
Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA WG4#124	S4-230913
Berlin, De, 22nd – 26th May 2023

[bookmark: _Hlk126577385]Source: 				 Interdigital Finland Oy
Title: 	[MeCAR] Update the rendering loop description in clause 5.2.3
Agenda item: 	9.5
Document for:	Discussion and Agreement 

[bookmark: _Toc504713888]Discussion

The above description of the rendering loop in the section 5.2.3 of the MeCAR PD defines a single rendering processing module which takes as inputs the actions and the viewer pose to render the 3D scene.
However, before rendering a 3D scene from the viewer pose, the XR application needs to consider any change/modification of the virtual objects by updating the related scene graph. This update operation includes potential physics simulation, the handling of interactivity events (trigger activation, launching of actions). It may be time-consuming, and its duration may vary from one rendering frame to another.
Therefore, from a QoE perspective, it is critical to distinguish the scene update and the rendering processing steps for the delay measurement.

Proposed changes

--------------------------------------------- Begin change ------------------------------------------------------------------------
5.2	Metrics Observation Points and KPIs
[bookmark: _Toc132968693]5.2.3	Typical Latencies in networked AR Services and their Measurements

[bookmark: OLE_LINK8]Building on top of the architectures introduced in TR 26.998, in this document as well as the latency considerations in TR 26.928, Figure 4.5.3-1 provides a summary of different latencies involved networked AR services. Based on TR 26.928 as well as Table 5.2.3-1, two relevant latency requirements for adequate user experience matter:
-	motion-to-photon latency being less 20ms, but preferably even single digit latency below 10ms.
-	pose-to-render-to-photon latency: as small as 50-60ms
It is important to note that the motion-to-photon latency is primarily a function of the device implementation as it is basically covered within the AR runtime. What matters and is relevant is the time used to provide the pose information from the AR runtime to the renderer and the renderer using this pose to generate the displayed media. Final pose correction to the latest pose may always be done in the AR runtime.
Figure 5.2.3-1 (based on Figure 4.5.3-1 from TR 26.998) provides different latency critical uplink and downlink operations, depending on where the rendering is done, locally, in the edge or in the cloud. If done in the edge or cloud, rendered data needs to be delivered in low-latency and high-quality over the network. The typical operations in this case include: 
-	pose detection in the UE
-	sending the pose through a 5G uplink network to the edge of cloud.
-	rendering the scene in the edge or cloud
-	compressing and encrypting the rendered scene and delivering to the UE
-	decrypting and decompressing the rendered scene
-	composition of the scene
-	applying the latest pose in the pose correction and display the immersive media.
Note that Figure 5.2.3-1 also adds buffers that are typically handled by the AR Run time, namely eye and depth as well as sound buffers. 
[image: A picture containing text, screenshot, diagram, graphic design

Description automatically generated]
Figure 5.2.3-1: Typical Latencies in networked AR services with OPs
It is ultimately relevant that in case of networking the rendering loop, the processes in the loop are executed such that the end-to-end latency requirements for the pose-to-render-to-photon latency are ensured. Clearly the “closer” the rendering happens at the AR UE, the easier it is to meet latency requirements. However, with proper support of 5G system and media functionalities, these networked AR challenges are solved. This is subject of the remaining discussion of this report.
With reference to TR 26.928 , other types of latencies impact the user experience, for example when used for cloud gaming, interactive scenes or in case of real-time network-based processing of sensor data. These aspects are not specific to AR but are also relevant. 
Figure 5.2.3-1 also adds the OPs. 
Editor’s Note: the above diagram is expected to be further updated and refined based on the agreements of the XR baseline client.

Based on the OPs, a subset of the latencies can be measured.
In order to collect the information related to latencies, the rendering loop of an XR Runtime needs to be understood.
Once a session is running and is in focused state, the rendering loop as shown in Figure 19 can be used:
1)	Before an application can begin writing to a swapchain image, it first waits on the image to avoid writing to it before the Compositor has finished reading from it. Then an XR application synchronizes its rendering loop to the runtime. In the common case that an XR application has pipelined frame submissions, the application is expected to compute the appropriate target display time using both the predicted display time and predicted display interval. 
2) 	Once the wait time completes, the application initiates the rendering process. In order to support the application in rendering different views the XR Runtime provides access to the viewer pose and projection parameters that are needed to render the different views. The view and projection info is provided for a particular display time within a specified XR space. Typically, the target/predicted display time for a given frame.
2) 	Before rendering the scene, the scene manager shall update the representation of the scene. This operation consists in updating the background texture, adding/removing objects to the scene, updating the pose of the virtual viewpoint according to the viewer pose estimation, updating the properties and the pose of virtual objects according to physics simulation, defined animations, runtime interactions and/or pose estimation updates of Augmented Reality (AR) anchor(s).
3)	the application then performs its rendering work. Rendering work may be very simple, for example just directly copying data from the application into the swap chain or may be complex, for example iterating over the scene graph nodes and rendering complex objects. Once all views/layers are rendered, the application sends them to the XR Runtime for final compositing including the expected display time as well as the associated render pose.
4)	The XR application offloads the composition of the final image to an XR Runtime-supplied compositor. After the compositor has blended and flattened all layers, it then presents this image to the system’s display at a specific display time.

Core aspect in metrics computation are:
· The time difference when the view and projection info is sampled from the run time and the time when the corresponding rendered information is provided to the run time for display with the associated render pose.
· The difference of the associated render pose and the actual pose at the time when the data is rendered.


[image: A picture containing text, screenshot, diagram, font

Description automatically generated]

[bookmark: _Ref132927835]Figure 19 - Rendering loop for visual data
Detailed algorithms are ffs.

--------------------------------------------- End change ---------------------------------------------------------------------


Proposal
We propose to update clause 5.2.3 of MeCAR PD v0.7.0 with the proposed changes.




- 12/13 -
image1.png

image2.emf
XR DeviceXR ApplicationXR RuntimeCamerasSensorsDisplaysComposition and WarpingRuntime functions (tracking, SLAM)Controllersperipheral managementSwapchainRendering LoopRenderingActionsComposition Layers+ display time+ render pose@XRSpaceViewer pose at expected display time 


Microsoft_Visio_Drawing.vsdx
XR Device
XR Application
XR Runtime
Cameras
Sensors
Displays
Composition and Warping
Runtime functions (tracking, SLAM)
Controllers
peripheral management
Swapchain
Rendering Loop
Rendering
Actions
Composition Layers + display time + render pose@XRSpace
Viewer pose at expected display time



image3.png

