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1 Introduction
This contribution proposes a merge of the testbed architectures for the AI/ML evaluation framework as present in v0.7 of the permanent document.
2 Changes
7.4.1	Split inference intermediate data testbed architecture
Editor’s note: different figures to be merged, with descriptions based on present text.
The figures below show an example testbed architecture for split inference related scenarios:
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An testbed architecture for the evaluation of split inference intermediate data is represented in the figure above. The anchor model is split into two test split model 1 and 2, The model inference is split betweeneach existing and inferenced at two different nodes respectively (for example a local and the remote compute node), according to scenarios to defined. The local to remote direction simulates an uplink communication while the remote to local direction simulates a downlink communication. The sending of data via the network encompasses both unlink and downlink communication, depending on the scenarios defined. Depending on the scenario, Likewise, the sender of the intermediate data may be the local inference node or the remote inference node.
The testbed architecture includes the following main functional blocks:   

· Anchor untrained model architecture(optional): A model to be trained with reference training data.
· Anchor training data(optional): Input data set and training parameters used to build a new reference trained model. 
· Anchor model (pre-trained): A pre-trained model with a documented architecture with and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model. The model optimization (e.g., quantization) or compression is part of the reference trained model.  
· Reference AI framework/library: For The AI framework/library used for the testbed, for example, TensorFlow, Pytorch, etc.  
· Split points mModel split configuration: The cConfiguration of selected split points for the anchor model which are to be evaluatedfor the set of models to evaluate. The decision for split points may take into consideration the configuration factors, constraints and settings as described in clause 7.2.
· Local inferencing: Where the Aanchor model fully runs on the local node.
· Remote inferencing: Where the Aanchor model fully runs on the remote node.
· Split configurationinferencing: Where an aAnchor model is split into two parts, each run runs on the a local and a the remote nodes respectively.
· .
· Selected Split points to evaluate. 
· Input/output dataTest dataset: Depends on the configuration and the use-case as introduced in clause 4.6 Deployment options,Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor and/or split model (if necessary), for metric computation. 
· input data: input data, for example a reference picture or video sequence, may can originate from 
· local node: emulating an end-device captured media data.
· Remote node: emulating network ingest media data. 
· output data: Results data, reference picture or video sequence
· Inference nodesTest split model: The outputs of the model split configuration model 1 and model 2 running on the same or different inference nodes. An inference node may be a:
· Local inference node: The local inference nodeTypically emulatinges an end-device such us as a UE.
· Remote inference node: The local inference node Typically emulatinges a network node such as edge/cloud/5G CN Application server.
· Test bitstream (intermediate data): The output as a result of the inference of test split model #1, typically to be sent via the Network, and used as the input to test split model #2.
· Test encoder/decoder: Encoder and decoder for the intermediate data to be sent via the Network. This may include serialization, optimization or compression technologies.	Comment by Stephane Onno: Add serialization
· Network configuration: This defines the network simulation configuration. This may include the type of the Wireless/wired network, network protocols, lossless/lossy emulation, network throttling (e.g., for uplink simulation).
· Test Data Delivery/Accessnetwork: The network over which output data from certain functions are delivered. In use cases, this is typically the 5GS.
· Metrics Logs/Computation: A function which logs or computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.. This may include selection of different means for delivery and access of intermediate data: 
· Data encoding/decoding: This includes for example serialization/deserialization, optimization, compression/decompression.
· Uplink/Downlink communications: The scenarios involve both uplink and downlink communications. The evaluation can consider different protocols to be used in the uplink and downlink, as well as real-world emulation constraints (downlink bandwidth vs. uplink bandwidth).
· 

7.4.2	Model data testbed architecture
The figure below shows an example testbed architecture for AI/ML model data related scenarios:

 


A testbed architecture for the evaluation of model data compression is represented in the figure above. The anchor model is compressed by a test encoder, which may include optimization and/or compression technologies. In the case of sender only compression approaches, the test decoder may be optional.
The testbed architecture includes the following main functional blocks:   

· Anchor model: A pre-trained model with a documented architecture and pre-trained weights, to be used as the anchor model for the test. Optionally, the use of untrained anchor models should be provided with anchor training input data sets and training parameters in order to build a trained anchor model.
· Test configuration: The configuration of the test encoder to be used for the scenario.
· Test encoder: A function which encodes the anchor model according to that detailed in the test configuration. Encoding may include optimization and/or compression technologies.
· Test decoder: A function which decodes the compressed model. This function may be absent for sender only approaches.
· Test dataset: Media data to be input into the anchor model. Depending on the use case and scenario, such data may be video data, audio data, or other media data. In a given scenario, such data may originate from either a local or remote node.
· Test dataset pre-processor: A function which processes the test dataset media data such that it is compatible with the input requirements of the anchor model. 
· Inference output processor: A function which processes the inference output of the anchor model (if necessary), for metric computation.
· Test bitstream (compressed model): The compressed test model of the anchor model, typically to be sent via the network.
· Test model: The test model which was encoded and subsequently decoded. The inference performance of this test model is compared with the anchor model to evaluate the impacts of the test encoder and decoder.
· Test network: The network over which output data from certain functions are delivered. For model compression scenarios, the compressed model is sent over the network. In use cases, this network is typically the 5GS.
· Metrics Logs/Computation: A function which logs and computes the metrics on corresponding output data from certain functions, relevant for the scenario. Such metrics may include those described in clause 7.5
· Test metrics: The metrics used for the evaluation of the scenario.
Derivation of test metrics for scenarios related to AI/Ml model data compression
Editor’s note: need to add description of functional blocks matching figure.


3 Proposal
We propose to include the changes in clause 2 of this contribution into the next version of the PD.
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