
[bookmark: _Hlk117242805][bookmark: _Hlk117242806][bookmark: _Hlk117242813][bookmark: _Hlk117242814]3GPP TSG SA WG4 Meeting #121 	S4-221276
Toulouse, France, November 14–18, 2022

3GPP TSG SA WG4 Meeting #121 	S4-221276
Toulouse, France, November 14–18, 2022

Agenda Item:		10.5
Source:		Facebook Japan K.K. (Rapporteur)
Title:			iRTCW Permanent Document
Version:		0.2014
Document for:	Discussion & Agreement

This document includes texts, figures, or other information that may complement TS 26.113 or be included later. Sections 4-8 of this document are related to clauses 4-8 of TS 26.113 respectively.

Introduction

4.	System description
4.1	High-level architecture
4.2	iRTC client in terminal
4.3	Web real-time communication

5.	Functional components
5.1	Audio
5.1.1	Microphone description
A microphone array description is provided in [10] and further extended below as an example. The sending or receiving iRTC client, or audio infra may identify the direction of each microphone from a set of angles and a type (e.g., pick up pattern). Alternatively, they may identify the position of each microphone from a set of cartesian coordinates.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
In many spatial audio formats, a microphone processing block converts raw signals from microphones into a device-independent representation.

[image: Diagram

Description automatically generated]
The angles are expressed in units of 1/10000 radians. For example, 3.1416 () radians is expressed as 31416.
	Parameter
	Unit
	Definition
	Note

	Yaw (𝛹, psi)
	int
	Direction angle
	-31416 < 𝛹 ≦ 31416

	Pitch (𝛳, theta)
	int
	Elevation angle
	-31416 < 𝛳 ≦ 31416

	Roll (𝛷, phi)
	int
	Rotation angle
	-31416 < 𝛷 ≦ 31416

	MicrophoneType
	int
	A number that uniquely identifies microphone type
	May be used for indicating vendor-defined types

These parameters can describe the orientation of each microphone relative to a camera, and its type. The rotation angle, not defined in [10], can be used to indicate the rotation of a directional microphone . It is assumed that the RGB or D cameras for capturing 2/3D video are located on a plane parallel to the ZY plane, pointing objects in the direction of X axis. This information on the direction of microphones (with respect to cameras) can be used for improved spatial capture of the sound field and subsequent post processing in terms of noise reduction or sound source decomposition.
Although typical UEs (at the time of writing this contribution) have 2-3 microphones, they are rarely located on the same plane. Usually, a microphone is located on top of a display while another is located at the bottom of UE. Sometimes a microphone is located on the other side of display (with main cameras). Therefore, the Linear or Planar mode [10], designated with the wMicArrayType parameter, would not be applicable.
In some contemporary UEs, e.g., foldable devices, the direction or elevation angle may be different in each session or even vary during a session, and the sending or receiving iRTC client, or audio infra may need to be informed of such changes for proper rendering. In addition to the geometric description, if applicable, other or additional information may be beneficial to the microphone processing, e.g.:
· acoustic overload point (AOP) for estimating the loudness (pressure level) of sounds in recorded audio signals
· total harmonic distortion (THD) for understanding nonlinearity in captured audio signals
· microphone sensitivity response for potential post equalisation.
Editor’s Note: Need for transmitting this information will be discussed and studied further.
5.2	Video
5.2.1	3D video capture
5.2.1.1	Depth formats & point cloud generation
Resolutions and rates of RGBD frames would influence the overall quality and their minimum required (or recommended) values may be specified for iRTC & other RTC applications. FoVs (horizontal and vertical) of RGBD frames, typically depending on the number and location (distance) of sensors, may also be specified.
5.2.1.2	Depth formats & point cloud generation
Depth information is typically stored in 16-bit unsigned integer format, which indicates the distance between each point and a vertical plane including the depth sensors, which typically consist of an (IR) transmitter and one or more receivers, in millimeter [1], [2]. Each point in 3D space is mapped onto a 2D image plane via a series of transforms illustrated below.
[image: Diagram

