- 1 -
SG12-TD133R1
	[bookmark: dnum][bookmark: dsg][bookmark: dtableau][image: ]
	INTERNATIONAL TELECOMMUNICATION UNION
TELECOMMUNICATION
STANDARDIZATION SECTOR
[bookmark: dstudyperiod]STUDY PERIOD 2022-2024
	SG12-TD133R1

	
	
	STUDY GROUP 12

	
	
	Original: English

	[bookmark: dbluepink][bookmark: dmeeting]Question(s):
	9/12
	Geneva, 7-17 June 2022

	[bookmark: ddoctype][bookmark: dtitle]TD

	[bookmark: dsource]Source:
	Editors P.MLGuide

	[bookmark: dtitle1]Title:
	Draft new Recommendation ITU-T P.MLGuide: Guidance for the development of machine learning based solutions for QoS/QoE prediction and network performance management in telecommunication scenarios (for consent)

	[bookmark: dcontact1][bookmark: dcontent1]Contact:
	Dr. Irina Cotanis
InfoVista
USA
	Tel: +1-703-956-5374Fax: +1-703-956-5459E-mail: irina.cotanis@infovista.com
	[bookmark: dcontact2][bookmark: dcontent2]Contact:
	Dr. Jens Berger 
Rohde & Schwarz
Germany
	Tel:	+41 32 686 6565
E-mail:	jens.berger@rohde-schwarz.com



	Abstract:
	ML/AI algorithms can be applied for networks’ performance evaluation, monitoring and troubleshooting techniques, as well as voice/video QoS/QoE prediction models, such as the ones developed within ITU-T
As a powerful technique, ML is inherently very complex and therefore prone to mis-usage and misinterpretation and consequently showing high risks of drastically impacting ML techniques’ strengths and benefits. Therefore, it is required to carefully follow well defined guidelines when applying ML. Thus, this recommendation introduces general guidelines for applying ML.





Draft Recommendation ITU-T P.MLGuide
Guidance for the development of machine learning based solutions for QoS/QoE prediction and network performances management in telecommunication scenarios
Summary
This Recommendation introduces Machine Learning techniques and their application for QoS/QoE prediction and network performance management in telecommunication scenarios. Especially, the design of training and evaluation data is described and means to avoid overtraining for Machine Learning models. 
It is also discussed the relation to classical model or algorithm development and differences are described. This recommendation gives best practice guidance for the successful development and evaluation of models based on Machine Learning but does not describe concrete models or algorithms for a dedicated purpose. 
Keywords
Machine learning (ML), overfitting/underfitting, cleansing, artificial intelligence (AI), network performance prediction, voice/video QoE/QoS prediction
1	Scope
Machine learning (ML) and artificial intelligence (AI) algorithms can be applied for networks’ performance evaluation, monitoring and troubleshooting techniques, as well as for voice/video quality of service (QoS) and quality of experience (QoE) prediction models such as the ones developed within ITUT. 
A powerful technique, ML is inherently very complex and therefore prone to mis-usage and misinterpretation and consequently showing high risks of drastically impacting ML techniques strengths and benefits. Therefore, it is required to carefully follow well defined guidelines when applying ML. 
Thus, this Recommendation introduces general guidelines for applying ML within the context of ITUT which are suitable to these techniques. In addition to this Recommendation, the guidance given in [ITU-T P.Suppl 28] should be taken into account.

2	References
The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.
[ITU-T E.475]	Recommendation ITU-T E.475 (2020-01-13), Guidelines for intelligent network analytics and diagnostics. 
[ITU-T P.10/G.100]	Recommendation ITU-T P.10/G.100 (2017-11), Vocabulary for performance, quality of service and quality of experience.
[ITU-T P.565]	Recommendation ITU-T P.565 (2021-11-29), Framework for creation and performance testing of machine learning based models for the assessment of transmission network impact on speech quality for mobile packet-switched voice services.
[ITU-T P.565.1]	Recommendation ITU-T P.565.1 (2021-11-29), Machine learning model for the assessment of transmission network impact on speech quality for mobile packet-switched voice services. 
[ITU-T P.863]	Recommendation ITU-T P.863 (2018-03-16), Perceptual objective listening quality prediction.
[ITU-T P.1203]	Recommendation ITU-T P.1203 (2017-10-29), Parametric bitstream-based quality assessment of progressive download and adaptive audio-visual streaming services over reliable transport.
[ITU-T P.1204]	Recommendation ITU-T P.1204 (2020-01-13), Video quality assessment of streaming services over reliable transport for resolutions up to 4K.
[ITU-T P.Suppl28]	Recommendation ITU-T P.Sup28 (2020-09-11), Considerations for the development of new QoS and QoE related objective models to be embedded in Recommendations prepared by ITU-T Study Group 12.

