3GPP TSG SA WG4 Meeting #124
S4-231025
22-26 May 2023, Berlin, Germany

Agenda item:
10.8
Source:
Nokia Corporation (Rapporteur
)
Title:
5G_RTP Permanent Document v. 0.0.6
Document for
Agreement
Note: square brackets indicate that the content within them has been considered but not finally agreed. It is advised not to take the content of this document as permanent reference, but rather refer to the latest version of TS 26.522.
1 Introduction

During SA4#119e the Work Item on “5G Real-time Transport Protocols” was agreed in S4-220783, and afterwards approved in by the SA plenary in the SA#96 in SP-220613.
The objective of this work item is to specify functionalities of RTP to improve support for traditional and immersive real-time services and enablers. To develop a commercially relevant set of functionalities that only include technologies that are either commercially relevant or deployed, or demonstrate clear performance or relevant functionality that justifies introducing additional implementation or interoperability complexity.

The work item aims to:

· Specify RTP functionalities that support at least the following services or enablers:

a. IMS-based conversational XR services

b. WebRTC-based conversational XR services

c. WebRTC-based conversational services using traditional media

d. XR split-rendering, i.e., real-time transport of media between the UE and edge

· In the RTP, specify references and further descriptions of

a. Functionalities related to the RTP protocol. For example, uni-directional or bi-directional transmission, use of

i. multiple simultaneous RTP streams in a single RTP session,

ii. multiple RTP sessions,

iii. RTP retransmission,
iv. RTP header extensions,

v. FEC,

vi. RTP retransmission,

vii. SRTP.

viii. RTCP feedback reporting procedures

· In the RTP, specify the usage of SDP attributes and parameters needed to configure RTP appropriately for the services and enablers.

· In the RTP, specify 5G optimizations and cross-layer optimizations based on SA2/RAN (e.g., FS_XRM) enhancements if and when completed.
2 Services and enablers

Here insert use cases, architecture and content about

· IMS-based conversational XR services

· WebRTC-based conversational XR services

· WebRTC-based conversational services using traditional media

· XR split-rendering, i.e., real-time transport of media between the UE and edge.
2.1 What use cases are in scope of the WI?

The WI makes a reference to TR 26.928 and TR 26.998, in particular clauses 8.4, 8.6 from the latter. To have a deep dive on the specific conversational use cases related to RTP communication, we think that clauses 6.5 and 6.6 from TR 26.998 are also of relevance and should be considered as (non-exhaustive) driving path for the development of the work of the 5G_RTP WI.
2.2 What 3GPP services will use 5G_RTP?

5G_RTP should serve a multitude of 3GPP services:

· MBMS

· MTSI

· 5GMS

· Telepresence

· Media Service/Application Enablers, i.e., the so called “Lego” type of services (or applications) that are built starting from individual “blocks”. The 5G_RTP could be seen as a horizontal layer.

· IMS-based AR services (i.e., IBACS)

· non-IMS-based real-time communication (iRTCW).

However, the current WID leads to the following table and scope of work:

	3GPP “Services”
	Immersive media
	Traditional Media

	IBACS
	Yes
	?

	iRTCW
	Yes
	Yes

	Split Rendering
	Yes
	?

	“Media Service Enablers”
	?
	?

	Other existing 3GPP services
	?
	?

It would be good to clarify if the cells with “?” are also in scope of the WI and the new RTP specification.
Being a general-purpose block, a special care must be taken to ensure that the integration of this block in the above-mentioned services provides actual interoperability. It is currently unclear how this goal can be achieved. Perhaps by pre-conditions and post-conditions or other structural mechanism in the specification that does not confuse implementers in easily selecting what parts of the spec to implement for a given service.

3 Requirements

Here insert 5G_RTP requirements for the above services and enablers.
[

3.1 Real-time requirements for AR use cases

The use cases presented in TR 26.928 and TR 26.998 have multiple elements that require real-time communication. The specific requirements for different types of data is listed below.

3.2 AR Media

TBD
Note: AR media may include 2D and 3D media components, and spatial audio. RTP Payload formats for some of these already exist and may need to be defined for others.

3.3 Pose

· A user pose can be defined as yaw, pitch, roll for orientation and three vectors (X, Y, Z in cartesian coordinate system) for position.

· For most use cases, an AR device can compute and use the pose information locally. For more advanced use cases with shared 6DoF experiences (e.g., use case 10 in TR 26.998) UEs may be required to send the pose information to a conferencing server, a spatial computing server or other entity.

· Pose can be transported as metadata along with media, e.g., as metadata with an avatar.

· It should be evaluated whether high-frequency updates of pose information from another device should be delivered to a UE directly or processed with support from a network entity.
3.4 Gesture

· A hand gesture or device controllers can trigger specific actions during an AR experience.

· Gestures are handled on device (AR Runtime) for most use cases but for AR shared experiences, gestures can be used e.g., to manipulate a shared 3D object.

· The UE may process the gesture/controller click locally and this can be a device specific function. For interoperability, specific triggers/actions may be defined that are signalled across the network when needed.

3.5 Motion data

· Motion data captures movements that are used to animate a 3D model. Motion data may be facial expressions, skeletal body movement, etc.

· Motion data is dependent on the model. Interoperability may require sharing 3D modeling data.

· A high-frequency continuous bitstream may be required for a good user experience. Alternatively, sporadic updates triggered by motion can be used.