Description automatically generated]
[bookmark: _Hlk117259904]Mapping of 3D points to 2D image plane [3]
In the figure, [R t]T represents the rotation and translation from a 3D world coordinate system to a 3D camera’s coordinate system, whose parameters can be supplied by UE’s motion sensors. K is the camera intrinsic matrix defined as
[image: Shape

Description automatically generated with medium confidence]
where
	Parameter
	Unit
	Definition
	Note

	fx
	float
	X-axis focal length (in pixel)
	

	fy
	float
	Y-axis focal length (in pixel)
	

	cx
	float
	X-axis principle point (in pixel)
	

	cy
	float
	Y-axis principle point (in pixel)
	

	s
	float
	Skew coefficient
	Zero if image axes are perpendicular

Depending on notation, transpose of K is also used as a camera intrinsic matrix. These device-specific information is supplied by typical OSs used in UEs [4], [5], which assume s=0. Therefore, a point cloud in e.g., PLY format can be generated from a pair of RGB and D frames by reversing the transforms, with parameters available to applications in UEs. The FoVs of RGB and D cameras will be in general different and how to align them is left to the discretion of the implementation.
5.2.2	Size measurement of 3D Objects
In [6], the needs for scaling 3D objects were illustrated for several scenarios. The conference managing server or receiving iRTC client needs the size information of 3D objects for a proper scaling. How to define or estimate the size of 3D (point cloud) objects, e.g., by recycling some information gathered in the generation of point cloud or using a separate set of sensors, has yet to be discussed.
There are smartphone applications that estimate the length, width and height, or volume of objects seen through the viewfinder. The measurement in general depends on the types of cameras used. These applications typically place a box or cube around an object and show the measured values. If the cube around a 3D object is set to a minimum, then the size of the cube may be used as an estimate of the object’s size, as illustrated below:
[image: Graphical user interface

Description automatically generated with medium confidence]
Camera-based measurement applications [7], [8]
Considering that typical depth cameras represent the depth information in millimeter [9], the size information may be similarly represented as
	Parameter
	Unit
	Definition
	Note

	w
	Int
	Width of cube (in mm)
	

	h
	Int
	Height of cube (in mm)
	

	d
	int
	Depth of cube (in mm)
	

The size information can be signalled to a far-end iRTC client or conference managing server for scaling the 3D object to other objects or backgrounds. The size information may be transmitted periodically or in an on-demand fashion, depending on applications, and may also be used locally.
[image: Graphical user interface, diagram, text, application

Description automatically generated with medium confidence]
The error in the size estimation may be reduced by following common rules for placing boxes or cubes during initial measurements. A cube may not always be an optimal form to contain a point cloud captured with a limited number of RGB or D sensors of UEs, which may also depend on the FoVs of the cameras.
Editor’s Note: This will be discussed also with Video SWG.
[bookmark: _Hlk117259603]5.2.3	Use cases and requirements for volumetric video dynamic 3D representation
Use cases 19 and 22 in TR 26.998 provide an AR conferencing experience. In both cases, participants can capture their 3D dynamic representation in real-time and share it with others in a shared AR experience. In this clause we state the requirements related to capturing and transporting the dynamic 3D representation of an object under conversational constraints. Dynamic 3D representation in this context is a format for defining the 3D model of an object (e.g., a caller) that is captured in real-time using one or more cameras. A dynamic 3D representation can be a point cloud or 3D mesh.
TR 26.998 section 4.4.5 defines some existing formats used for dynamic 3D representations. The Virtual Reality Industry Forum (VRIF) has recently issued their first Volumetric Video Guidelines, addressing volumetric video production workflows and media profile standards for volumetric media distribution [11]. Based on the requirements for encoding, transporting, and decoding volumetric media, the following sub-categories are defined for the different use cases and their associated requirements. The proposed solution uses RTP for low-latency delivery of dynamic 3D representations.
5.2.3.1	AR two-party calls
[image: Graphical user interface, diagram

