Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 Meeting #120-e	Tdoc S4-221045
17th – 26th August 2022

Agenda item: 	8.6, 9.5
Source: 	Qualcomm Inc.
Title: 	Description of the AR Rendering Process
Document for	Discussion and Agreement 
1. [bookmark: _Toc504713888]Introduction
It is important to understand and document the rendering process for AR to help clarify the requirements for split rendering and other use cases.
In this contribution, we describe the AR rendering process as specified by OpenXR and WebXR.
1. Rendering Process
2.1 	OpenXR Rendering Process
After creating an OpenXR session, the application starts a frame loop. The frame loop is executed for every frame. The frame loop consists of the following steps:
1 Synchronize actions: this step consists of retrieving the action state, e.g. the status of the controller buttons and the associated pose. During this step, the application also establishes the location of different trackables. The application may also send haptics feedback.
2 Start a new frame: this step starts with waiting for a frame to be provided by the XR runtime. This step is necessary to synchronize the application frame submission with the display. The xrWaitFrame function returns a frame state for the requested frame that includes a predictedDisplayTime, which is a prediction of when the corresponding composited frame will be displayed. This information is used by the application to request the predicted pose at display. Once the xrWaitFrame function completes, the application calls xrBeginFrame to signal the start of the rendering process.
3 Retrieve rendering resources: the application starts by locating the views in space and time by calling the xrLocateViews function, provided with the predicted display time and the XR space. It then acquires the swap chain image associated with every view of the composition layer. It waits for the swap chain image to be made available so it can write into it. 
4 Rendering: the application then performs its rendering work. This is for instance what the scene manager is tasked with. It iterates over the scene graph nodes and renders each object to the view. This step usually uses a Graphics Framework such Vulkan, OpenGL, or Direct3D to perform the actual graphics operations. 
5 Release resources: once the rendering is done for a view, the application releases the corresponding swap chain image. Once all views are rendered, it sends them for display by calling the xrEndFrame function.
The following figure (courtesy of the OpenXR 1.0 Reference Guide) depicts the process.

A key feature of the XR runtime is its ability to perform layer composition. A Compositor in the runtime is responsible for taking all the received layers from xrEndFrame calls, performing any necessary corrections such as pose correction and lens distortion, compositing them, and then sending the final frame to the display. An application may use multiple composition layers for its rendering. The number of supported composition layers may be queried by the application.
OpenXR supports different types of layers, with the main ones being:
· Projection Composition Layer: represents planar projected images, one rendered for each eye using a perspective projection.
· Quad Composition Layer: is useful for rendering user interface elements or 2D content on a planar area in the world. 
· Cube Composition Layer: consists of a cube map with 6 views to be rendered by the application.
· Equirectangular Composition Layer: consists of an equirectangular image that is mapped onto the inside of a sphere in the world.
· Depth Composition Layer: provides an extra composition layer to allow applications to submit depth maps to assist with the pose correction of projected images of a project layer. 
The following figure depicts an example of a projection composition layer and the resulting composited distorted image (image courtesy of Khronos).

Another relevant configuration when setting up the XR session is the choice of the view configuration, which depends on the target device and its capabilities. Mono and Stereo are natively supported by all XR runtimes. Some advanced types like the primary quad, defined as a vendor extension provide support for foveated rendering. 
2.2		Impact on Split Rendering
Given the provided information about the rendering process expected by the XR runtime, in the example of OpenXR, certain assumptions and requirements for the operation of split rendering for XR devices may be derived. These are as follows:
· Rendering process needs to be synchronized with the XR runtime display process
· Renderer must be able to accurately predict the display time of a frame, accounting for the delay between the remote renderer instance and the XR runtime instance. 
· Renderer must be aware of the expected rendered view configuration and the view image formats.
· Renderer must be able to access the view pose information and user actions as well as send down haptic feedback and other media for rendering.
2.3	Impact on Media Capabilities
The XR runtime and device capabilities and the rendering process also impact the requirements on media capabilities. The application must be able to query and discover the XR runtime capabilities that affect its rendering process and the media selection. These capabilities include:
· the supported composition layer capabilities by the XR runtime
· the supported and the recommended view configuration
· the supported swap chain formats
1. Proposal
We propose to document the information in section 2 and address the identified requirements.
- 12/13 -
image1.png

image2.png

