoding

Reconstructed
features

A

Neural
Network Task
(part 2)

FC-VCM Encoder FC-VCM Decoder

Feature

Encoding

Neural

Network Task

(part 1)

Feature

Decoding

Neural

Network Task

(part 2)

Video

Bit-stream

Reconstructed

features

image32.png
50

0

o

&

50

mAP (%)

o

0

2

10

02

mAP (%) vs BPP

—— e
—e—Festure anchor
—o—Video/Image anchor
—e—response

0s 06 08 1 12 14 16

8PP

image33.png
50

0

o

&

50

mAP (%)

o

0

2

10

02

mAP (%) vs BPP

0s

06

08 1
8PP

12

—e—Festure anchor
—o—Video/Image anchor

—e—response

14 16

image34.png
50

s

w0

3s

0

MAP (%)

2

15

10

1000

2000

mAP (%) vs Kbps

s000

5000

7000

000

000

—e—Festure anchor
—o—Video/Image anchor

—e—rResponse.

image35.png
MOTA (%)

MOTA (%) vs Kbps

&

50 o

w0

2

10

o 1000 2000 3000 000 sw00
Kbps.

—e—Festure anchor
—o—Video/Image anchor

—e—rResponse.

5000 7000

image36.png
MOTA (%)

3s

0

2

2

15

10

2000

000

MOTA (%) vs Kbps

—e—Festure anchor
—o—Video/Image anchor

—e—response

&0 000 10000 12000
Kbps

image1.emf
Video

Neural
Network Task
(part 1)

FC-VCM Encoder

Feature
Encoding

Bit-stream

FC-VCM Decoder

Feature

Decoding

Reconstructed
features

A

Neural
Network Task
(part 2)

FC-VCM Encoder FC-VCM Decoder

Feature

Encoding

Neural

Network Task

(part 1)

Feature

Decoding

Neural

Network Task

(part 2)

Video

Bit-stream

Reconstructed

features

image2.png
5G Cloud

32-bit EfficientNet 16-bit EfficientNet 32-bit update

Subtract(: i) —)

J 09

t t+m t+m+n