Description automatically generated]
The use case in Figure [xx] establishes a bidirectional AR two-party call, which may or may not use the MCU (MRF for IMS). It should be possible to combine other functions, e.g., 2D video, 360-degree video, images, etc., which are not shown in the figure for simplicity.
The dynamic 3D representations delivery in this case is over RTP. It is bidirectional with conversational latency requirements. The dynamic 3D representation can be delivered over one of the two paths shown in the figure. Path A goes through the MCU (MRF for IMS) and Path B is point-to-point.
Non-real-time 3D representations can be delivered via the data channel as shown in the figure.; the term 3D representation here includes both dynamic and static 3D representations, which are not captured and delivered under conversational latency requirements. The data channel is a WebRTC data channel or an IMS data channel. The IMS data channel used is as defined by TS 26.114. Further requirements, if needed, can be defined for using the data channel to transport 3D representations.
The following set of requirements relate to the bidirectional conversational dynamic 3D representation:
1) Call setup and control: this building block covers
a) signaling to setup a call or a conference – basic functions already provided by MTSI and will be covered also in IRTCW.
b) fetching of the entry point for the AR experience. The protocol needs to support upgrading and downgrading to/from an AR experience. Dependency on MeCAR to define device types.
2) Formats: The media and metadata types and formats include in addition to the ones already covered by MTSI, volumetric media. Format properties and codecs need to be defined for dynamic 3D representations along with appropriate RTP payload formats and functions. Appropriate codecs need to be defined by MeCAR for encoding, decoding and rendering dynamic 3D representations.
3) Real-time encoding and decoding with latency requirements for conversational media.
4) Enhancements to SDP, scene description to support AR telephony.
5) For AR telephony media types (e.g., dynamic 3D representation), the necessary QoS characteristics need to be defined.
6) Support for AR media processing in the MCU (MRF for IMS).
7) 5G system integration: offering the appropriate support by the 5G system to AR telephony includes:
a) discovery and setup of MCU (MRF) resources to process AR telephony media types.
b) defining the necessary QoS characteristics for AR telephony media types.
c) data collection and reporting.
5.2.3.2	AR two-party calls
[bookmark: _Hlk117260308][image: A screenshot of a computer

Description automatically generated with medium confidence]
The use case in Figure xy establishes a multiparty call. The call may be unidirectional (one dynamic 3D representation sender and multiple receivers, 1:N) or bidirectional (multiple dynamic 3D representation senders and multiple dynamic 3D representation receivers, N:N). The 1:N case can be addressed first as part of this work as it is simpler. The N:N case can be addressed later.
In addition to the requirements of use case 2.1, the following requirements need to be considered for AR multi-party calls:
• Signalling for establishing a multiparty call. This may be done in a similar way as for traditional MTSI/WebRTC calls.
• Expanding scene description to address the case of multiple senders and multiple receivers; defining appropriate procedures to maintain position of all participants in the rendered space for each participant.
• Mixing/transcoding in the MCU (MRF for IMS) to combine content from multiple participants. This may include, e.g., scaling and placement of 3D representations in a virtual room. Other requirements can also be studied.
More advanced requirements may also be considered based on the existing use cases in FS_5GXR and FS_5GSTAR
• Integration with other 5G services such as 5GMS for DASH delivery of AR media (that is not used for delivering conversational AR media but possibly video streams for a shared experience) along with conversational media.
• Maintaining consistent head motion and eye-contact in a multiparty call with 3D avatars.
Editor’s Note: The discussion here uses entities, such as MRF, from the IMS architecture. The figures can be modified once the architecture for WebRTC has been defined.
5.3	Sensor
5.4	Transport protocols

6.	Session management
6.1	WebRTC functions in 5GS

7.	Inter-workingPacket-loss handling

8.	Packet-loss handlingAdaptation

9.	Architecture and function
9.1	WebRTC QoS architecture
Collaboration scenarios.
9.1.1	5G support for OTT WebRTC
In this scenario, the application provider offers a WebRTC service to their customers and is responsible for the security and privacy of the data exchanged over their service. The application provider desires to improve the quality of the service for mobile users.
The collaboration scenario is similar to the 5GMS streaming model, where all involved Application Servers (AS) are in non-trusted domain.
The following figure depicts this collaboration scenario:
[image: A screenshot of a computer

Description automatically generated with medium confidence]