· It should be evaluated whether high-frequency updates of motion data from another device should be delivered to a UE directly or processed with support from a network entity.
3.6 Summary

Table below summarizes the types of metadata that can be carried as RTP payload for AR RTC services. Reliability is assumed to be not strict when the data is delivered in a continuous manner and old values lose importance when delayed. Continuous bitstreams may be sent at a fixed sampling rate. Bursty traffic is triggered e.g., a motion signal can be sent when motion is detected. The direction is determined based on whether a UE will send the data, receive it or both (sendrecv).

	Data Type
	Reliability
	Traffic
	Direction (UE)

	Pose
	Not strict
	Continuous or bursty if action activated
	send

	Gesture
	Strict
	Bursty, action-activated
	send, recv, sendrecv

	Motion data
	Not strict
	Continuous or bursty if action activated
	send, recv, sendrecv

]

Note: The text will be aligned with the work in MeCAR.

4 RTP Protocol functionalities (potential solutions)
Here specify references and further descriptions of potential solutions for
· Functionalities related to the RTP protocol. For example, uni-directional or bi-directional transmission, use of

a. multiple simultaneous RTP streams in a single RTP session,

b. multiple RTP sessions,

c. RTP retransmission,
d. RTP header extensions,

e. FEC,

f. RTP retransmission,

g. SRTP.
h. RTCP feedback reporting procedures.
4.1 Real-time transport of interaction metadata

There are at least three different ways to transport real-time metadata using the existing technologies in 3GPP:

1. WebRTC data channel

2. RTP header extension

3. New RTP payload format
A potential solution for Option 1 was proposed in S4-221557 at SA4 #121. The solution proposes to use the SCTP chunk payload data type format to carry the interaction metadata. A generic data channel payload format for timed metadata including a timestamp is added to the chunk user data section.

Data channel is a flexible option for metadata transport since it allows carriage of metadata not directly associated to media and enables differentiation in terms of reliability, priority and ordering requirements by setting up data channels with different properties. On the downside, there is no inherent timing and FEC mechanisms in SCTP.

A potential solution for Option 2 was presented in S4-221555 at SA4 #121. The solution proposes a RTP header extension design to carry metadata while media content is carried in the RTP payload. According to the proposed solution, a single metadata type or multiple metadata types can be carried in the header extension.

RTP header extension solution has the advantage that the transported metadata is time-synchronized to the media data. Moreover, all the robustness and timing mechanisms provided by RTP are included (e.g. timestamp, FEC). However, it only makes sense if a media stream exists. In case no media stream is present, transmission of RTP packets with empty/dummy payloads would be required. Another concern is the potentially large size of the RTP headers, depending on the metadata type. RTP header extensions can also be silently discarded by a receiver, if the latter is unable to parse them.

Option 3 is the usage of a separate RTP stream where the interaction metadata is carried in the RTP payload. In RTP, the details of media encoding, such as signal sampling rate, frame size and timing, are specified in RTP payload formats. Hence, sending interaction metadata in a separate RTP stream requires defining a new RTP payload format for interaction metadata. Such a payload format would enable the usage of all RTP mechanisms (timing, robustness etc.) while providing a generic format that can cover all types of interaction metadata.

RTP payload formats are typically developed in IETF. However, definition of a new payload format typically takes around 2 years in IETF meaning that for 3GPP, the developed format would at the earliest be useful in Rel. 19. In MeCAR, 3GPP has mainly considered the interaction metadata types defined in the XR standards so far (e.g., OpenXR) that have applications reaching beyond 3GPP. This raises the question whether a potential payload format for interaction metadata would not also be useful in other (non-3GPP) applications.
As a summary, the advantages and disadavantages of the discussed options are given in the following table.

	
	Advantages
	Disadvantages

	1. WebRTC data channel
	· Allows carriage of metadata without a media RTP stream.

· Differentiation in terms of reliability, priority and ordering requirements for different data channels

	· No timing mechanism / timestamp in SCTP

· No FEC mechanism in SCTP

	2. RTP header extension
	· Useful for a quick solution in Rel. 18

· Time-synchronized to media stream

· Enables usage of mechanism already provided by RTP (robustness, timing etc.)

· May be silently discarded by a receiver, if it does not understand the header extension, without aborting the ongoing multimedia session.

	· Only feasible when the sender of the metadata is also sending a media stream.

· May cause large RTP headers

	3. New RTP payload format
	· Can be a generic format covering all types of interaction metadata

· All RTP mechanisms can be used

· Can be used in non-3GPP environments
	· Defining a new payload format may take around 2 years if done in IETF. This mean this solution can be useful earliest in Rel. 19.

4.2 Real-time interaction metadata transport over RTP

For the applications that the media streams are exchanged using RTP, the interaction metadata may be carried in RTP header extensions [4] given the data size and low-latency requirements.
4.2.1 RTP and RTP extension

RTP fixed header is specified in [3] and the format is shown in Figure 1.

[image: image1.png]
Figure 1 RTP fixed header format

When the extension bit (X) is set, a variable-length header extension must be appended to the RTP header, following the CSRC list if present. Figure 2 shows the general extension format. The RTP header extension may carry metadata in addition to the usual RTP header information as an optimization to lower latency.

[image: image2.png]
Figure 2 RTP header extension

Two types of extension designs are specified in [4], one-byte header and two-byte header form of extension.

