Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 Meeting #122	Tdoc S4-230140
20th – 24th February 2023, Athens, Greece

Agenda item: 	10.8
Source: 	Qualcomm Inc.
Title: 	Signaling the render pose and other related information
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
Split rendering allows for the enhancement of the user experience through providing access to advanced and sophisticated rendering that would otherwise not be possible or very power hungry on the AR glasses or the UE.
In split rendering all or parts of the 3D scene are rendered remotely on an edge application server. The results of the split rendering process are streamed down to the UE or AR glasses for display. The spectrum of split rendering operations may be wide, ranging from full pre-rendering on the edge to offloading partial, processing-extensive rendering operations to the edge. The following figure depicts this variety in split rendering configurations:

On the left side of the spectrum, the edge application server would produce a single 2D video rendering of the visual scene. Depending on the configuration of the UE, a rendering to two eye buffers with the appropriate projection may be needed. Other supporting streams, such as depth or transparency may be added too.
Partial offloading would delegate some rendering operations to the edge application server, while still receiving a 3D scene at the UE. An example would be to offload light baking of the scene textures to the edge, which may be performed with techniques like ray tracing. The following picture shows the impact this could have on a rendered scene.

The UE/AR glasses stream the pose predictions to the split rendering server in the edge. It then receives the rendered media for display. The XR runtime expects the rendered data to be passed together with the associated pose for proper composition and display. For instance, the XR runtime may need to perform pose correction to match the current display time.
In this contribution, we propose a new RTP header extension to convey the render pose together with the rendered image(s).
1. OpenXR Rendering Loop
OpenXR is an API that is developed by the Khronos Group for developing XR applications that address a wide range of XR devices. XR refers to a mix of real and virtual world environments that are generated by computers through interactions by humans. XR includes technologies such as virtual reality (VR), augmented reality (AR) and mixed reality (MR). OpenXR is the interface between an application and XR runtime. The runtime handles functionality such as frame composition, user-triggered actions, and tracking information.
OpenXR is designed to be a layered API, which means that a user or application may insert API layers between the application and the runtime implementation. These API layers provide additional functionality by intercepting OpenXR functions from the layer above and then performing different operations than would otherwise be performed without the layer. In the simplest cases, the layer simply calls the next layer down with the same arguments, but a more complex layer may implement API functionality that is not present in the layers or runtime below it. This mechanism is essentially an architected "function shimming" or "intercept" feature that is designed into OpenXR and meant to replace more informal methods of "hooking" API calls.
Applications may determine the API layers that are available to them by calling the xrEnumerateApiLayerProperties function to obtain a list of available API layers. Applications then may select the desired API layers from this list and provide them to the xrCreateInstance function when creating an instance.
API layers may implement OpenXR functions that may or may not be supported by the underlying runtime. In order to expose these new features, the API layer must expose this functionality in the form of an OpenXR extension. It must not expose new OpenXR functions without an associated extension.
An OpenXR instance is an object that allows an OpenXR application to communicate with an OpenXR runtime. The application accomplishes this communication by calling xrCreateInstance and receiving a handle to the resulting XrInstance object.
The XrInstance object stores and tracks OpenXR-related application state, without storing any such state in the application’s global address space. This allows the application to create multiple instances as well as safely encapsulate the application’s OpenXR state since this object is opaque to the application. OpenXR runtimes may limit the number of simultaneous XrInstance objects that may be created and used, but they must support the creation and usage of at least one XrInstance object per process.
Spaces are represented by XrSpace handles, which the application creates and then uses in API calls. Whenever an application calls a function that returns coordinates, it provides an XrSpace to specify the frame of reference in which those coordinates will be expressed. Similarly, when providing coordinates to a function, the application specifies which XrSpace the runtime to be used to interpret those coordinates.
OpenXR defines a set of well-known reference spaces that applications use to bootstrap their spatial reasoning. These reference spaces are: VIEW, LOCAL and STAGE. Each reference space has a well-defined meaning, which establishes where its origin is positioned and how its axes are oriented.
Runtimes whose tracking systems improve their understanding of the world over time may track spaces independently. For example, even though a LOCAL space and a STAGE space each map their origin to a static position in the world, a runtime with an inside-out tracking system may introduce slight adjustments to the origin of each space on a continuous basis to keep each origin in place.
Beyond the well-known reference spaces, runtimes expose other independently tracked spaces, such as a pose action space that tracks the pose of a motion controller over time.
The following figure depicts the lifecycle of an application that uses OpenXR for interaction and rendering with/to an HMD.

The rendering process is depicted by the following figure:

The application calls the xrWaitFrame to wait for the opportunity to display the next frame. Once the call returns, it informs the runtime that it starts to render into the swapchain images by calling the xrBeginFrame. The application calls the xrAcquireSwapchainImage or the xrWaitSwapchinImage to get exclusive access to the swapchain images for rendering. The application then uses a graphics engine of its choice, such as Vulkan or OpenGL, to render the scene. Once done, the application releases the swapchain images by calling the xrReleaseSwapchainImage and passing the rendered frame to the XR runtime through a call to xrEndFrame.
For split rendering, the graphics work is performed completely or partially in the edge. Instead of sending the current pose and waiting for a response from the edge, the application would send a predicted pose some time in the future and render the frame that was last received from the edge.
1. RTP Header Extension for Rendered Pose
The split rendering server streams the rendered frame using one or more video streams, depending on the view and projection configuration that is selected by the UE. The server uses the proposed RTP header extension to associate the selected pose with the rendered frame. An RTP header extension is the most appropriate option to associate the rendered frame with its pose as it is carried as part of the RTP packets that carry the rendered images of a frame. The RTP header extension may also be used with audio streams of a split rendering process.
Header extensions are declared in the SDP using the “a=extmap” attribute as defined in RFC8285. The header extension is identified through an association between the URI of the header extension and an ID value that is contained as part of the extension. The rendered pose header extension should use the following URN: “urn:3gpp:xr-rendered-pose”.
The two-byte header format of the header extension is used for signaling the rendered pose. The format of the rendered pose header extension is as follows:
0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| 0xBE | 0xDE | length=1 |
+-+
| ID=1 | length=48 |
+-+
| x |
+-+
| y |
+-+
| z |
+-+
| x |
+-+
| rx |
+-+
| ry |
+-+
| rz |
+-+
| rw |
+-+
| |
| timestamp |
+-+
| action_id #1 | ... |
+-+

The (x,y,z) provides the position of the rendered pose and the (rx,ry,rz,rw) provides the orientation of the rendered pose. The timestamp represents the predicted time for the pose. Alternatively to this format, the application and the rendering server may use unique identifiers for the transmitted pose information to reduce the required extension header size.
The header also provides the identifiers of all actions that were processed for the rendering of the frame.
1. Processing
The received rendered frames are stored temporarily in a buffer while waiting for the next display opportunity as a response to the xrWaitFrame call. The rendered pose and actions are stored together with the received frame. Upon receiving the predicted timestamp for the next display frame, the application will check the buffer for a buffer frame that minimizes the gap between display time and the frame timestamp. It may also chose a frame that reflects the latest actions that were taken by the user.
1. Proposal
We propose to agree to define the RTP header extension for the rendered pose information.
- 12/13 -
image1.png

image2.png

image3.png

image4.png