9.1.2 MNO-provided trusted WebRTC functions
In this collaboration scenario, the user utilizes a variety of WebRTC-based conferencing services for personal and work purposes. The user is concerned about their privacy, e.g., through threats from man-in-the-middle attacks that result from usage of untrustworthy ICE functions. the user opts for using a trusted WebRTC configuration, that is provided by their MNO, which offers ICE functions such as STUN, TURN, MCU, etc.
In addition, the MNO will offer the required traffic handling to the WebRTC sessions, from some or all application providers, based on existing SLAs or based on user contractual agreements.
The following figure depicts this collaboration scenario:
[image: A screenshot of a computer

Description automatically generated with medium confidence]

9.1.3 MNO-facilitated WebRTC services
The MNO may offer several WebRTC-based services such as remote gaming, AR telephony, etc. These services are facilitated and managed by the MNO and are offered to the MNO’s customers exclusively.
All WebRTC functionality is hosted by the MNO, which ensures the quality of the services through appropriate network assistance, such as QoS allocation.
The following figure depicts this collaboration scenario:
[image: A picture containing text, electronics

Description automatically generated]

9.1.4 Inter-operable WebRTC services
As an extension of previous collaboration scenario, a globally inter-operable WebRTC service is provided, where mobile users from different MNOs are able to join the same service and benefit from the 5G system support for better end-to-end quality of service. In this collaboration scenario, the WebRTC functions are hosted by one or more MNOs.
The following figure depicts this collaboration scenario:
[image: Shape, arrow

Description automatically generated]

9.1.5 WebRTC functions in the context of iRTCW
9.2.1		General
We have agreed on 4 different collaboration scenarios for iRTCW at the SA4-118e meeting. The collaboration scenarios are listed here for convenience:
a. 5G support for OTT WebRTC: in this scenario the WebRTC session runs completely over the top. However, the MNO may offer support in form of QoS allocation, bitrate recommendations, and QoE report collection based on request by the UE.
b. MNO-provided trusted WebRTC functions: in this scenario the MNO offers trusted support functions such as ICE servers to the WebRTC application on the UE.
c. MNO-facilitated WebRTC services: the MNO may host and facilitate WebRTC sessions by providing a trusted WebRTC signaling server, which may also offer 5G network assistance.
d. Inter-operable WebRTC services: collaboration scenario 3 is extended with functions to support MNO to MNO inter-operability.
Based on the documented collaboration scenarios, we identify the following functions and describe their roles.
9.2.2		Potential 3GPP-defined functions
9.2.2.1	General
These functions will be discussed and possibly confirmed in the context of the architecture that will be defined by the 5G_AREA WI.
9.2.2.2	Provisioning server
The provisioning server may enable an application provider to perform provisioning of the following functionalities:
· QoS support provisioning for WebRTC sessions
· Charging provisioning for WebRTC sessions
· Collection of consumption and QoE metrics data provisioning related to WebRTC sessions
· Offering ICE functionality provisioning such as STUN and TURN servers
· Offering WebRTC signaling servers provisioning, potentially with interoperability to other signaling servers.
The provisioning server may not be relevant to all collaboration scenarios and some of the 5G support functionality may be offered without application provider provisioning.
9.2.2.3	Configuration server
The configuration server stores WebRTC-related configuration information and makes them accessible to the UE. It stores information and recommendations to operate network-assisted WebRTC sessions over 5G.
The configuration information may consist of static information such as the following:
· Recommendations for media configurations
· Configurations of STUN and TURN server locations
· Configuration about consumption and QoE reporting
· Discovery information for WebRTC signaling and data channel servers and their capabilities.
9.2.2.4	Media session handler (MSH)
The MSH is an entity running on the UE, which assists with the 5G integration of the WebRTC application. It exchanges, on behalf of the application, information about the WebRTC sessions with the network.
The MSH receives information about a new WebRTC session from the application. It relays the information to the Support Function. It also receives events and other network information about the WebRTC session from the Support Function, which it may relay to the application.
9.2.2.5	Network support function
The support functionality includes the following:
· Network Support Function receives information about a WebRTC session and its state
· Network Support Function requests QoS allocation for a starting or modified session
· Network Support Function receives notification about changes to the QoS allocation for the ongoing WebRTC session
· Network Support Function exchanges information about the WebRTC session with the trusted STUN/TURN/Signaling Server, e.g. to identify a WebRTC session and associate it with a QoS template.
9.2.3		WebRTC functions
9.2.3.1	Trusted ICE functions
The MNO may offer trusted ICE functions to the WebRTC application to be used during the WebRTC ICE gathering phase. These functions may be STUN and TURN servers that facilitate NAT and Firewall traversal.
The MNO-operated trusted ICE functions may assist with the 5G integration of the WebRTC application. This could be done by triggering network assistance to starting or ongoing WebRTC sessions.
9.2.4		iRTCW-defined functions
9.2.4.1	Trusted WebRTC signaling server
The trusted WebRTC signaling server is used to setup and manage MNO-operated WebRTC applications. They offer a standardized signaling protocol for the session setup to both parties of the WebRTC session. The WebRTC signaling server will handle the offer/answer exchange and will have access to the SDP in both directions.
The WebRTC signaling server may use that knowledge to offer network assistance and other 5G features to the endpoints of the WebRTC session.
9.2.4.2	Inter-working function
This function provides inter-working functionality to enable MNO-facilitated WebRTC sessions that involve end-points across different MNOs. They may for example provide cross-network signaling functionality to allow WebRTC signaling server that are hosted in different networks to communicate, in order to establish and manage the WebRTC sessions.
9.2.4.3	Trusted media server
A media server may be offered by the MNO to support WebRTC sessions. It may offer a wide range of functionality such as:
· a content server that serves content to the WebRTC application, e.g. through a data channel
· media processing functionality: may be used by the WebRTC application as a relay that performs some media processing function such as transcoding, recording, 3D reconstruction, etc.
· scene composition functionality: the server may compose a 3D scene and distribute it to several point-to-point WebRTC sessions
· MCU functionality: the server may offer multi-party conferencing functionality to merge a number of point-to-point WebRTC sessions
· SFU (Selective Forwarding Unit) functionality: the server may offer the selection, copy, and forwarding functionality of IP steams produced by multiple WebRTC endpoints (i.e., participants).
9.2.5 Mapping to collaboration scenarios
The following table provides an initial mapping of the identified functions to the collaboration scenarios:
	Functions/CS
	Collaboration scenario 1
	Collaboration scenario 2
	Collaboration scenario 3
	Collaboration scenario 4

