

3GPP TSG SA WG4#125	S4-231329
Goteborg, Sweden, 21st – 25th of August 2023
[bookmark: _Hlk126577385][bookmark: _Toc504713888]Source: 	 Interdigital Finland Oy
Title: 	[FS_AI4Media] Split inferencing scenario for hand gesture recognition
Agenda item: 	9.7
Document for:	Discussion and Agreement

1 Discussion

This contribution proposes a split inferencing scenario for the AI/ML evaluation framework in FS_AI4Media.
2 Proposed changes

--- Begin change --
10.X	Split inferencing for hand gesture recognition
10.X.1	Motivation and use case relevance.
Many fields and applications using artificial intelligence need to track and recognize hand gestures to trigger user’s control actions, such as applications based on XR technologies.
For example, an XR application running on AR glasses consists of placing virtual objects in a real physical environment. The detection and recognition of a hand gesture identifies the user's control actions over virtual objects, such as creating, deleting, selecting one or more virtual objects, and placing it within the scene. A field of application is a remote visual assistance where a remote expert guides a person through a physical task by recognizing hand gestures.
AR glasses usually have limited capabilities in term of processing power and battery to run one or several applications requiring high computing power. Offloading a part of an AIML inference from the AR glasses to the network (e.g., Edge) can help reducing the consumption of the resources of the limited device. Besides, an AI/ML service for XR starts with the capture of video content that may contain private real-life scene including that of the user, which should not be directly transmitted for privacy reason. XR application can include a split function service to offload part of XR functions to the Edge such as rendering and scene management. This could be the case for split inferencing as well.
The above points highlight the value of providing split inferencing for recognizing hand gesture.
This scenario falls under the use case of Object Recognition in Image and Video, with further details of the related use case in clause 4.1.1.1 of the technical report permanent document.
10.X.2	Description of the scenario
We emulate this scenario by applying models from the ResNet family to recognize a set of hand gestures, trained from a selected publicly available dataset. The scenario topology is similar to Figure 5.1.1.1-1 where a device with limited capabilities (e.g., AR glasses) captures the video data source including hand gestures, then runs the head part of the model (M0), sends the intermediate data directly or through the proxy device (UE) to a network device running the edge service and the tail part (M1) of the model. The result of the model feeds the XR functions running on the edge device or sent back to the device.
The scenario considers the splitting of one or several ResNet models at different layers to measure the performances and data characteristics of split inferencing between two nodes. Split configurations may include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression) as well as serialization/deserialization functions.
The anchor/baseline of the scenario includes the full model running on the device, the full model running in the network and a split configuration such that most of the computations take place in the network leaving the limited device with a small part of the model to meet privacy preserving requirements The baseline includes a round-trip communication between the device and the network, even when the full model is executed in the device, as the resulting hand gesture action may need to be processed in the network.
We evaluate the delivery of the intermediate data characteristics/metrics for different split points with respect to different device capabilities. We may consider different ResNet models and other similar models (ResNeXt for example) to evaluate the impact on characteristics/metrics of processing more or fewer layers and parameters to achieve better results. Delivery latencies will be estimated from the output data size and the different bandwidths of the 5G network.
We provide a test data set, either an excerpt of a public data set comprising a selected set of hand gestures or our own test dataset.
10.X.3	Supporting companies and 3GPP members
· Interdigital.
10.X.4	Anchor AI/ML DNN model(s) for the scenario
We evaluate one or several DNN models belonging to the table below:
	Model
	Size (MB)
	F1 score
	No. of parameters

	Resnet18
	45 MB
	93.51
	11 million

	Resnet152
	230 MB
	94.49
	60 million

	Resnext50 _32x4d

	96 MB
	95.20
	25 million

	Resnext101 32x8d

	339.59
	95.67
	89 million

Table 10.X.4-1: Anchor model(s) for the scenario
The numbers in the names of a ResNet or a ResNeXt model represent the total number of convolutional layers in each of the architectures (e.g., resnet18 includes 18 convolution layers)
The evaluated models above are inferred using the PyTorch framework [1] [2].
10.X.5	Testbed architecture and anchors
The testbed architecture for this scenario is based on that from clause 7.4.1.

