3GPP TSG SA WG4 Video SWG post 123e 124 S4-230828 revision of
Berlin, Germany, S4aV230021
922th – 26th May, 2023	S4aV230021

Source:	Samsung Electronics Co., Ltd, Interdigital Finland Oy, Fraunhofer HHI
Title:		[FS_AI4Media] Testbed architectures
[bookmark: _GoBack]Agenda Item:	9.73.6
Document for:	Agreement
1 Introduction
This contribution proposes a merge of the testbed architectures for the AI/ML evaluation framework as present in v0.7 of the permanent document.
2 Changes
7.4.1	Split inference intermediate data testbed architecture
Editor’s note: different figures to be merged, with descriptions based on present text.
The figures below show an example testbed architecture for split inference related scenarios:

[image:]

An testbed architecture for the evaluation of split inference intermediate data is represented in the figure above. The anchor model is split into two test split model 1 and 2, The model inference is split betweeneach existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios to defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Depending on the scenario, Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.
The testbed architecture includes the following main functional blocks:

· Anchor untrained model architecture(optional): A model to be trained with reference training data.
· Anchor training data(optional): Input data set and training parameters used to build a new reference trained model.
· Anchor model (pre-trained): A pre-trained model with a documented architecture with and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model. The model optimization (e.g., quantization) or compression is part of the reference trained model.
· Reference AI framework/library: For The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.
· Split points mModel split configuration: The cConfiguration of selected split points for the anchor model which are to be evaluatedfor the set of models to evaluate. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 7.2.
· Local inferencing: Where the Aanchor model fully runs on the local node.
· Remote inferencing: Where the Aanchor model fully runs on the remote node.
· Split configurationinferencing: Where an aAnchor model is split into two parts, each run runs on the a local and a the remote nodes respectively.
· .
· Selected Split points to evaluate.
· Input/output dataTest dataset: Depends on the configuration and the use-case as introduced in clause 4.6 Deployment options,Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation.
· input data: input data, for example a reference picture or video sequence, may can originate from
· local node: emulating an end-device captured media data.
· Remote node: emulating network ingest media data.
· output data: Results data, reference picture or video sequence
· Inference nodesTest split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: The local inference nodeTypically emulatinges an end-device such us as a UE.
· Remote inference node: The local inference node Typically emulatinges a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.	Comment by Stephane Onno: Add serialization
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test Data Delivery/Accessnetwork: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.. This may include selection of different means for delivery and access of intermediate data:
· Data encoding/decoding: This includes for example serialization/deserialization, optimization, compression/decompression.
· Uplink/Downlink communications: The scenarios involve both uplink and downlink communications. The evaluation can consider different protocols to be used in the uplink and downlink, as well as real-world emulation constraints (downlink bandwidth vs. uplink bandwidth).
·

7.4.2	Model data testbed architecture
The figure below shows an example testbed architecture for AI/ML model data related scenarios:

A testbed architecture for the evaluation of model data compression is represented in the figure above. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.
The testbed architecture includes the following main functional blocks:

· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model.
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.
Derivation of test metrics for scenarios related to AI/Ml model data compression
Editor’s note: need to add description of functional blocks matching figure.

3 Proposal
We propose to include the changes in clause 2 of this contribution into the next version of the PD.

image1.emf
ReferenceModelModel SplitterSplit ConfigurationTest Split Model 1Test Split Model 2Metrics ComputationTest MetricsTest Bitstream(Intermediate Data)Reference Data SetData Set Pre-processorInference Output ProcessorInference Output Processor

Microsoft_Visio_Drawing.vsdx
Reference Model
Model Splitter
Split Configuration
Test Split Model 1
Test Split Model 2
Metrics Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Reference Data Set
Data Set Pre-processor
Inference Output Processor
Inference Output Processor

image2.png

image3.emf
Local inference node Remote Inference nodeAnchor Model (pre-trained)Input/output data Anchor training dataSplit points model configurationMetrics computationNetwork LinksReference framework/libraryMetrics computationData Delivery/AccessData Delivery/AccessAnchor model Architecture (untrained)Input/output data