	Provisioning server
	Optional
	Optional
	Optional
	Optional

	Configuration server
	Optional
	Required
	Required
	Required

	MSH
	Required
	Optional
	Optional
	Optional

	Network support function
	Required
	Required
	Optional (maybe fulfilled by WebRTC signaling server)
	Optional

	Trusted ICE function
	N/A
	Required
	Optional
	Optional

	Trusted WebRTC signaling server
	N/A
	N/A
	Required
	Required

	Trusted media server
	N/A
	Optional
	Optional
	Optional

References
[bookmark: _heading=h.30j0zll][1] Azure Kinect DK hardware specifications, Microsoft
[bookmark: _heading=h.szre11u2qvna][2] Intel RealSense D400 series product family datasheet, Intel
[bookmark: _heading=h.1hhxb772vtx0][3] Camera calibration parameters, MathWorks
[bookmark: _heading=h.hghvng25330s][4] intrinsicMatrix, Apple
[bookmark: _heading=h.p00mpp7yzx26][5] CameraIntrinsics, Google
[7] Quick measure, Samsung
[bookmark: _heading=h.gjggquulqwyr][8] Measure app, Apple
[bookmark: _heading=h.3keoossq3tfi][9] S4aR220014, 3D video capture description for iRTC client in the terminal, Meta
[10] Windows microphone array geometry descriptor format, Microsoft
[11] VRIF Volumetric Video Guidelines v. 0.95, https://www.vr-if.org/guidelines/

Revision history
	Date
	Meeting
	Subject / Comment
	Old
	New

	2022-05-20
	SA4#119-e
	
	0.10
	0.11

	2022-11-14
	SA4#121
	
	0.11
	0.20

	
	
	
	
	

	
	
	
	
	

		

2
	
image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image1.png