In the one-byte header form of extension, the 16-bit “defined by profile” must have the fixed bit pattern 0xBEDE. Each extension element MUST start with a byte containing an ID and a length. The 4-bit ID is the local identifier of this element in the range 1-14 inclusive. The 4-bit length is the number, minus one, of data bytes of this header extension element following the one-byte header. Figure 3 is an example of one-byte header extension.
[image: image3.png]
Figure 3 One-byte header extension example

In the two-byte header form of extension, the 16-bit “defined by profile” has 12-bit 0x100 and 4-bit appbits. The appbits field is 4 bits that are application dependent and may be defined to be any value or meaning. Each extension element starts with a byte containing an ID and a byte containing a length. The 8-bit length field is the length of extension data in bytes, not including the ID and length fields. The value zero (0) indicates that there is no subsequent data. Figure 4 is an example of two-byte header extension.
[image: image4.png]
Figure 4 Two-byte header extension example

4.2.2 Potential Solution for using RTP header extension for interaction metadata

The RTP header extension may be used to carry metadata while the media content is carried in the RTP payload data. Depending on the data length, either one-byte or two-byte header extension may be used; a single metadata type or multiple metadata types may be carried in the extension in a RTP packet.

[Editor’s Note: carrying interaction metadata over the RTP header extension using this approach may be useful but further study of use cases and other types of interaction metadata will be investigated to identify other potential solutions]

Figure 5 illustrates an RTP header extension design concept to carry the real-time interaction metadata.

Subprotocol payload ID is a fixed length field indicating the subprotocol or specifications used for the metadata format, such as OpenXR.

Metadata type is a fixed length field indicating the metadata type specified in the sub-protocol.

Metadata attributes is a fixed length field indicating the metadata attributes such as time synchronization.

Metadata length is a fixed length field indicating the length of metadata payload in bytes.
[image: image5.png]
Figure 5 RTP header extension for the metadata

[Editor’s note: the data length of Metadata type field will be investigated to accommodate the potential metadata type indication such as URN]

[Editor’s note: FFS the use of URN registered with IANA and included in the SDP to signal the subprotocol payload ID + Metadata type in the RTP header extension.]
4.2.3 Security considerations

The interaction category real-time metadata can contain sensitive information tracking the interactions of an end user, e.g., elements of pose, tracking information of palm, hand, or face, as well as controller inputs. Therefore, the integrity and confidentiality of metadata in transit is in some scenarios, depending on the application requirements, necessary.

The transport of the real-time interaction class metadata over RTP header extensions introduced in clause 4.1.2 can ensure such necessity for integrity and confidentiality using the secure extension protocol of RTP, i.e., SRTP [5] and its extension RFC6904 [6]. SRTP protects the integrity of the RTP extension headers by signing the RTP PDU contents (including any RTP header extensions), whereas RFC6904 ensures confidentiality by encryption of selected RTP header extensions.
4.3 RTP Header Extension for Rendered Pose

The split rendering server streams the rendered frame using one or more video streams, depending on the view and projection configuration that is selected by the UE. The server uses the proposed RTP header extension to associate the selected pose with the rendered frame. An RTP header extension is the most appropriate option to associate the rendered frame with its pose as it is carried as part of the RTP packets that carry the rendered images of a frame. The RTP header extension may also be used with audio streams of a split rendering process.

Header extensions are declared in the SDP using the “a=extmap” attribute as defined in RFC8285. The header extension is identified through an association between the URI of the header extension and an ID value that is contained as part of the extension. The rendered pose header extension should use the following URN: “urn:3gpp:xr-rendered-pose”.

The two-byte header format of the header extension is used for signaling the rendered pose. The 2-byte (RFC8285) RTP header extension format of the rendered pose header extension is as follows:

0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0x100 | appbits| ID | length=36+2n. |
+-+
| x |

+-+

| y |

+-+
| z |

+-+
| rx |

+-+
| ry |

+-+
| rz |

+-+
| rw |

+-+
| |
| timestamp |
+-+
| action_id #1 | ... |

+-+

The (x,y,z) provides the position of the rendered pose and the (rx,ry,rz,rw) provides the orientation of the rendered pose.

The timestamp represents the predicted time for the pose. This timestamp uses the XR system clock. There is no requirement to synchronize the RTP stream timestamps to the XR system clock. The timestamp is passed to the XR runtime together with the rendered swapchain images (e.g. as part of the xrEndFrame call in OpenXR).

Alternatively to this format, the application and the rendering server may use unique identifiers for the transmitted pose information to reduce the required extension header size.

The header also provides the identifiers of all actions that were processed for the rendering of the frame. A maximum limit of 10 actions per RTP header extension for rendered pose is allowed. Hence, the total size of the header extension is set to 36 + 2 * n, where n is the number of action identifiers in the header extension.

5 Usage of SDP attributes (potential solutions)
Here specify the usage of SDP attributes and parameters needed to configure RTP appropriately for the services and enablers.
6 5G and cross-layer optimizations (potential solutions)
Here specify 5G optimizations and cross-layer optimizations based on SA2/RAN (e.g., FS_XRM) enhancements if and when completed.
It is suggested to define a communication mechanism by which the RTC SWG is constantly updated, based on the development of the other WGs. This may be achieved, for example, through the identification of the TRs/TSs under development in other WGs and by meeting-by-meeting updates given by the companies interested in this work.
7 Defining a PDU set header extension

The following shortcomings have been identified in the SA2 study related regarding the definition of PDU set header extension:

· The SA2 work currently does not consider multiplexed RTP streams (multiple media streams using a single UDP port). Such streams may be more commonly used in WebRTC.

· The RTP HE local identifier is not a fixed value and is negotiated during the SDP. It is not clear how this information can be communicated to the UPF.

· We can set up the ID once during session setup and signal it to the MSH with the condition that the AS can not renegotiate the IDs during the session. Renegotiation may be allowed if it does not create latency issues for the media.

· We can consider a check pattern at the beginning of the HE so the UPF can find it. However, this would create waste since it needs to be sent every packet.

· The importance field can create a security risk if it’s transported without encryption.