3	Definitions
3.1	Terms defined elsewhere
This Recommendation uses the terms defined in [ITU-T P.10/G.100].
4	Abbreviations and acronyms
This Recommendation uses the following abbreviations and acronyms:
AI		Artificial intelligence
ITU-T	ITU Telecommunication Standardization Sector
ML		Machine learning
PCA		Principal component analysis
QoE		Quality of experience
QoS		Quality of service

5	Conventions
None.
6	Application of machine learning and artificial intelligence in QoS/QoE related measurements and network performance’s management
In many cases ML and AI terms are used interchangeably, although they are not the same. Their definition is quite complex and to some extent still disputed at least in the telecom industry. For the purpose of this Recommendation, a high-level clarification [14] on the two terms is discussed and proposed. 
AI is the science and engineering of making intelligent machines, especially intelligent computer programs. These machines are programmed from being able to perform a single, repetitive motion (also known as automation) to adapting to different situations. AI is related to the similar task of using computers to understand human intelligence, but AI does not have to confine itself to methods that are biologically observable. For example, it might be possible to use AI terminology for some solutions which solve network diagnosis problems. 
[bookmark: _Hlk23849845]Machine learning is technically a branch of AI, but it is more specific than the overall concept. Machine learning is defined by sets of mathematical and statistical algorithms which use computational methods to learn information directly from data without relying on a predetermined equation as a model. For example, it is likely to use ML terminology for solutions which can use more controllable inputs and outputs (e.g. parametric QoE modelling). 
For the purpose of this Recommendation, the term “ML” is further used and should be read as “ML and/or AI”. 