Figure 10.X.5-1 Testbed architecture for the scenario

The split configurations for the scenario are compared to three anchors:
1. Where the anchor model is fully inferenced on the device.
2. Where the anchor model is fully inferred on the network.
3. Where the anchor model is split between the device and the network for at least the first layers of the model to meet the privacy requirements as described in 10.X.1.
The anchor model used is shown in Table 10.X.4-1.
Test network latencies are not considered to ensure scenario reproducibility.
Multiple model split configurations are considered as described in clause 10.2.6.
10.X.6	Test configuration factors, constraints, and settings
Each ResNet model listed above is composed of 8 different aggregated layers resulting in 8 different possible split points where we can compare the results from each model. Additional specific split points may be considered as well.
Split configurations can include different computational capabilities (CPU/GPU), encoding/decoding functions (optimization and/or compression/decompression), as well as serialization/deserialization functions.

.
Figure 10.X.6-1 Testbed configuration

10.X.7 Feasibility/performance evaluation metrics and requirements
We evaluate the performances according to the following metrics for each split point configuration: inference latency, output data size, resulting accuracy. The evaluation may include the impact of encoding/decoding functions and/or serialization/deserialization functions on the measured metrics. The delivery latency is estimated from the output data size according to the different bandwidths of the 5G network.
10.X.8	Test dataset(s) and scripts for the scenario
For the evaluation of this split scenario, we use Hagrid dataset (HAnd Gesture Recognition Image Dataset) [3] which provides ResNet-based trained models based on the recognition of 18 classes of gestures. Hagrid provides pre-trained models for several candidate model architectures for testing.
· Resnet18: https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet18FF.pth
· Resnet152: https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNet152FF.pth
· Resnext50: https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext50FF.pth
· Resnext101: https://n-usr-2uzac.s3pd12.sbercloud.ru/b-usr-2uzac-mv4/models/ResNext101FF.pth
The terms of license are available at: https://github.com/hukenovs/hagrid/blob/master/license/en_us.pdf
Test dataset and scripts to be provided at an ad-hoc meeting in October.
10.X.9	Detailed test conditions
TBD.
10.X.10	Interoperability considerations for the scenario
None.
10.X.11	External performance data
None.
10.X.12	Expected time plan for the scenario completion
Test datasets, scripts and first results in SA4 # 126, November, 2023
10.X.13	Additional information
None.
10.X.14	References for the scenario
[1] Pytorch ResNet https://pytorch.org/vision/main/models/resnet.html
[2] Pytorch ResNeXt https://pytorch.org/vision/main/models/resnext.html
[3] Hagrid https://github.com/hukenovs/hagrid/tree/master
--- Begin change --
3 Proposal

We propose to include the scenario in section 10 of the AIML Evaluation permanent agreed (S4aV230045 tdoc) at a July telco.

image1.emf
High-capability device

Low-capability device

Anchor

Model

(Low Capa

Device)

Model Split

configuration

Test Split

Model 1

Test Split

Model 2

Metrics Logs/Computation

Test Metrics

Test Bitstream

(Intermediate

Data)

Test Dataset Pre-processor

AI Framework

/

Library

Test Dataset

Test Network

Inference

Output

Processor

Inference Output

Processor

Network

configuration

Anchor

Model

(High Capa

Device)

Test Network

Inference Output

Processor

Microsoft_Visio_Drawing.vsdx
High-capability device
Low-capability device
Anchor
Model
(Low Capa Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(High Capa Device)
Test Network
Inference Output Processor

image2.emf
Head

Inference

Delivery

estimation

Tail

Inference

Optimization/

Compression

Serialization Deserialization Decompression

Microsoft_Visio_Drawing1.vsdx
Head Inference
Delivery estimation
Tail Inference
Optimization/Compression
Serialization
Deserialization
Decompression