· The semantics of the importance field needs to be further defined based on the 3GPP codecs (existing and new ones that are included as part of Release 18 work in SA4). The semantics should be normative to ensure uniform and predictable handling of the fields.
· It is not clear if we can have in the same QoS flow some PDUs marked with PDU set information while others unmarked. An LS on the matter was sent to SA2 to clarify this.

· SA4 should investigate whether the key issue #4 and 5 in SA2 XRM study are enough or further work is needed for PDU set information.
On defining a PDU set header extension the following should be considered:

· We generally agree on sending PDU set sequence number, PDU sequence number, End PDU indication, importance and optionally PDU set size as part of the RTP HE.

· Spatial scalability is not supported in 3GPP codecs, so should not be considered at this point.

· Frame marking draft can be used as a reference for the codecs supported in 3GPP. However, we should not use the framemarking HE and it should be normatively defined that the PDU set HE and framemarking HE should not be used as part of the same Release to avoid mismatched implementations. Codecs can be checked from TS 26.511.
· We should consider that we use SRTP and payload is not always visible.

· We should try to keep the header compact.

· Number of bits for PDU set sequence number:

· Depends on level of reordering.

· There can be upto 1000 slices in HEVC, theoretically, do we need more than 4 bits?

· We should check XR Traffic and also consider theoretical limits.

· Number of bits for PDU sequence number:

· We should check XR traffic and also consider theoretical limits.

· PDU set size:

· Option 1: Fixed field set to 0 if not known. (advantage: the HE fields are always the same, disadvantage: waste)

· Option 2: It is only used when available and is added as an extension parameter in the SDP. If used, it should always be present in the RTP HE.

· Is there a benefit of adding a PDU set size in the middle of transmitting the PDU set?

· Extensibility of the HE

· Option 1: Create a fixed single variant header.

· Option 2: Create a fixed header with fixed fields and use version number in URN or extension parameters (SDP) to define the variant.
· One-byte or Two-byte header:

· All HEs that are being used need to be either one-byte or two-byte so both should be supported.

· Importance:

· We need to discuss further how to define guidelines for the AS to fill the importance field.

· The UPF may not need to understand how the application set the field.
· It was confirmed by SA2 to consider including burst indication. This aspect needs to be further studied.

Based on the above points, SA4 should work on defining the PDU set HE based on the following workplan:

· Clarify the use case of the PDU set HE, flow and handling. It is important that SA4 clearly understands the basis of the work first.

· Define when the PDU set HE needs to be included in the RTP packets (PDUs).

· Define the length for PDU set sequence number and PDU sequence number.
· Formulate the semantics and guidelines of all the fields in the RTP HE.

· Define whether the header is fixed with a single variant or multiple variants as defined by Option 1 & 2 above.

· Evaluate the problem and solution for burst indication and possible inclusion into the PDU set HE.

· If required, we should inform RAN3 about our PDU Set HE design.

NOTE: Currently, there are proposals to define the PDU set RTP HE in Tdocs 129, 139, 148 and 204 in SA4#122 and S4aR230046 in RTC SWG post SA4#122 telco.
1 Observations about RTP HE fields for PDU set marking

1.1 PDU set size (PSS)

1.1.1 Potential RAN impacts

The PSS information can provide support to the NG-RAN to perform low-latency resource allocation optimizations by indicating as early as possible the size of the PDU set that needs to be transmitted over the air. Having this information available already in the first PDU of a PDU set enables the RAN to take decisions as early as possible for optimum resource allocation (e.g., scheduling), even while the PDUs of the PDU set are still being received.

Observation #1: Sending the PDU set size information as early as possible, i.e., within the RTP HE of the first PDU of a PDU set, is necessary and required for low-latency optimized resource allocation at RAN lower layers. Sending the PDU set size information later than the first PDU of a PDU set significantly reduces this benefit, whereas for instance sending the PDU set size information only in the last PDU of a PDU set is of no benefit to the RAN.

1.1.2 RTP packetization and PSS determination aspects
The typical operations of an AS transmitting media over an RTP session follow.

1. As an AS has finished encoding the media, it releases a payload for RTP processing. This payload can be for instance a video-coded NAL unit representing a slice or a frame, a non-video-coded NAL unit representing a SEI, a SPS/PPS/VPS. The AS is therefore aware of the payload size and the corresponding RTP payload format (e.g., RFC 6184 for H.264, RFC 7798 for H.265 etc.) to be transported over the network.

2. The AS uses next the payload size, RTP payload format and the information available about the path MTU to proceed with RTP payload processing, fragmentation and packetization operations. In case path MTU discovery or MTU information are not available, an MTU threshold is often applied to determine the upper limit of an RTP PDU, or alternatively RTP SDU, and perform payload fragmentation. For example, the Chromium WebRTC stack considers the Ethernet MTU of 1500 bytes and limits the RTP payload size to 1200 bytes [7]. This also considers the recommendations of RFC 8200 of a minimum MTU size of 1280 bytes for IPv6 links, and the RTP/UDP/IP encapsulation and possible RTP header extensions overheads.

3. Once the MTU and RTP PDU/SDU limits are determined, the AS timestamps the media payload and processes it further into RTP PDUs. The AS formats then the payload into a RTP specific payload (e.g., H.264 according to RFC 6184), fragments and packetizes it into one or more RTP PDUs. During packetization, the RTP header is determined, and its fields are being set accordingly to RFC 3550. Furthermore, the additional RTP header extensions negotiated over SDP are added by the AS into the RTP header to form the individual RTP PDUs.

4. Optionally, if SRTP is enabled, once the RTP PDUs have been created the RTP SDUs are encrypted and the RTP PDUs are additionally authenticated and signed given the RTP session and media stream security context, including at least the RTP session security configuration and keys.

