Page 4
Draft prETS 300 ???: Month YYYY
3GPP TSG SA WG4#123-e	S4-230588
17th – 21st of April 2023 	

[bookmark: _Hlk126577385]Source: 				 Interdigital Finland Oy
Title: 	[FS_AI4Media] Intermediate data testbed implementation example
Agenda item: 	9.7
Document for:	Discussion
1. [bookmark: _Toc504713888]Introduction

It was agreed at the SA4-122 meeting to select one or several frameworks and/or libraries and a list of models as a baseline to conduct the traffic characteristics measurement on AIML data.

This contribution illustrates a quick overview of how to implement an intermediate data testbed based on TensorFlow/Keras where:
· AI/ML model task is image classification.
· AI/ML pre-trained models are Resnet and VGG16 (pre-trained on ImageNet)
· Input of these models is an image.
· Output of these models is a classification result, the predicted probabilities for each of the 1000 classes in the ImageNet dataset.

2 Testbed implementation overview

This testbed implements the Intermediate data testbed architecture described in S4-230587

It is composed of

· Reference framework/library: TensorFlow/Keras (2.10.0); python language (3.8.10)
· Reference trained model: Keras applications Resnet and VGG16.

VGG16 model is imported with following code:
	[bookmark: _Hlk131176902]from tensorflow.keras.applications.vgg16 import VGG16
base_model = VGG16(weights='imagenet')

“base_model” is the full model VGG16 with pre-trained weights.

Resnet model is imported with a similar code:
	from tensorflow.keras.applications.resnet50 import ResNet50
base_model = ResNet50(weights='imagenet')

· Split points model configuration
This configuration contains the list of candidates split point.
For example, for VGG16, layers are: ["input_1","block1_conv1", "block1_conv2", "block1_pool", "block2_conv1", "block2_conv2", "block2_pool", "block3_conv1", "block3_conv2", "block3_conv3", "block3_pool", "block4_conv1","block4_conv2", "block4_conv3", "block4_pool", "block5_conv1", "block5_conv2", "block5_conv3", "block5_pool", "flatten", "fc1", "fc2", "predictions"]
This list can be obtain like this:
	[layer.name for layer in base_model.layers]

Candidates split point is a subset of this list, like for instance ["block1_conv1", "block2_conv1", "block3_conv1", "block4_conv1","block5_conv1", "fc1"]

At each side the model needs to be splitted at the desired split layer (referenced as <split_layer_name> below)
Basically a model can be split this way with Keras: (more operations may be needed)
	split_layer = base_model.get_layer(name=<split_layer_name>)
local_model = Model(model.inputs, split_layer.output)
remote_model = Model(Input(tensor=split_layer.output), model.outputs)

local_model is the sub-model ready to run on the local side.
remote_model is the sub-model ready to run on the remote side.

· Reference test data: images that can be classified in ImageNet classes, for example the image of a cat.

 Keras supports preprocessing functions to easily pre-process a picture for the model
	[bookmark: _Hlk131177130]from tensorflow.keras.applications.vgg16 import preprocess_input
from tensorflow.keras.preprocessing import image
img = image.load_img(<path_to_raw_reference_data_image>, target_size=(224,224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
preprocessed_image = preprocess_input(x)

preprocessed_image is the source image to predict ready to be processed by the model.

· Inference nodes
· Local inference node: The local inference node emulates an end-device such as a UE
The local inference is made by:
	intermediate_data = local_model.predict(preprocessed_image)

· Remote inference node: The remote inference node emulates a network node such as edge/cloud/5G CN Application server.
Remote inference is made by:
	from tensorflow.keras.applications.vgg16 import decode_predictions
preds = remote_model.predict(intermediate_data)
print('Predicted:', decode_predictions(preds, top=3)[0])

decode_predictions() is a tool that return the class names and probabilities, fort example of the first top 3 best predictions.
Note: according to the target application, the call to decode_prediction() could be done at remote side or local side.
· Data Delivery/Access. This may include selection of different means for delivery and access of intermediate data. A simple choice can be:
· Data encoding/decoding: JSON serialization
	# On server side aiml_model_result=json.dumps({'preds':preds.tolist(),'remote_model_inference_time':model_inference_time,'server_physical_gpus':server_physical_gpus)

· Uplink/Downlink communications: TCP socket (SOCK_STREAM) Lib/socket.py
· Metric computations: List of metrics measured from both nodes.
· Split points characterization
· model name
· split layer name
· Split Layer data
· Input data size
· preprocessed input data size
· intermediate data size (Raw)
· intermediate data size delivery size after serialization/compression
· inference latency metrics
· local model inference time
· remote model inference time
· Total local and inference time
· Network metrics
· intermediate data delivery time
· End to end latency regarding different split points selection
· Computing power consumption (CPU or GPU configured on both sides)
· CPU/GPU estimation [not yet implemented]
· Memory usage on both side [not yet implemented]
· Energy consumption [not yet implemented]

3 Conclusion
In this contribution, we have illustrated an example of an intermediate data testbed based on TensorFlow/Keras in support of our proposal in S4-230587.
Note: It is straightforward to implement the same example testbed in PyTorch.

- 12/13 -
image1.emf
Local

inference

node

Remote

Inference

node

Reference trained model

Reference test

data input

Reference training

data

Split points model configuration

Metrics computation

Network

Links

Reference framework/library

Metrics computation

Data

Delivery/

Access

Data

Delivery/

Access

Reference model architecture

Microsoft_Visio_Drawing.vsdx
Local inference node
Remote Inference node
Reference trained model
Reference test data input
Reference training data
Split points model configuration
Metrics computation
Network Links
Reference framework/library
Metrics computation
Data Delivery/Access
Data Delivery/Access
Reference model architecture