6.1	General best practices for applied ML
Without being exhaustive, some main best practices and concepts of applying machine learning [8]-[13] are mentioned in this section. 
–	Arguably the most important factor in successful machine learning projects is the features used to describe the data (which are domain-specific) and having adequate data to train models in the first place. By features is meant either the ones provided as input to the ML algorithm or the ones that the algorithm builds itself, such as in the case of neural networks algorithms. 
–	Most of the time when algorithms don’t perform well, it’s due a to a problem with the learning/training data such as insufficient amounts and/or skewed data; noisy data; or insufficient features describing the data for making decisions
–	Obtaining experimental data should be used, as opposed to observational data, over which there is no or limited control 
–	Whether or not the data is labelled causally or correlatively, the more important point is to predict the effects of the actions taken
–	Always set aside a portion of learning/training data set for cross validation; it is required that the chosen ML algorithm performs well on fresh data
–	There is no given connection between the number of parameters of a model and its tendency to overfit nor to its accuracy.
While generally all these best practices are expected, the last one could be the most unusual one since it apparently contradicts the traditional way of thinking. However, if this wouldn’t be true, then ML based solutions could have never been used in telecom applications. This because generally ML algorithms inherently have a very large number of parameters to optimize in order to solve the complex problems that traditional algorithms cannot or are limited to. In addition, the optimization process of an ML algorithm is inherently performed towards best accuracy and minimal bias towards a dataset and/or data points within a dataset, as explained later in this document. Also, the requirement for an algorithm to have a smaller number of parameters to be optimized versus the size of the training dataset is different for the traditional and ML case. In the traditional case, the size of the training data set is given by the number of samples, while in the ML case is defined by the “length” (number of samples) and the “depth“ (number of features) of the training/learning data set. Thus, the same training dataset used for traditional and ML cases, has different “active” size; for traditional is just the number of samples, for ML is the number of samples multiplied by the number of features.  
6.2	Brief overview on machine learning
There is not the scope of this Recommendation to enter the very broad and complex ML domain, but rather to give some brief insights which should be considered when developing ML based solutions within the scope of the two use cases addressed here, QoS/QoE prediction and network performance analysis. 
6.2.1	Most common learning techniques
There are several learning techniques, but most common ones, and expected to be used within the context of this Recommendation are:  
Supervised Learning is the most common form of machine learning. With supervised learning, a dataset, the learning (or training) set, is submitted as input to the ML algorithm during the learning phase. Each input is labelled with a desired output value, in this way the algorithm knows what the output for each given input is.  
This technique is the most controllable one and likely to be used in the context of this Recommendation.
Unsupervised Learning case means that the learning datasets are not labelled with the belonging class. The ML algorithm develops and organizes the data, searches common characteristics among them, and changes based on internal knowledge. An example of unsupervised learning is clustering: algorithm tries to put similar things in a cluster and dissimilar in a different cluster, and the concept of similarity depends on a similarity measure.
This technique can be powerful but generally it is more sensitive to overfitting. Therefore, it is less expected to be less used within the scope of this Recommendation. 
Deep learning (DL) technique represents a huge step forward for machine learning. DL is based on the way the human brain processes information and learns. It consists in a machine learning model composed by several levels of representation, in which each level uses the information from the previous level to learn “in depth”. Each level corresponds, in this model, to a different area of the cerebral cortex, and each level abstracts more information in the same way the human brain does. This technique is specific to neural networks algorithms (see section below).
This technique is powerful and likely with significant potential for high accuracy and robustness; however the price to be paid emerges from the complexity and computational time which might make these, at least for now, less attractive under the scope of this Recommendation.  
It should be noted that combinations of these techniques are possible (e.g. semi-supervised), but the complexity is significantly increased, and the benefits are not necessarily justifying.  Therefore, these are less likely to be used within the context of this Recommendation, at least for now. Similarly, other techniques such as reinforcement learning which does not use a learning set but rather “action to be taken” are much less expected to be used in the context of this Recommendation. 
6.2.2	Most commonly used ML algorithms
The most commonly used algorithms are briefly introduced in this section.  It should be noted that the list is far from exhaustive and that various versions which are subcategories of these exist. In addition, combinations of these categories can be used in order to develop more complex models, which some applications may require. It is expected that any of these can be used within the context of this Recommendation. 
–	Linear regression & Linear classifier are the simplest algorithms, less prone to overfitting and often be used when thousands of features are available. These algorithms are generally using supervised learning. 
–	Principal component analysis (PCA) can be applied when a wide range of features, highly correlated between each other are available. The models can easily be overfitted on a huge amount of data. These algorithms are best suited for reducing dimensionality with the minimum loss of information. These algorithms are generally using supervised learning.
–	Logistic regression performs binary classification, so the label outputs are binary. It takes linear combination of features and applies non-linear function to it. This is the simplest algorithm of non-linear classifier. These algorithms are generally using supervised learning.
[bookmark: _Hlk24113615]–	Decision trees can be viewed as a flow chart, where the flow starts at the root node and ends with a decision made at the leaves. It is a decision-support tool. It uses a tree-like graph to show the predictions that result from a series of feature-based splits. These algorithms are predictive models which go from observations to conclusions. Easy to understand, the decision trees enable straightforward human decision making. The easiest to be interpreted are the commonly used Random Forest or Gradient Boosting. These algorithms are generally using supervised learning.
–	K-means (clustering) are applicable if the goal is to assign labels according to the features of objects, but no label is available. This task is called clusterization and this algorithm makes it possible. It should be noted that there are ranges of clustering methods with different advantages and disadvantages and careful decision on which one to use is needed. These algorithms are generally using supervised learning.
