Page 4
Draft prETS 300 ???: Month YYYY
[bookmark: _Hlk54879034]3GPP TSG SA WG 4 meeting #122	S4-23XXXX
20–24th February, 2023, Athens, Greece 	

Source: 	Nokia Corporation[footnoteRef:2] [2: Contact: Igor Curcio, Saba Ahsan, Serhan Gül, Nokia Technologies, Finland. Emails: igor.curcio, saba.ahsan, serhan.guel@nokia.com.]

Title: 	[MeCAR] Addition of eye gaze to interaction metadata
Document for	Agreement
Agenda item: 	9.5
	
Introduction
MeCAR PD v4 classifies AR/MR data into three categories: device capability, media description and interaction metadata. The listed interaction data includes AR anchor, user pose, FOV, viewport, gesture, body action, facial expression and sensor information. However, eye gaze is missing in the current version.
Eye tracking is widely supported by MR headsets e.g. Microsoft HoloLens 2, Meta Quest Pro. Current devices typically perform tracking using a set of infrared (IR) emitters to illuminate the eye and an IR camera to capture eye images. The user’s gaze is then estimated from the appearance of eye using image processing algorithms.
Eye gaze data enables several functionalities in XR applications. Some example are eye-supported selection and control of objects, automatically scrolling through text and attention tracking.
Eye gaze input is enabled in OpenXR by an extension that defines an interaction profile path and input type. This extension is implemented by several XR engines such as Unity [1] and Unreal [2].
Proposal
We propose to modify Table 2 as below to add eye gaze as an interaction data type to the MeCAR PD.

Table 2 – AR/MR Data type definitions
	AR/MR Data category
	AR/MR
Data type
	Definition
	Media type description (Examples)

	…
	…
	…
	…

	Interaction
	AR Anchor
	The AR anchor is meant to identify a point in the user space to be used to anchoring a visual object (2D or 3D)
	Type: Metadata allowing accurate overlaying/rendering of text, graphics or video contents to support Use Case 8 of TR 26.928.
Organization: None

	
	User Pose
	Clause 4.4.3.1 of 3GPP TR 26.998[1]
Representation of the user position and orientation
	Type: It consists of a quaternion for orientation and a 3D vector for position. Timestamp is represented by a 64 bit monotonically increasing nano-second-based integer.
Organization: Khronos OpenXR

	
	FOV
	Y.6.2.3 of 3GPP TS 26.114[3]
The Field of View (FOV) is the extent of observable world at any given moment
	Type: It consists of vertical fov and horizontal fov.
Organization: None

	
	Viewport
	Y.7.2 of 3GPP TS 26.114[3]
The viewport corresponds to the projection of the user View onto a target display
	Type: It shall contain all of the parameters Viewport_azimuth, Viewport_elevation, Viewport_tilt, Viewport_azimuth_range and Viewport_elevation_range
Organization: None

	
	Gesture
	TBD
	Type: A array of finger joint position.
For example: https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html#XR_EXT_hand_tracking
Organization: OpenXR

	
	Body action
	TBD
	Type: bvh format.
Frequency: at least 1kHz
Organization: BioVision company

	
	Facial expression
	TBD
	Type: An array of key point position.
For example: https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html#XrSystemFacialTrackingPropertiesHTC
Organization: None

	
	Sensor information
	TBD
	Type: a new interaction profile path
For example, OpenXR EXT format offers the possibility to developers to integrate and benefit from new controllers and sensor subsystems, (e.g., https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_EXT_hp_mixed_reality_controller, etc.).
Organization: OpenXR

	
	Eye gaze
	Eye gaze typically consists of a gaze origin (a point positioned between the user’s eyes) and a gaze direction, a ray pointing towards where the user is looking at.
	Type: 3D vector for gaze origin and a quaternion for gaze direction.
For example, OpenXR defines a new interaction profile path for eye gaze input:
https://registry.khronos.org/OpenXR/specs/1.0/html/xrspec.html#XR_EXT_eye_gaze_interaction
Organization: OpenXR

[1] https://docs.unity3d.com/Packages/com.unity.xr.openxr@1.0/manual/features/eyegazeinteraction.html
[2] https://docs.unrealengine.com/4.26/en-US/API/Plugins/OpenXREyeTracker/IOpenXREyeTrackerModule/

- 4/4 -