5. Lastly, the RTP PDUs are released to the UDP socket associated with the RTP media stream and session for transmission over the network.

In marking a PDU set an AS will have to perform same steps as above, while additionally including the RTP HE for the PDU set information in the RTP PDUs.

The PSS is not synonymous with the media payload size encapsulated in the RTP PDUs of a PDU set. The PSS needs to correctly determine the cumulative size of all PDUs of a PDU set including all their RTP/UDP/IP encapsulation overhead. To this extent, the AS needs to additionally determine the RTP/UDP/IP overhead before the actual packetization operation given established socket options and RTP session configuration. Based on this information and on the determined media payload mapping to a PDU set, the AS can then further determine the fragmentation, packetization and compute the PSS based on the RTP payload size and RTP/UDP/IP encapsulation overhead of all the PDUs of the PDU set.

Observation #2: The AS needs to determine the PSS taking into the account the media payload size mapped to a PDU set, the PDU set fragmentation into PDUs and the RTP/UDP/IP encapsulation overhead of the PDUs, including any RTP header extensions.

Observation #3: To determine the PSS correctly, an AS needs to discover or set an appropriate MTU size for the determination of the PDU set fragmentation into PDUs and the cumulative RTP/UDP/IP encapsulation overhead of the PDU set.

1.1.3 Video slices and frames typical sizes
The media payload size part of the PSS is mainly influenced by the size of the video coded NAL units, i.e., by the video slice and the video frame sizes. In FS_XRTraffic SI, TS 26.926, the E2E characterization (including content encoding, distribution, network, and radio access network transport) of the XR traffic was studied. Thus, several representative video encoding configurations for low-latency high-definition AR and VR use cases were covered. For instance, different VR traffic video encoding configurations were considered and evaluated for the XR traffic model as highlighted in TS 26.926 Table 6.4-1, reproduced for convenience below as Table 3-1.

	Configuration
	Basic Content Parameters

	VR2-1
	8 slices per eye buffer, 1 slice per frame is intra coded, 30Mbit/s capped VBR with window 200ms, buffer sent at same time, 1500 byte max packet size

	VR2-2
	8 slices per eye buffer, 1 slice per frame is intra coded, 30Mbit/s capped VBR with window 200ms, buffer sent at same time, unlimited packet size

	VR2-3
	8 slices per eye buffer, 1 slice per frame is intra coded, 30Mbit/s CBR with window 1 frame, buffer sent at same time, 1500 byte max packet size packets

	VR2-4
	8 slices per eye buffer, 1 slice per frame is intra coded, 30Mbit/s CBR with window 1 frame, buffer sent at same time, unlimited packet size

	VR2-5
	1 slice per eye buffer, every 8th frame is intra coded, 30Mbit/s capped VBR with window 200ms, buffer sent at same time, 1500 byte max packet size

	VR2-6
	8 slices per eye buffer, 1 slice per frame is intra coded, 30Mbit/s capped VBR with window 200ms, buffers sent interleaved, 1500 byte max packet size

	VR2-7
	8 slices per eye buffer, 1 slice per frame is intra coded, 45Mbit/s capped VBR with window 200ms, buffer sent at same time, 1500 byte max packet size

	VR2-8
	8 slices per eye buffer, 1 slice per frame is intra coded, 45Mbit/s capped VBR with window 200ms, buffer sent at same time, unlimited packet size

Table 3‑1: VR video encoding configurations for split-rendering as considered in TR 26.926 (Table 6.4-1).

The test traces and configurations outlined typical H.265 video frame and slice sizes for both 30 Mbps and 45 Mbps 60 FPS traffic of 2K x 2K dual-eye buffered video of VR applications. The S-traces (available at [8]) aggregated results with respect to the slice size in bytes of the VR configurations are summarized in Table 3-2.

	Configuration
	VR 2-1
	VR2-2
	VR2-3
	VR 2-4
	VR 2-5
	VR 2-6
	VR 2-7
	VR 2-8

	Bit rate (Mbps)
	30
	30
	30
	30
	30
	30
	45
	45

	Mean (bytes)
	3566
	3565
	3695
	3693
	26057
	3566
	5092
	5092

	Median (bytes)
	3340
	3338
	3407
	3407
	26537
	3339
	4975
	4975

	Std (bytes)
	1096
	1096
	1249
	1249
	3366
	1097
	1554
	1555

	Min (bytes)
	638
	663
	1384
	1377
	5972
	654
	643
	654

	Max (bytes)
	12614
	12796
	19624
	19630
	52397
	12698
	12627
	12639

Table 3‑2: Summary of slice/frame sizes in bytes for the S-traces of the VR2-x FS_XRTraffic configurations.

The video slice and frame size for each eye buffer varies therefore considerably from hundreds of bytes to tens of thousands of bytes depending on the encoding configuration used, e.g., number of slices per frame, rate constraints, resolution, quality parameters, profiles, and tiers etc. The maximum slice size when slice encoding is applied varies between roughly 13000 bytes and 20000 bytes. Similarly, the maximum frame size is less than 53000 bytes when sliced encoding is not configured (i.e., 1 slice segment configured per frame). It follows therefore that at most [image: image7.emf]

𝑐𝑒𝑖𝑙(log!(max(max(VR	2-x)))) =	 1

16 bits are at least necessary to encode slice or frame sizes based on the VR 2-x configurations of TR 26.926.

Observation #4: At least 16 bits are necessary to encode the PSS field given typical slice and frame sizes in bytes as studied in FS_XRTraffic SI.