–	Neural networks (NN) are a set of algorithms, modelled loosely after the human brain, that are designed to recognize patterns. They interpret sensory data through a kind of machine perception, labelling or clustering raw input. The patterns they recognize are numerical, contained in vectors, into which all real-world data (e.g. images, sound, text or time series), must be translated. Neural networks help to cluster and classify; they group unlabelled data according to similarities among the example inputs, and they classify data when they have a labelled dataset to learn on. Neural networks can also extract features that are fed to other algorithms for clustering and classification. These algorithms are generally using unsupervised leaning, and deep learning. In the latter case the neural networks can be viewed as components of larger machine-learning applications involving algorithms for reinforcement learning, classification and regression. These algorithms are suited for a series of applications, especially the ones working with video signal/video images.  Even though their training needs huge computational complexity, and they are prone to overfitting, they present a new era of algorithms expected to grow fast.  Consequently, they are expected to be used in future work in the context of this Recommendation.
6.3	Use cases for applied machine learning 
Two uses cases are discussed within the scope of this Recommendation: 
[bookmark: _Hlk24058587]1)	Network quality diagnosis, control and operation (network’s management) such as in ITUT E-series recommendations, e.g. ITU-T E.475.  For this use case, ML based solutions can be used to detect patterns, trends and outliers (from normal pre-defined behaviour), learn from these and then predict network performance behaviour. The data sources used by the ML based solution for this case can be represented by network data such as PM (Performance Management) counters, FM (Fault Management) data, CTs (call traces), and/or drive test (DT) and/or even crowd source (CS) data, depending on the aimed goal. In order to apply ML techniques, a transformation of the data sources needs to be performed such that the ML can use the metadata to create features and learn, and then predict. For this case supervised, unsupervised and/or deep learning techniques can be applied. 
2)	Voice / video QoS/QoE prediction such as in ITU-T P.565 series. For this use case, ML based solutions can be used to predict QoS/QoE metrics using either perceptual (voice/video signal based) or/and non-perceptual (e.g. parametric only, intrusive parametric, hybrid) modelling. 
The data sources are network /codec-client parameters expected to affect the voice/video quality and / or the voice/video signal itself. For this case, supervised and neural networks learning are likely the most appropriate ones. Neural networks are also likely for QoS/QoE modelling which is using the voice/video signal itself.
In both use cases, the categories of algorithms to be preferred are: NN, K-means, decision tress and regressors.
Regardless of the use case, applied ML is prone to errors that can generally emerge either from the assumptions (e.g. learning data set content) within ML and/or from the ML technique (e.g. optimization process).  
6.4	Minimum requirements for ML based solutions
Minimum requirements for ML based solutions are to some extent use case specific, respectively the conditions and assumptions within which ML techniques are applied, such as real time with continuous adaptive learning/tuning possibly suited for un-supervised learning (e.g. certain applications of network quality diagnosis, control and management) or off -line learning suited for supervised learning (e.g. QoE prediction). These minimum requirements can be defined and controlled case by case basis. 
However, the most common minimum requirements across use cases are as follows:
1)	Training/learning databases integrity and validity (data cleansing) is required to ensure that ML algorithm learns based on the most meaningful and representative data, free of artefacts (e.g. wrong data, missing data) and in the same time covering all the desired conditions related to a specific use cases. There are several cleansing techniques that can be applied, depending on the ML algorithm. Generally, applications using supervised learning (e.g. QoS/QoE modelling) the data cleansing is more intuitive and more controllable. The cleansing process becomes more complex for un-supervised learning. For these cases, some special techniques need to be developed in order to ensure reliable data cleansing depending on the applications, such as network behaviour knowledge or on voice/video signal understanding.
2)	Training and validation data bases’ split process. The split between the training/learning and validation is performed randomly and techniques are available for this process. The most recommended split is 50% because it has a high probability that all types of conditions are present, both in the learning as well as in the validation set. In addition, cross-validation (CV) (e.g. 3-fold, 5-fold) is recommended to be applied. Although in some cases it may affect the accuracy of the model, it will increase its robustness and cover more scenarios when executing the split. For example, a 5-fold CV re-runs the model 5 times, and at each time it will have different samples in the training and validation set. At the end, it merges the results and produces an average. Consequently, the model’s bias towards a specific scenario is minimized.
3)	Machine learning features’ selection needs to cover both their content significance as well as their count. Using too many features comes with the risk of reduced entropy since content from many features can exhibit overlapping information. In addition, it also increases the risk of biasing the ML algorithm towards a specific content and consequently to exhibit overfitting. On the other hand, too few features cannot be enough to describe the content and therefore increasing the risk of underfitting. Annex A presents an example how this test can be performed. In the case of NN algorithms which select their own features it becomes crucial to take special care in selecting the learning dataset’s content and size as well as to overfitting / underfitting testing.
4)	Algorithms’ accuracy and consequently their suitability for a specific application can be evaluated through various techniques depending on the algorithms’ category and application, such as numerical (e.g. RMSE, MAE, percentage of false positives/negatives) or representative (e.g. recall and precision charts). It is likely that within the context of this Recommendation, the numerical evaluation techniques to be preferred, since they provide an easy quantitative representation on the ML algorithm’s performance and therefore easier to be interpreted. 
5)	ML overfitting/underfitting test is required anytime ML techniques are used, since it is well-known that generally ML techniques are easily prone to these phenomena. Details on how this test should be applied is presented in section 6.5. An example for the decision tree category of algorithms is presented in Annex A.
6.5	Overview on ML optimization process 
The process of ML learning from a data set involves the optimization of the ML model/algorithm’s parameters, called “hyper parameters”. The optimization is performed towards the best model, respectively highest accuracy (or minimal underfitting) and minimal or preferably no bias towards the learning data set (least overfitting).  
The optimization towards the highest accuracy aims to minimize the learning and validation errors. The learning error is defined as the average loss over the training points [1]:

Where N is the total number of observations in the learning set, L is the “loss function” (e.g. MSE, Mean Squared Error) over each one of the learning observations,  is the “fit function” (estimated values) using the learning/training data. The validation error is defined as the average loss over an independent test sample.
The trend of training and validation error’s curves provide insights on two major metrics, bias (or overfitting toward a data set) and variance (or accuracy) [2], which indicate how well is performing a machine learning model. The bias and variance metrics are typically analyzed by observing the trend of learning/training and validation errors while tuning each of the model’s “hyperparameters” and repeatedly evaluating them against the loss function (MSE). Generally, large difference among the learning/training and test error indicates high variance (or poor accuracy), while high learning/training error indicates high bias (strong overfitting). 
The trade-off between the two metrics, bias and variance, provides an indication of a reoccurring machine learning problem – overfitting and underfitting (or accuracy) [2] and it is applicable for all the ML algorithms, including decision trees, neural networks (e.g. MLP), deep learning (e.g. CNN). The difference in the optimization process emerges from different set of hyperparameters used by each ML algorithm category.  For example, decision trees have hyperparameters such as: number of trees, depth of tree, leaf size, etc; while neural networks (e.g. MLP) have hyperparameters such as  number of hidden layers, activation function (or cost function, such as sigmoid, relu, tanh, etc), solver (e.g. ‘lbfgs’, ‘sgd’, ‘adam’), learning rate (constant, invscaling, or adaptive).  
6.5.1	Learning curves 
The Learning Curves [3] are the common technique for testing a ML model’s underfitting (accuracy) and overfitting. Some differences on how these curves are calculated depend on the ML algorithm’s category.
During the optimization towards best accuracy, the learning curves representing the error for each of the hyper-parameters are calculated with the scope of determining the optimal hyper-parameters set. 
Once the hyper-parameters are selected and the “best” model is created, then the overfitting test runs to evaluate whether the leaning/validation dataset is not biased (towards a set of cases) or overfitted. So, the final overfitting test is to check whether the data set size creates the overfitting since it is likely that the learning-validation split may have biased the model, and this can happen as follows. Learning and validation data samples can be seen as one big circle. When the leaning/training – validation split is performed, the circle is cut and possibly one part of the circle has the majority of a certain scenario. This causes bias towards a particular scenario. To verify that this bias does not occur, it is needed to see the trend of learning/training and validation error when the process starts from one - training set size and gradually increases to the total number of samples. Cross-validation (CV) technique should be used during this process. It is known that CV can  reduce the accuracy in some cases, but it is necessarily to pay the price in order to meet requirements for robustness and the assurance that more scenarios are covered when the split learning/training – validation data is performed. For example, for 5-fold CV, the model re-runs 5 times, and at each time with different samples in the learning/training and validation sets. At the end, the results are merged, and an average value is produced. Consequently, the created model is minimally biased towards a particular scenario.
Depending on the learning technique (e.g. supervised, deep learning), the hyper-parameter optimization and final overfitting processes can be performed sequentially or correlatively. 
This section discusses briefly the two cases, both expected to be used within the context ITU-T work.
6.5.1.1	Supervised learning
Decision trees are commonly using supervised learning. In this case, the learning curves show MSE vs. number of trees, number of leaves, number of features, etc. (see Annex A) and the optimal hyper-parameters are selected to minimize the error (or ensure best accuracy, minimal underfitting). 
Then, the overfitting test rans to evaluate the error for the given set of hyper-parameters against the number of learning dataset samples. The correspondent learning curves are determined by using multiple learning data sets sizes and test each of them against a fixed validation data set size, while observing the changes of the errors, for both the training and the validation datasets.
Figure 1 shows such a case. Figure 1a shows that the error on the learning databases (blue curve) is high, regardless of the learning size, which means that the model is too complex and cannot learn and adapt/tune. In the same time the validation dataset (green curve) shows the same high error respectively the same with the one for the test set. This means that the algorithm is underfitted (poor accuracy). New learning points will not help, since the algorithm itself has not been properly selected for the use case in discussion. 
Figure 1b shows that the error for the learning set is low, while the error for the validation set still remains far apart from it, regardless of the learning set. This means that the algorithm is overfitted. New learning points can help to improve this scenario. 
[image: add_data]
Figure 1a								Figure 1b
NOTE - It should be noted that similar techniques can be applied for un-supervised learning. This is possible because the size of the dataset is known.  
6.5.1.2	Deep learning
As mentioned before, this learning technique is common to neural networks algorithms. In these cases, there is no specific size of the learning data set. In this case the hyper-parameters optimization is performed correlatively with the learning curves, which are determined as cost function vs. number of epoch, which represents the number of runs through the NN [15]. 
6.5.2	Inference test for ML overfitting/underfitting 
The most common and straightforward test on ML over/underfitting is the achieved by comparing ML algorithm’s performance statistics on learning/training, testing/validation and un-known databases. It can be inferred that an ML algorithm is not likely to exhibit overfitting/underfitting if performance statistics on all three databases’ type are statistically the same. 
It should be noted that although required to be performed this test alone is not good enough, and all the tests mentioned above should be performed. 
