3GPP TSG-SA WG4 Meeting #124	S4-230905
Berlin, Germany, 22 – 26 May 2023
Source:	Fraunhofer Heinrich Hertz Institute (HHI), Nokia Corporation
Title:	[FS_AI4Media] Software for the Evaluation Framework
[bookmark: _GoBack]Agenda item:	9.7
Document for:	Discussion and Agreement

1 Introduction
At the Video SWG post 123 online meeting, we proposed a first scenario for the evaluation framework for AI/ML in S4aV230020, which included python code implementing an initial evaluation pipeline for this scenario (i.e., evaluation of the anchor/tested model and compression with a dummy-method). In this document, we present an improved version of this software. Key feature of the software is that it allows to add new scenarios and compression methods in a modular way. For this purpose, it defines an interface that new scenarios and compression methods need to implement.

We propose to discuss the software and to consider it as starting point for further extensions, maybe also including also split inference. Furthermore, we offer to host the software (excluding any test data, model data, potential docker images, or other external software packages/libraries) in a public GIT repository. The text in clause 2 might be shipped together with software as manual, or be added to the PD. The software is currently available at https://vcgit.hhi.fraunhofer.de/tech/ai4media and attached to this document.
Software description
Main evaluation process
Figure 2.1-1 shows the evaluation process schematically in simplified pseudo-code. First, the process instantiates a scenario object and a coder object. Then, the process obtains the anchor model from the scenario object. It derives the size of the anchor model and uses the scenario object to derive the anchor model’s performance. Subsequently, the coder object encodes the anchor model to a bitstream and decodes the bitstream to obtain the reconstructed model. Finally, the process derives the size of the bitstream, uses the scenario object to derive the reconstructed model’s performance and writes the results to a file as comma separated values (csv).

 scenario = scenario_factory.get(cfg)
 coder = coder_factory.get(cfg, scenario)

 anc_model = scenario.get_model()

 results["anc_size"] = get_size(anc_model)
 results["anc_perf"] = scenario.get_performance(anc_model)

 bit_stream = coder.encode(anc_model)
 rec_model = coder.decode(bit_stream)

 results["rec_size"] = get_size(bit_stream)
 results["rec_perf"] = scenario.get_performance(rec_model)

 write_to_csv(results)

[bookmark: _Ref134157799]Figure 2.1-1: The main evaluation process (simplified pseudo-code)

Configuration
The process can be configured as shown in Table 2.2-1. Marks C, S, and R in the last column indicate that the parameters are directly forwarded to the coder object, the scenario object, and the result csv-file, respectively.

	Parameter name
	Description
	Forward

	coder_name
	Name of the compression method
	C,R

	scenario_name
	Name of the scenario
	S,R

	data_set_name
	Name of the dataset
	S,R

	model_name
	Name of the model (valid values depend on the scenario)
	S,R

	enc_cfg_file_name
	Name of a config-file for the compression method
	C

	unique_tag
	Unique tag added to output file-names
	C,R

	out_dir
	Directory to store the csv-file the bitstreams and other output data to
	

	data_dir
	Directory to model data and datasets
	S

	batch_size
	Evaluation batch size (currently ignored)
	S

	workers
	Number of workers for the data loader
	S

	disable_progress_bar
	Disable progress bar
	C, S

	eval_compression
	Compress and evaluate reconstructed model
	R

	eval_anchor
	Evaluate anchor model
	R

	download_only
	Only download models and datasets
	

[bookmark: _Ref134157465]Table 2.2-1: Configuration parameters
Result csv-file
Table 2.3-1 shows the results that are written to the result csv-file. Additionally, the configuration parameters marked with R in Table 2.2-1 are added.

	Name
	Description
	Unit

	anc_size
	Size of the anchor model
	byte

	rec_size
	Size of the bitstream
	byte

	compress_ratio
	rec_size / anc_size
	-

	metric_name
	Name of the metric
	-

	anc_perf
	Performance of anchor model
	Unit of metric_name

	rec_perf
	Performance of reconstructed model
	Unit of metric_name

	anc_eval_time
	Evaluation time for anchor model
	seconds

	rec_eval_time
	Evaluation time for reconstructed model
	seconds

	enc_time
	Encoding time
	seconds

	dec_time
	Decoding time
	seconds

[bookmark: _Ref135006258]Table 2.3-1: Results written to the csv-file

Scenario module interface
The software framework allows to add new scenarios in a modular way. New scenarios must be provided as package containing a python class having the interface shown in Figure 2.4-1. The parameters marked with S in Table 2.2-1 are forwarded to the init function of the Scenario class within the opts variable.

class Scenario():
 def __init__(self, opts):
 self.metric_name = "MetricOfScenario"
 # Input:
 # - opts: an object with members defining the scenario configuration
 # Should:
 # - define self.metric_name as string denoting the performance metric of
 # the scenario, which will be forwarded to the result csv-file
 # - init object from opts

 def get_model(self, pre_trained):
 # Input:
 # - pre_trained a boolean indicating whether to provide the pre-trained model
 # Should download model data and datasets, when not already done
 # Output:
 # - If pre_trained is true, model should be a pre-trained model,
 # Otherwise, model should be an un-initialized model
 return model

 def download_data_and_models(self):
 # Should download model data and datasets, when not already done

 def get_perf(self, model, partition, enforce_higher_is_better=False):
 # Inputs:
 # - model: the model to get the performance for
 # - partition: the partition of the dataset used for evaluation:
 # - "test" The test partition for final performance measurement should be used
 # - "valid" The validation partition for data-driven methods should be used
 # - enforce_higher_is_better: if true perf should be increasing with increasing
 # model performance
 # Outputs:
 # - perf: the performance
 # - infer_time: the inference plus measurement time
 return perf, infer_time

[bookmark: _Ref135006611]Figure 2.4-1: Interface required to be implement for new scenarios

Compression module interface
The software framework allows to add new compression methods in a modular way. New compression methods must be provided as package containing a python class having the interface shown in Figure 2.5-1. The parameters marked with C in Table 2.2-1 are forwarded to the init function of the Coder class within the opts variable.
class Coder():
 def __init__(self, opts):
 self.__opts = opts
 # Inputs:
 # - opts: an object with members defining the coder configuration:
 # - opts.file_names["bit"]: the bitstream filename
 # - opts.file_names["dec"]: the decoded model filename
 # - opts.scenario: the scenario object
 # Should init the coder object from the opts object

 def encode(self, model):
 # Inputs:
 # - model: the model to encode
 # Should:
 # - Encode the state_dict() of model to the file given in
 # self.__opts.file_names["bit"]

 def decode(self, rec_model):
 # Inputs:
 # - rec_model: the model to write the reconstructed parameters to
 # Should:
 # - decode the bitstream file given in self.__opts.file_names["bit"]
 # - store the decoded parameters in the state_dict of rec_model

[bookmark: _Ref135006862]Figure 2.5-1: Interface required to be implemented for new compression methods
Encoder-only optimization methods might use the encode function to write optimized model parameters in a raw-byte format to the bitstream the decode function to read them back to rec_model.

Currently implemented scenarios and compression methods

	Type
	Name
	Description

	Scenario
	asr
	Automatic speech recognition.
Available models: wav2vec_asr_base_960h and hubert_asr_large

	Coder
	dummy
	Dummy methods. Writes parameters as unmodified 32-bit floating point values.
Copies the anchor model to the reconstructed model.

Table 2.6-1: Implemented scenarios and compression methods
Software repository
The software is currently available in the git-repository at https://vcgit.hhi.fraunhofer.de/tech/ai4media.