The increasing resolutions from 2K to 4K, 8K, video codec configurations with lower compression ratios and advanced video encoding configurations, (in the case of 360-degree video, volumetric video etc.) may require a PDU set to be larger than 65356 bytes. To accommodate for higher PDU set sizes beyond this, at least 24 bits of depth for encoding the PSS are recommendable. This would correspond to 16,777,216 bytes, or equivalently, 16.7 MB per PDU set. Assuming a 60 FPS traffic periodicity and a dual-eye buffer as per Table 3-1 configurations, this would correspond to a maximum supported bit rate of 16,777,216 x 2 x 60 = 2,013,265,920 bytes per second, or alternatively, approximately 16 Gbps.

Observation #5: Encoding the PSS as an unsigned integer of at least 24 bits is recommendable to cater for more advanced encoding configurations and super high quality XR experiences.

1.2 PDU sequence number (PSSN)

The PSSN acts as a PDU set identifier allowing common treatment over the 5GS of the PDUs within PDU set. Given that over the transmission path reordering of PDUs and implicitly PDU sets is possible, it is therefore imperative for the correct processing of PDU sets across the stack to correctly identify them. The PSSN bit depth provides therefore the namespace resolution of PDU sets across the 5GS at any given instance.

Video slices corresponding to a picture may be mapped by an AS to individual PDU sets. This would be typical especially for sliced video encodings whereby the AS would map the individual slice segments of a picture to a PDU set as soon as they become available to avoid buffering and reduce latency. This is currently typically the case as applications usually avoid aggregation of NAL units and release them as soon as possible as payloads to the RTP payloader and packetizer routines. Therefore, when applying PDU set marking to slices of the same picture, or alternatively, the paired eye buffer, it is preferable that the PSSNs do not wrap around and collide. This keeps the complexity low on the UPF side where further processing is not needed to watch additionally the RTP sequence number to identify a PDU set instance in combination with the PSSN. In other words, the PSSNs of PDU sets in transport over the 5GS need not collide. A PSSN value needs thus to be marked on only one PDU set over at least the duration of the PSDB of that PDU set. This is possible given an appropriate resolution of the PSSN and its unit incrementation between successive PDU sets.

Observation #6: The PSSN bit depth needs to be large enough to ensure that PDU sets do not collide while transported over the 5GS.

The maximum number of slides segments within a picture provides a good indication of the resolution the PSSN needs to have.

1.2.1 Maximum number of slices in H.264
According to the H.264 video codec specification [9], Annex A.3.3., most of the profiles (e.g., Main, High, Progressive/Constrained High, High 10, Progressive High 10, High 4:2:2, High 4:4:4 etc.) shall satisfy the constraint that the number of slices in picture n is less than or equal MaxMBPS * (tr(n) − tr(n − 1)) ÷ SliceRate, where MaxMBPS and SliceRate are the values specified in Tables A-1 and A-4, respectively, that apply to picture n”. In other words, the maximum number of slices in a picture is given by [image: image9.emf]

𝑖𝑛𝑡(MaxMBPS/FPS/SliceRate 1

). This results in following theoretical limits:

· Level 4.2 for 1080p@60FPS and 2K x 1K@60FPS

· max. number of slices per picture is int(522,240 / 60 / 24) = 362

· Level 6.2 for 2K x 1K@300FPS

· max. number of slices per picture is int(16,711,680 / 300 / 24) = 2321

· Level 6.2 for 8K x 4K@60 (maximum profile and tier)

· max. number of slices per picture is int(16,711,680 / 60 / 24) = 5802

In practice, slicing increases complexity of both encoding and decoding. As such, a significant number of encoders and decoders impose constraints on the maximum supported number of slices per picture. For example, the libav encoder and decoder limit slicing and libavh264dec limits its support to a maximum of 32 slices per picture irrespective of the resolution or the frame rate (e.g., by the definition of #define MAX_SLICES 32 in h264dec.h header file).

1.2.2 Maximum number of slices in H.265
According to the H.265 video codec specification [10], Table A.6 and Annex A.4.2, the vast majority of the profiles are limited to a number of slice segments in picture n less than or equal to Min((Max(1, MaxSliceSegmentsPerPicture * MaxLumaSr / MaxLumaPs * (AuCpbRemovalTime[n] − AuCpbRemovalTime[n − 1])), MaxSliceSegmentsPerPicture). In other words, in H.265 the number of slices per picture is limited to at most MaxSliceSegmentsPerPicture to decrease codec implementation complexity, [11]. The MaxSliceSegmentsPerPicture threshold is thus provided in [10], Table A.6, and is 600 for the Level 6.x. For Levels 4.x it is 75 and for Levels 5.x it is 200.

Note that a similar approach applies for H.266 with the same thresholds for Levels 4.x, Levels 5.x and respectively Levels 6.0-6.2, whereas Level 6.3 is capped at 1000 slices per picture according to [12], Table A.2.

Observation #7: The maximum theoretical number of slices per picture is for H.264 5802, for H.265 600, and for H.266 1000, respectively. Yet, in practice the number of slices per picture is generally much smaller. As such, at most 10 bits encoding of PSSN is sufficient to ensure no collisions among PDU sets transported over the 5GS.

1.3 PDU set importance (PSI)

RAN2 agreed in concluding its SI on NR enhancements for XR, TR 38.835, that PSI identifies the relative importance of a PDU Set compared to other PDU Sets within a QoS Flow. However, RAN2 also agreed that it may use the PSI indication at a PDU set level only for packet discarding in the presence of congestion. In other words, the PSI will not be used for resource prioritization on a PDU set level. Accordingly, given the RAN agreements in TR 38.835, the PDU sets received at the SDAP level on the same QoS flow share the same PSDB and PSER requirements, and hence will be treated the same by lower layers in radio resource allocation and scheduling. Thus, the PSI may only indicate to the RAN whether it is okay to discard a PDU set in case the RAN detects a congestion condition that prevents the PDU set transmission within its PSDB.