6.6	Guidance on the evaluation and validation of ML based solutions for QoS/QoE predictors and network’s performance management
6.6.1	ML based network’s management models
In the case of ML based solutions for network quality diagnosis, control and management (network’s operations) solutions, the ML algorithms are used to detect patterns, trends and/or outliers (from normal pre-defined behaviour), learn from these and then predict network performance behaviour. The evaluation of such an ML based solution requires large databases containing “normal" as well as “abnormal” network conditions in a broad variety of scenarios and/or network configurations. However, for a more controllable, easier evaluation and validation it is recommended to define specific use cases. 
An example of such an use case can be the outliers (a.k.a network faults) detection for a specific air interface network configuration (e.g. technology, antenna system and its characteristics, bandwidth). In this case the training databases have to contain the “normal” behaviour for the specific configuration and a large set of “abnormal” behaviours caused by a broad range of network conditions defined by large range of coverage, interference, mobility and load value levels.
The algorithm is trained/tunned until the target performance level is achieved with a pre-established confidence level (for ML usually >80%). For this use case the target performance can be the max. number of false positives (to identify and outlier / fault when actually it didn’t happen), which is the optimal cost function for this case. 
The validation requires the creation of unknow datasets. This unknown data has to cover the full range of possible network’s behaviour with the scope of the model to enable a confident description of the model’s performance. The validation data sets should be designed in a way that allows to describe the model’s performance sufficiently also in sub-areas of its scope (e.g. per codec type or bitrate for QoE models or certain classes of anomalies for models discovering anomalies). In addition to this, the unknown dataset has to contain a sufficient set of “abnormal” behaviors to prove, whether the model can cope with those conditions and will not end in obvious mal-function or -prediction. 
6.6.2	ML based QoS/QoE predictors
ITU-T Study Group 12 (on performance, QoS and QoE) has a long history in evaluation and validation of objective predictions models as e.g. P.862, P.863, P.1203 and P.1204. 
These examples are ‘classical’ models, where the analysis of signals and consideration of the features to retrieve the desired output is transparently described in an algorithm or and source code. The applied analysis and computation are usually understandable by a human expert. Although classical models may contain components optimized by ML or automated training processes, they can be considered widely as glass-box models. Unlike for “classical” models, for fully and/or widely ML based models the treatment, consideration and relation of the features stay unknown and non-understandable for humans. Those models should be seen as black-box models. However, using extensive processing, coefficients used by the model can be extracted from the ML algorithm(s) used by the model. Example of such models are ITU-T P.565 series. This makes the ML model re-implementable, even the multi-level relationship remains hardly or non-understandable for a human expert.  
Either type of models can be used for a defined purpose and during model development there should not be obligations, neither by e.g. ITU-T nor by the contributing parties, for preferring or exclusion of classical or ML-based models. 
However, there can be differences in the evaluation and validation process, as well as in the data used for the two model types. Classical glass-box models can be understood based on their function and therefore the evaluation data can be created to prove defined scenarios, for which a model could show weaknesses or at the border of application. This makes evaluation and validation efficient and requires a relatively small set of data bases. In the case of ML based models, there is no knowledge about expected behavior of the model in defied scenarios. An evaluation and validation data set should cover therefore the full range of test conditions covered by the scope of the ML-model.
In the case of an automated creation - target values – the size of the databases can be increased with relatively little effort. In the case of target values created based on subjective tests or other ways complicated obtained data, the support by evaluation and validation data requires significant efforts. 
Typically, evaluation data is split into training (‘known’) and validation (‘unknown’) data, despite of private, undisclosed training data by a model-developing party. This set of evaluation data is typically developed jointly and provided by and to all contributing parties. The use of ML-model let expect a significant increase of data required for training and especially for validation. This may lead to mis-balances if classical glass-box models and ML-models are developed and validated for the same purpose and competing to each other. 
Therefore, it can be considered to exclude from the responsibility of the organizer of model validation and selection as e.g. ITU-T the process of conducting and analysing of all data bases used for training and development of the models. The training and development databases are completely under responsibility of the model developing party and organized outside of e.g. ITU-T. This also allows each party to focus on data they consider as most relevant for their development or training process and avoids the obligation to use sub-optimal data because they are part of the ‘known’ pool of data. Consequently, this individual training and development data will not be used to define the performance of any model. 
The evaluation and validation of the model’s performance in relation to the defined objectives will be purely based on ‘unknown’ validation data created under responsibility of e.g. ITU-T. This would reduce the effort of creation of databases within pre-defined work items significantly and would still provide sufficient data for validation of even ML-models.
6.7	Conclusions
This Recommendation defines main guidelines and minimum requirements, explains in detail specific techniques for developing ML based solutions. In addition, it provides guidance on how ML based solutions should be evaluated and validated. 
Annex A presents an example for over/underfitting if ML decisions trees are used. 