Microsoft_Visio_Drawing1.vsdx
Local inference node
Remote Inference node
Anchor Model (pre-trained)
Input/output data
Anchor training data
Split points model configuration
Metrics computation
Network Links
Reference framework/library
Metrics computation
Data Delivery/Access
Data Delivery/Access
Anchor model Architecture (untrained)
Input/output data

image4.emf
AnchorModelModel SplitterModel Split ConfigurationTest Split Model 1Test Split Model 2Metrics ComputationTest MetricsTest Bitstream(Intermediate Data)Test Dataset Pre-processorInference Output ProcessorAI Framework / LibraryTest DatasetTest EncoderTest DecoderNWInference Output Processor

Microsoft_Visio_Drawing2.vsdx
Anchor
Model
Model Splitter
Model Split Configuration
Test Split Model 1
Test Split Model 2
Metrics Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
Inference Output Processor
AI Framework / Library
Test Dataset
Test Encoder
Test Decoder
NW
Inference Output Processor

image5.emf
Tail nodeHead nodeAnchorModelModel Split configurationTest Split Model headTest Split Model TailMetrics Logs/ComputationTest MetricsTest Bitstream(Intermediate Data)Test Dataset Pre-processorAI Framework / LibraryTest DatasetTest EncoderTest DecoderTest NetworkInference Output ProcessorInference Output ProcessorNetwork configuration- input/output/inner timestamps => latency metrics- Processing unit consumption => Processing Unit metrics- Power consumption => Energy metrics

Microsoft_Visio_Drawing3.vsdx
Tail node
Head node
Anchor
Model
Model Split configuration
Test Split Model head
Test Split Model Tail
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Encoder
Test Decoder
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
- input/output/inner timestamps => latency metrics
- Processing unit consumption => Processing Unit metrics
- Power consumption => Energy metrics

image6.emf
Node 2Node 1AnchorModel(UE Device)Model Split configurationTest Split Model 1Test Split Model 2Metrics Logs/ComputationTest MetricsTest Bitstream(Intermediate Data)Test Dataset Pre-processorAI Framework / LibraryTest DatasetTest EncoderTest DecoderTest NetworkInference Output ProcessorInference Output ProcessorNetwork configurationAnchorModel(Network)Test NetworkInference Output Processor

Microsoft_Visio_Drawing4.vsdx
Node 2
Node 1
Anchor
Model
(UE Device)
Model Split configuration
Test Split Model 1
Test Split Model 2
Metrics Logs/Computation
Test Metrics
Test Bitstream
(Intermediate Data)
Test Dataset Pre-processor
AI Framework / Library
Test Dataset
Test Encoder
Test Decoder
Test Network
Inference Output Processor
Inference Output Processor
Network configuration
Anchor
Model
(Network)
Test Network
Inference Output Processor

image7.emf
ReferenceModelTest EncoderTest Bitstream (Compressed Model)Test DecoderTest ModelTest ConfigurationMetrics ComputationTest MetricsReference Data SetData Set Pre-processorInference Output ProcessorInference Output Processor

Microsoft_Visio_Drawing5.vsdx
Reference Model
Test Encoder
Test Bitstream (Compressed Model)
Test Decoder
Test Model
Test Configuration
Metrics Computation
Test Metrics
Reference Data Set
Data Set Pre-processor
Inference Output Processor
Inference Output Processor

image8.emf
AnchorModelTest EncoderTest Bitstream (Compressed Model)Test DecoderTest ModelTest ConfigurationMetrics ComputationTest MetricsTest Dataset Pre-processorInference Output ProcessorInference Output ProcessorTest DatasetTest NetworkAI Framework / Library

Microsoft_Visio_Drawing6.vsdx
Anchor
Model
Test Encoder
Test Bitstream (Compressed Model)
Test Decoder
Test Model
Test Configuration
Metrics Computation
Test Metrics
Test Dataset Pre-processor
Inference Output Processor
Inference Output Processor
Test Dataset
Test Network
AI Framework / Library

image9.emf
AnchorModelTest EncoderTest Bitstream (Compressed Model)Test DecoderTest ModelTest ConfigurationMetrics Logs & ComputationTest MetricsTest Dataset Pre-processorInference Output ProcessorInference Output ProcessorTest DatasetTest NetworkAI Framework / Library

Microsoft_Visio_Drawing7.vsdx
Anchor
Model
Test Encoder
Test Bitstream (Compressed Model)
Test Decoder
Test Model
Test Configuration
Metrics Logs & Computation
Test Metrics
Test Dataset Pre-processor
Inference Output Processor
Inference Output Processor
Test Dataset
Test Network
AI Framework / Library