The SA2 agreements and CR3896r14 against TS 23.501 are as well clarifying the PSI as an indicator of the relative importance of a PDU Set compared to other PDU Sets within a QoS Flow such that the NG-RAN may use the PSI within a QoS Flow for PDU Set level packet discarding in presence of congestion.
Observation #8: As RAN may use the PSI only for discarding PDU sets in the presence of congestion a 1-bit PSI field is sufficient to indicate whether a PDU set may be discarded or not relative to the others on a QoS flow.

The SA2 CR3896r14 against TS 23.501 notes that whether and how PSI can span across QoS Flows is left FFS. As such, for finer relative importance indication via the PSI and a potential future support of prioritization across the 5GS of PDU sets within a QoS flow, or alternatively across QoS flows, it may be desirable to further use for the PSI field more than 1 bit. A total of at most 3 bits will provide 8 importance levels and sufficient granularity. Trade-offs between the resolution of the importance level, its semantics and bit savings that may be leveraged for other RTP HE fields may become further necessary.

Observation #9: If finer levels of relative importance among PDU sets are desired more than 1 bit, e.g., 3 bits, can be used for the PSI field. Yet, trade-offs between the importance level semantics and bit savings to the benefit of other fields of the RTP HE may be necessary.

1.4 PDU sequence number (PSN)
The PSN bit depth is related to the maximum number of PDUs present in a PDU set. For instance, based on Clause 3.1, Observation #3 and Observation #5, the maximum number of PDUs within a PDU set may be theoretically derived for the PDU set maximum size of 16,777,216 bytes while considering a WebRTC typical limit of 1,200 bytes for the RTP PDU payload. In this case, the maximum number of PDUs within a PDU set is of [image: image11.emf]

𝑐𝑒𝑖𝑙(16,777,216/1,200) 1

 = 13,982 PDUs. To encode this without wraparound, 14 bits are needed.

However, given that in-sequence delivery is not expected as per SA4 LS out to RAN2 [12], the PSN wraparound can be resolved by the UPF, if really needed, with support from the RTP sequence number. The PSN is therefore open for further optimizations with respect to its bit depth. According to Table 3-2 most of the slices are sized between approximately 600 and 20,000 bytes, while frame sizes vary between approximately 6,000 and 53,000 bytes. Given the same typical limit of 1,200 bytes for the RTP PDU payload, these ranges are covered roughly by 1 up to 45 PDUs mapped to a PDU set. These values would correspond to a 6-bit PSN representation starting with 0 for the first PDU of a PDU set, incrementally increasing for subsequent PDUs of the PDU set with wraparound at 63.

Observation #10: The PSN field wraparound can be used to further optimize the PDU set information RTP HE size.

1.5 One-byte & two-byte formats and alignment
The RTP header extension field is 4-byte aligned. The generic RTP header extension mechanism of RFC 8285 preserves this alignment of the RTP header extension field for both one-byte and two-byte formats. This is achieved by padding bytes at the end of all the RTP header extension elements or in between RTP header extension elements.

As the RTP HE for PDU set information needs to support both one-byte and two-byte format it is thus beneficial that the RTP HE achieves the alignment modulo 4 bytes with as little padding as possible, while ensuring a minimum size for its fields. As the PSS field alone requires at least 3 bytes (i.e., conform Observation #5), it follows that the next smallest size aligning with lowest padding amount for both one-byte and two-byte formats is 6 bytes. Concretely, in one-byte format an RTP HE for PDU set information of 6 bytes would be preceded by the one-byte header as per RFC 8285 and would require at most 1-byte padding for the alignment. In two-byte format an RTP HE for PDU set information of 6 bytes would be preceded by the two-byte header as per RFC 8285 and would require no additional padding for alignment.

Observation #11: An RTP HE for PDU set information of 6 bytes is the minimum size necessary to reduce the overhead of zero padding required for the RTP header field alignment, support both one-byte and two-byte formats and provide all PDU set information needed (including PSS).

1.6 Overview
The key Observations #1-#11 and information in Clauses 3.1-3.5 are aggregated in Table 3-3 relative to the RTP HE fields for the PDU set information.

	PDU set information field
	Bit depth
	Encoding
	Further comments

	PSSN
	<10
	Unsigned integer that encodes a PDU set sequence number and so identifies the PDU set. It is incremented by unity with each successive PDU set on a QoS flow (i.e., 5-tuple).
	It wraps around at 1023, yet it is not expected that the UPF may require additional assistance from the RTP sequence number in identifying a PDU set.

Lowering further the bit depth of this field may increase complexity on the UPF side in identifying PDU sets.

	PSN
	6
	Unsigned integer that encodes the PDUs in a PDU set. It starts at 0 for the first PDU in the PDU set and is incremented by unity with each successive PDU in the PDU set.
	It wraps around at 63. The UPF may use additionally the RTP sequence number if exact identification of PDUs is needed upon wraparound.

Further optimization may be considered in reducing this field’s size.

	E
	1
	Bit flag set (1) for the end PDU of a PDU set and unset (0) for all the other PDUs of the PDU set.
	

	PSI
	1-3
	Linear encoding of the importance of a PDU set relative to other PDU sets on the same QoS flow (i.e., 5-tuple).
	If 1 bit depth is used, a ‘0’ indicates that PDU set cannot be dropped by RAN (i.e., PDU set of HIGH importance), and a ‘1’ indicates that PDU set can be dropped by RAN (i.e., PDU set of LOW importance) upon congestion presence.