Annex A

ML overfitting/underfitting test for decision tress
A.1	Learning curves
The common technique for testing a ML model for over/under-fitting is based on the Learning Curves [3]. The learning curves are determined by using multiple training data sets sizes and test each of them against a fixed validation data set size, while observing the changes of the errors, for both the   training and the validation datasets. 
The total size of the datasets used for the presented case is of 128661 samples.  For the purpose of the learning curves test, the training data set sizes are selected as:
Train_size = 128661 * s
where s = ([0.00001, 0.01, 0.10, 0.33, 0.55, 0.78, 1.]).  
For each of the training size a 5-fold cross validation is performed; random samples for each of the training size are taken five times, prediction is determined, and the results are averaged. Figure A.1 show the results.  In the first run, with a train set size of 1, the model fits perfectly the training data, thus a training error of 0. However, a model with only one training set performs poorly on un-known validation set, thus very high validation error resulting with overfitted model. Further, as the training set size increases, the validation error gradually decreases, reaching arguably acceptable MSE value of just below 0.4. In the same time the training error is kept at minimum, which indicates low bias and discards the underfit problem [2]. In addition, the variance between the MSEs for training and validation data sets is low, indicating that overfitting is not likely. 
The trend of the validation error suggests that overall accuracy can be improved by increasing the number of samples, but only very slightly. 
[image: ]
Figure A.1: Learning curves

A.2	ML model’s parameters test for over/under-fitting
The TreeBagger ML algorithm under evaluation for over/under-fitting has the following parameters: number of tress, number of features, bootstrap, bootstrap features, and minimum leaf size. All of these are tested in order to assess if over/under-fitting is present. 
A.2.1	Number of trees
Finding the most optimal number of trees with satisfactory results regarding the ML algorithm’s accuracy helps with the assessment of the overfitting problem. The method of testing the accuracy by using different number of trees (or “tree size”) is known as early stopping technique [4]. It has been shown that using a large number of trees in the training process results in a too good data fit, whilst low number of trees create too simplistic model [4]. The results on the tree analysis for the presented ML model case are shown on the Figure A.2. The results are achieved based on a 5-fold cross-validation and the tree size is selected as follows:
Tree_size = (1, 20, 50, 100, 150, 200, 250)
Figure 2 shows that the error is maintained constant at the minimal value for both the training and validation data sets when testing more than 100 trees. Therefore, a number of 100 trees is an optimal value to ensure no overfitting at a fairly good time for training, respectively below 7min. This is based on the fact that the trend of the validation is rather constant after 100 trees, and therefore a larger number of trees do not bring any improvements, but rather increasing the risk of basing the algorithm towards the training data, as the complexity of the model increases. 
[image: ]
Figure A.2: Number of trees vs. the MSE
A.2.2	Number of features 
The features used during the training and prediction process directly affect the achieved results in terms of overfitting and underfitting [6]. As pointed out in [6], injecting redundant features, or features that are not by any means relevant for the model can generate larger variance. For the presented TreeBagger model’s case a total number of 46 features is selected; and a subset of them is individually tested against the MSE. The tested feature subset size is:
Feature_size = (2, 10, 25, 40, 47)
The results are generated by using 5-fold cross-validation and presented in Figure A.3. In a first step the model will test its accuracy by using just 2 features, and it selects the two best features based on the calculated value for the feature’ importance [7]. The same method is applied with 10, 25, 40 and 47 features. For the analysis with 47 features, an additional random redundant feature is injected to observe the changes in the error, thus using 47 features instead of 46. This technique is defined in [7] for detecting how well the input features of the model actually fit the data. It can be seen (Figure A.3) that using 47 instead of 40 features slightly increase the variance, meaning that the model performed slightly worse when the trees had to include the artificially injected redundant feature. When 40 features are used, the model selects the best ranked features and consequently the injected redundant feature is not used for the prediction. It can be concluded that the selection of 46 features ensures minimal MSE for both training and validation datasets. Consequently, no overfitting is detected, at a fairly good training time of less than 15min. 
[image: ]
Figure A.3: Number of features used vs. the MSE
A.2.3	Bootstrap
Bootstrap is a boolean hyperparameter for the presented TreeBagger model’s case; and it shows that sample replacement is allowed, which means that the model can replace any sample if it evaluates it as necessary. This is however only useful if the number of used samples is not selected as 1.0. For this case, instead of the original 128661 data samples, a reduced number of 10000 samples are used for the bootstrap analysis of the presented case. The results (Figure A.4) show the MSE when bootstrap is enabled (True) and disabled (False). This means that the model may decide to use replacements of some samples if it calculates that the original samples are not relevant or produce poor score [5]. As it can be seen in Figure 4, the model fits well the training data, with a score of 0.002 MSE and a corresponding validation error just above 0.4 MSE; thus, generating larger variance compared to the original case.  Correspondingly, when bootstrap is not used, the results show smaller variance, which indicates that the original 128661 produce arguably satisfying results, at a fairly good training time of less than 13min.
[image: ]
Figure A.4: Bootstrap vs. MSE
A.2.4	Bootstrap features
Bootstrap feature is a boolean hyperparameter for the presented TreeBagger model; and it shows that the model can duplicate any feature if it evaluates it as necessary. This is however only useful if the number of utilized features is not selected as 1.0. For this case, instead of the original 46 features, a reduced number 40 features are used for the bootstrap feature analysis. The results (Figure 5) show the MSE when bootstrap feature is enabled (True) and disabled (False). This means that the model may decide to use duplicates of some feature if it calculates that the originally selected features are not fitting the data well [5].  It can be seen in Figure A.5, the model performs slightly worse when bootstrap features were disabled, which indicates that some relevant features were discarded when cutting down from 46 to 40 features. Thus, 46 features are relevant while producing good results, at a fairly good training time of less than 13min.
[image: ]
Figure A.5: Bootstrap features vs. MSE
A.2.5	Minimum leaf size
A tree with large amount of leaves usually fits the training data too well, but performs poorly on un-known data set, which is an indicator of over-training and over-fitting [7]. In contrast, typically a shallow tree performs poorly during the training process, exhibiting low training accuracy. A study by [7] compares the two extreme approaches, with conclusions that a shallow tree can be more robust that over-fitted tree, mainly due to the possibility to improve the accuracy by understanding the tree. Over-fitted tree with large number of leaves is harder to interpret [7]. In the analysis for the TreeBagger, there is a possibility to modify the minimum leaf size in the model. This means that each leaf has at least “MinLeafSize” observations, where a small values of “MinLeafSize” results with deep trees. The tested “MinLeafSize” subset values are:
minLeafSize = (1, 5, 15, 40, 100, 200, 600, 1200)
As it can be observer from the results on Figure A.6, as the tree size shrinks the training and validation error increase, whilst the training time decreases as the model becomes less complex. The smallest variance is generated with a minimum leaf size of 5, with fairly good training time of around 7min.
[image: ]
Figure A.6: Minimum leaf size vs. MSE


