

[bookmark: _Hlk54879034]3GPP TSG SA WG4 124 Meeting 	S4-231006
22-26 May 2023, Berlin

Source:	Nokia Corporation
Title:	[FS_AI4Media] Scenario for transmission and deployment of models in bit-incremental manner
Document for:	Agreement
Agenda item:	9.7

1 Introduction
Transmission and deployment of AI/ML model data over 5G system has been identified as key operations for AI/ML related services in TR 22.874. Based on this document, one objective of the feasibility study on AI/ML for media is to investigate potential approaches for efficient transfer of AI/ML models from server to UEs and vice versa and also efficient deployment of these models at UEs. For this purpose, we propose a new approach for efficient transfer and minimum latency deployment of AI/ML models to UEs.
2 Proposed scenario
Scenario name
Bit-incremental transmission and deployment of AI/ML models
Motivation and use case relevance
In many AI/ML mobile applications, end devices require very low latency to execute the model. End devices also have low bandwidth for model communication. Even the bandwidth from the server is limited. On the other hand, AI/ML models in many applications are very large in size and slow to transfer requiring a high amount of bandwidth. For example, consider the “object recognition in image and video” usecase considered in Clause 4.1 of the PD. State-of-the-art models for real-time object recognition such as YOLO family of models or EfficientNet combined with EfficientDet, depending on the variant, may have 50-100M parameters. Transformer models are very successful models adopted in speech applications and their size can vary from several to hundreds of gigabytes depending on the specific architecture, model depth, and parameters used. Such models require a huge amount of bandwidth for transfer and high execution latency is expected in the UE.

Given these limitations, compression of AI/ML model data for distribution over 5G and splitting AI/ML model operation between endpoints are considered as two key operations for AI/ML related services. In an example scenario, assume that the server has access to different precisions of a model, e.g., a 32-bit floating-point precision of EfficientNet and a 16-bit precision of the same model for object recognition task. When requested by the UE, instead of delivering the AI/ML model in full precision, e.g., 32-bit precision, the server first sends the reduced precision, e.g., the 16-bit precision model. This version of the model is smaller in size and can be transferred faster. The UE starts running the model for the task at hand upon receiving this lower-bit precision model. This reduces the latency of receiving and executing the model by the UE.

Deploying a reduced precision model may negatively affect the task performance in the UE, e.g., object recognition using EfficientNet. To mitigate this, after the lower-bit version of the model is received by the UE, the server sends a model update to the UE. This model update is the difference between the full precision version of the model, e.g., the 32-bit version EfficientNet, and the lower-bit version of the model, e.g., the 16-bit version of the EfficientNet, as the base model. The update could be compressed using compression techniques and packages introduced in the PD. The two models, i.e., the smaller model and the update, are sent sequentially.

A caching mechanism is used when a full precision model update is received, allowing to load the updated model at once (i.e., all the nodes are updated and loaded afterwards). When mixed precision operation is allowed, the update model could be loaded incrementally, that is, for some nodes an update could apply where the implementation could involve a caching mechanism for applying an update to a subset of nodes that could be loaded into the memory after being updated. The cache could be temporarily created and released after the operations. It is expected that this type of operation allows having a working model deployed sooner which reduces the time for delivery to execution and having some results, i.e., the latency is expected to be reduced. It is expected that deploying an update does not break the continuity of process since the load operation happens in a fraction of a second. In critical tasks a buffer mechanism for inputs could be used to avoid disruption to the process continuity. Nonetheless, such a buffer may not be necessary in many use cases, e.g., in video processing missing one or two frames does not influence the video analytics significantly rather ability to start the task sooner with less latency may be more critical.
However, this procedure may negatively affect the performance of the model in the task in the UE, e.g., object recognition using EfficientNet. To mitigate this, after the lower-bit version of the model is received by the UE, the server sends a model update to the UE. This model update is the difference between the full precision version of the model, e.g., the 32-bit version EfficientNet, and the lower-bit version of the model, e.g., the 16-bit version of the EfficientNet, as the base model. The update could be compressed using compression techniques and packages introduced in Clause 7.2. The two models, i.e., the smaller model and the update, are sent sequentially.

When compression is applied before transmission, it is expected that the total data size of the reduced precision model and model update will be smaller than the full precision model or compressed full precision model, since the model update is of sparse nature and thus more compressible. The bit-rate saving could be further studied using the evaluation framework.

The bit-incremental deployment allows running an operational lower-bit precision model until a higher-bit precision model is constructed using the rest of the lower-bit precision of the model which is communicated from the server to the UE as an update.

[image: A diagram of a cloud

Description automatically generated with medium confidence]

[image:]
Figure 1: graphical representation of bit-incremental AI/ML model transfer and adoption

3 Proposal
We propose to add the above-described scenario to Clause 4 of the PD and work on it using the evaluation framework.

image1.png
5G Cloud

32-bit EfficientNet 16-bit EfficientNet 32-bit update

Subtract(: i) —)

J 09

t t+m t+m+n

image2.png
5G Cloud

32-bit EfficientNet 16-bit EfficientNet 16-bit update

Subtract(i

iliiiliv) i

100

t t+m t+m+n