If more bit depth preferred, then specific semantics of the importance levels are FFS. NOTE: Currently, importance levels have no PDU set prioritization effect in RAN.

	PSS
	>24
	Unsigned integer that encodes the PDU set size as determined by the AS (including both the media payload size and the encapsulation overhead).
	

	RSVD
	4-6
	Reserved bits for future use.
	The usage of these bits for other indications (e.g., End of Data Burst indication) or extensions of current fields (e.g., PSN) is not precluded.

	Total RTP HE
	48 bits / 6 bytes
	
	Minimum size of RTP HE for PDU set information given the required PDU set information fields, some theoretic/ practical limits (e.g., on PSS, PSSN, PSN), alignment and padding specific details of RFC 8285.

Table 3‑3: Summary table of observations related to the RTP HE fields for the PDU set information.

7.1 PDU Set identification

It was agreed that SA4 will develop a solution based on a RTP header extension to serve SA2’s request in S4-221244 as per SA4’s reply in S4-221548.

[
7.2 Considerations on Reports for PDU Set feature

7.2.1 Available information on PDU Sets

The RTP Header Extension for PDU Set marking provides the following information:

-
End PDU of the PDU Set [E] (1 bit)
-
End of Data Burst [EDB] (3 bits)
-
PDU Set Importance [PSI] (4 bits)
-
PDU Set Sequence Number [PSSN] (10 bits)
-
PDU Sequence Number within a PDU Set [PSN] (6 bits)
-
PDU Set Size [PSSize] (24 bits)

Under the assumption that the above information will be provided by RTP header extension(s), it is expected that an RTP receiver can acquire the following information for an interested time window:

-
Number of completely received PDU Sets,

-
Fraction/Number of incompletely (or completely) received PDU Sets, and

[-
An estimate of the statistical variance of the PDU Set interarrival time]

Under the same assumption, the following information for each PDU Set can be available in an RTP receiver:

-
Indication whether a PDU Set has been completely received,
-
Number of received PDUs in a PDU Set,
-
Fraction/Number of lost PDUs in a PDU Set (when the number of PDUs in a PDU Set is known by the RTP receiver, e.g., when it receives the end PDU of the PDU Set)

[-
PDU Set delay for a completely received PDU Set]

It is noted that the above information can also be organized on a PDU Set Importance basis.
7.2.2 Delivery of Reports on PDU Sets

There are number of possible ways to encapsulate the information discussed in section 6.4.1 into RTCP packets including profile-specific extensions to the sender (PT=200) and receiver report (PT=201) [2], Application-defined RTCP packet (PT=204) [2], Extended Report (XR; PT=207) [3], Generic RTP Feedback (RTPFB; PT=205) [4] and Payload-specific Feedback (PSFB; PT= 206) [4]. As the PDU Set feature should be supported across RTP profiles and payload types, it is recommended to use Extended Report (XR; PT=207) [3] and/or Generic RTP Feedback (RTPFB; PT=205) [4] as a container(s) for PDU Set-based RTCP feedback.

The format of an XR packet with a single report block is as follows [3]:

[image: image12.png]
An XR packet consists of a header of two 32-bit words, followed by a number, possibly zero, of extended report blocks which comprises of BT, type-specific, block length and type-specific block contents. Extended report blocks can be stacked, one after the other, at the end of an XR packet. The value of BT (block type) field identifies the block format and its name space is managed by IANA:

https://www.iana.org/assignments/rtcp-xr-block-types/rtcp-xr-block-types.xhtml
The packet format of an RTCP Feedback Message is as follows [4]:

[image: image13.png]
The PT (payload type) field identifies the packet as being an RTCP FB message. Currently two values are defined by the IANA: PT=205 for RTPFB (transport layer FB message) and PT=206 for PSFB (payload-specific FB message). The FMT (feedback message type) field identifies the type of FB message and is interpreted relative to the payload type (i.e., RTPFB or PSFB). The FMT values for both the RTPFB payload type and the PSBF payload type are managed by IANA:

https://www.iana.org/assignments/rtp-parameters/rtp-parameters.xhtml
NOTE: The detailed format for PDU Set-based RTCP feedback is FFS as it may depend on other aspects of the PDU Set feature including RTP header extension and usage scenarios.
]
8 Proposal

It is proposed to agree on the above version of the 5G_RTP Permanent Document that includes the additions from SA4#122 relating to document [8], [9], [10].
9 References
[1] S4-220731, Agreed at SA4#119e.

[2] S4-221087, Agreed text to be added in brackets at SA4#120e.

[3] IETF RFC3550, "RTP: A Transport Protocol for Real-Time Applications", July 2003

[4] IETF RFC8285, “A General Mechanism for RTP Header Extensions”, Oct. 2017

[5] IETF RFC3711, “The Secure Real-time Transport Protocol (SRTP)”, March 2004

[6] IETF RFC6904, “Encryption of Header Extensions in the Secure Real-time Transport Protocol (SRTP)”, April 2013.
[7] S4-221555. Section 2 agreed at SA4#121.

[8] S4-230147. Section 2 agreed (to be added in brackets) at SA4#122.

[9] S4-230290. Section 2 agreed at SA4#122.

[10] S4-230359. Section 3 agreed at SA4#122.

[11] S4aR230057 agreed at RTC telcos between SA4#122 and SA4#123e.

[12] S4aR230062 agreed at RTC telcos between SA4#122 and SA4#123e.
� Contact: Igor D.D. Curcio, Nokia Corporation, Tampere, Finland, igor.curcio@nokia.com

- 4/4 -