Bibliography

[1] Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501.
[2] Jerome  Friedman,  Trevor  Hastie,  and  Robert  Tibshirani. The elements of statistical learning. Vol. 1. 10. Springer series in statistics New York, NY, USA: 2001
[3] Jan  N  van  Rijn  et  al.  “Fast  algorithm  selection  using  learning  curves”.  In: International  symposium  on  intelligent  data analysis . Springer. 2015, pp. 298–309.
[4] Zhang, T., & Yu, B. (2005). Boosting with early stopping: Convergence and consistency. The Annals of Statistics, 33(4), 1538-1579.
[5] Chernick, M. R. (1999). Bootstrap Methods: A Practitioner's Guide (Wiley Series in Probability and Statistics).
[6] Guyon, I., Gunn, S., Nikravesh, M., & Zadeh, L. A. (Eds.). (2008). Feature extraction: foundations and applications (Vol. 207). Springer.
[7] Chen, Y., Abraham, A., & Yang, B. (2006). Feature selection and classification using flexible neural tree. Neurocomputing, 70(1-3), 305-313.
[8] http://homes.cs.washington.edu/~pedrod/papers/cacm12.pd
[9] http://videolectures.net/deeplearning2016_precup_machine_learning/
[10]  http://www.aaai.org/ojs/index.php/aimagazine/article/view/2367/2272
[11] https://research.facebook.com/blog/facebook-researchers-focus-on-the-most-challenging-machine-learning-questions-at-icml-2016/
[12] https://sites.google.com/site/dataefficientml/
[13] http://www.cl.uni-heidelberg.de/courses/ws14/deepl/BengioETAL12.pdf
[14] http://www.Forbes.com/MLvsAI/Nov2018/
[15] https://towardsdatascience.com/deep-learning-overfitting/

____________________

image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

