Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 Meeting #120-e	Tdoc S4-221172
17th – 26th August 2022

Agenda item: 	9.7
Source: 	Qualcomm Inc.
Title: 	AI/ML model optimization for transport
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
In this contribution, we describe different techniques that are used for reducing the size of a trained model or model update. Some of these techniques do not require a full decoding process at the receiver side and may hence be applied transparently by the sender. Others may require some processing at the receiver side.
1. Model Optimization Techniques
Trained models consist of a graph representation of the neural network as well as millions of parameters/weights that were learned during the training phase. The following figure depicts the characteristics of some of the state-of-the-art DNNs as provided by [1].
[image:]
	Model
	#Parameters (M)
	Footprint (MB)
	#FLOPs (B)

	1.0 MobileNet-224
	3.3
	13.2
	0.28

	EfficientNet-B0
	5.3
	21.2
	0.39

	DenseNet-169
	14
	56
	3.5

	Inception-v3
	24
	96
	5.7

	ResNet-50
	26
	104
	4.1

	VGG-16
	138
	552
	16

	SSD300-MobileNet
	6.8
	27.2
	1.2

	EfficientDet-D0
	3.9
	15.6
	2.5

	FasterRCNN-MobileNet
	6.1
	24.4
	25.2

	SSD300-Deeplab
	33.1
	132.4
	34.9

	FasterRCNN-VGG
	138.5
	554
	64.3

	YOLOv3
	40.5
	122
	71

One of the main techniques to control the size of a network model or an update thereof is pruning. Pruning works by removing individual weights or complete structures of a pre-trained model. We differentiate between structured and unstructured pruning. In unstructured pruning, the goal is to reduce the number of non-zero weights in a layer while approximately preserving the output of that layer. The assumption behind these techniques is that only a small subset of the weights are dominant and impact the performance of the model. The rest of the weights may potentially be ignored/removed. The technique starts by assigning a saliency score to each parameter and then removing the weights with a score below a certain threshold. The resulting network may require retraining to regain the original accuracy. However, this type of technique introduces sparsity into the network, which may require special inference hardware or some pre-processing on the receiver side.
In structured pruning, the model graph is altered by completely removing certain structures such as neurons and filters. This may be done by assigning an importance score to each neuron/filter based on the current weight or based on inference data. The neurons/filters with a score below a threshold are removed. Compared to unstructured pruning, this approach does not introduce sparsity but may not yield the same compression results.
Another technique to reduce the size of a model is low-rank compression. In low-rank compression, a tensor, representing the weights of a layer in the DNN, is replaced by a product of two lower-rank tensors that perform approximately equally in the model. This technique speeds up the inference and also results in compression gains. Algorithms such as the Singular Value Decomposition (SVD) may be used to obtain the tensors of any desired rank.
Yet another very efficient compression technique is quantization. Quantization consists of decreasing the precision of the weights of a model, thus reducing the required memory footprint. The weights are mapped from a larger space of values into a smaller one, a concept widely used in image and video compression. Better performing quantization techniques may be context aware and operate in a non-linear manner to approximate the distribution of the weight values. Knowledge about the used quantization scale will be required to perform inverse quantization and recover the original weights. If non-linear quantization is used, the technique becomes non-transparent. The resulting weights may further be entropy coded, e.g. using Huffman coding for further size optimization.
Knowledge distillation takes a different approach to reducing model size. The goal is to transfer knowledge from the trained network into a smaller model for inference. During the distillation process, the smaller model learns to mimic the output of the larger trained model by minimizing a loss function that takes into account both the hard output values as well as the soft values into account (i.e. prior to filter application). Knowledge distillation techniques have in several cases surpassed the accuracy of the original model.
Most of the aforementioned techniques are sender-only techniques that do not require processing on the receiver side. The burden is on the creator of the model to apply these techniques to produce a more compact representation of the model. Some techniques may require processing at the receiver side. The complexity of that processing and the amount of information required to recover the model may vary by technique. We recommend the usage of sender-only optimization techniques for the use cases considered by this study. This reduces the adoption burden and the inference operation time in the lack of hardware acceleration for more advanced compression techniques.
1. Proposal
We propose to document the mentioned techniques in clause 2 in the PDTR.
1. References
[1]		Agiollo A., et al., “Load Classification: A Case Study for Applying Neural Networks in Hyper-Constrained Embedded Devices” Journal of Applied Sciences, December 2021
- 12/13 -
image1.png

