3GPP TSG SA WG4 117-e Meeting	 S4-220086
14th - 24th February 2022
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Samsung Electronics Co., Ltd.
Title:	Discussion on AI/ML (updated)
Agenda Item:	10.10
Document for:	Discussion

1 Introduction
This contribution presents a discussion on AI/ML (artificial intelligence/machine learning) in SA4, with the aim of triggering further discussions on starting a Study Item on AI/ML for Rel-18. Prior to SA4 #116e, several companies presented much interest in this topic during SA4 Rel-18 workshop#1 and #2.
2 Related work in 3GPP
Earlier this year in June, SA1 finished their study on traffic characteristics and performance requirements for AI/ML model transfer in 5GS, published in TR 22.874. The technical report identifies some of the main use cases for AI/ML, based on the different types of AI/ML operations to be supported by the 5G system, summarised briefly below:
· Types of AI/ML operations to be supported by the 5G system:
· AI/ML operation splitting between AI/ML endpoints;
· AI/ML model/data distribution and sharing over 5G system;
· Distributed/Federated Learning over 5G system.

· Identified media related use cases:
· Split AI/ML image recognition;
· Enhanced media recognition;
· Media quality enhancement;
· AI/ML model distribution for image recognition;
· Real time media editing with on-board AI inference;
· AI/ML model distribution for speech recognition;
· Uncompressed Federated Learning for image recognition;
· Compressed Federated Learning for image/video processing.
Following the technical report, requirements for AI/ML model transfer were included into TS 22.261 Service requirements for the 5G system.
Leading on from the work done in SA1, SA2 has also approved a study item on AI/ML-based network services, with SA approval for the study item expected in December.
AI/ML related work in other 3GPP WGs is also identified and detailed in S4-220085.

3 5G AI/ML services
Considering that the majority of the use cases identified by SA1 are media related, it falls natural that SA4 also initiate a study in order to identify potential work required for supporting such services.
At the most basic level, a 5G AI/ML service model between a UE (such as a mobile device) and a server can be expected, supporting multiple AI/ML services, in particular 1) AI/ML inferencing services, and 2) distributed/federated learning services.
The rest of the discussion in this contribution focuses on technical considerations related to AI/ML inferencing services.

4 AI/ML inferencing services
Between a UE and a server, there can be different possible scenarios for AI/ML inferencing, including:
· UE on-device AI/ML model inferencing (with AI/ML model obtained from the network)
· Split AI/ML model inferencing (between UE and network)
· Remote AI/ML model inferencing (where the AI/ML model is stored and inferenced in the network)
For each of the scenarios, different AI/ML operations (including those identified by SA1, and more) may need to be supported by the 5G system, as shown in the table 1 below.

	AI/ML Inferencing Service Scenario
	Types of AI/ML Operations Needed

	UE on-device AI/ML model inferencing
	· AI/ML model distribution and sharing

	Split AI/ML model inferencing
	· AI/ML model distribution and sharing
· Intermediate data distribution and sharing
· Split-point decision operations
· Delivery of inference data to UE

	Remote AI/ML model inferencing
	· Delivery of input data for AI/ML model in network
· Delivery of inference data to UE

Table 1 – AI/ML operations required for each inferencing service scenario

In order to support the different service scenarios, new media architectures may need to be studied, in alignment with the work expected in SA2. The data related to the types of required AI/ML operations listed may be considered as a form of media (in certain cases, actual media such as video/audio) with characteristics that are still unknown and need to be studied.

 [image:]
Figure 1 – UE on-device computing vs remote computing [1]
Figure 1 from [1] shows a comparison between UE on-device computing and remote computing for media quality enhancement. The complexity of the ML model which can be hosted by a stand-alone device is typically limited by its hardware processing capabilities, in comparison to a cloud/edge hosted ML model with far greater computing resources, allowing for the use of a much more complex ML model which can achieve higher precision and confidence.

5 Technical focuses for AI/ML in SA4
5.1 AI/ML model/data distribution and sharing
Many different AI/ML model formats and architectures are currently used depending on the use case and usage scenario of the AI/ML service. Convolutional neural networks (CNNs) are typically well suited to spatial data (e.g. images), for use cases such as image recognition and classification, face detection etc., whilst recurrent neural networks (RNNs) are frequently used to process temporal/sequential data (e.g. text or video), for use cases such as language translation, conversational intelligence etc. Recently, the use of hybrid architectures are also becoming widespread for various applications.
Figure 2 shows an example of each of the two types CNN and RNN neural networks.

[image:]
Figure 2 – Example of CNN and RNN networks

Depending on the type of neural network used, different factors should be considered when deciding on how to distribute and share the AI/ML model, for example:
· The format of the model data
· The structure of the model data
· The size of the model data
Based on such factors, the characteristics of the data considered for distribution can be used to identify whether it can be delivered in a download like manner, or whether it can be delivered in a streaming like manner.

[image:]
Figure 3 – Download and streaming possibilities for AI/ML model delivery

Figure 3 shows download and streaming examples for the delivery of AI/Ml models. The typical data size for an AI/ML model ranges drastically from a few MBs to even tens of GBs in extreme cases, according to the usage scenario. Whilst the average model size of the top 100 apps is around 75MB [2], different cloud platform and model development frameworks implement their own restrictions on model size, further highlighting the broad variation of model size depending on the implementation of the application.
· Tensorflow restricts the input model size to 250MB
· Google Cloud : Model Size <= 10GB
· Amazon ML : Model Size <= 2GB

In a download scenario, the complete model is delivered to the UE before any inferencing can be performed on the device.
For streaming, in order to reduce inference latencies, and depending on the structure of the AI/ML model, the layers of the model may be partitioned, and each partition subsequently streamed to the UE in a consecutive manner. On receipt of each partition, the UE may be able to start certain operations for the inferencing even if it has not yet received the complete model.
Such possibilities for AI/ML model delivery requires detailed study into both the characteristics of the data at hand, as well as the implementation practicality of such delivery models for deployment.
Apart from the data representing the neural network structure of the model, AI/ML inferencing also requires other data such as node weights and biases. The characteristics of these data may differ from the model structure data, as node weights and biases can typically vary over the operation time of the AI/ML inferencing service, depending on the application use case.
The factors and potential approaches related to the distribution and sharing of AI/ML models presented here should be studied by SA4 when studying such related characteristics and requirements.
5.2 AI/ML operation splitting between AI/ML endpoints
[image:]
Figure 4 – Example of different split ratios for split inferencing between various AI/ML device endpoints [1]
As identified in SA1, AI/ML operation splitting between AI/ML endpoints, especially those between UE devices and the cloud/edge, can be used not only to support low compute devices (such as IoT devices), but also to support processing intensive mobile applications such as VR, AR/MR, gaming, and more. The split ratio of such split inferencing as shown in figure 4 can be varied depending on many different factors, and the split ratio in turn also defines the split point within the AI/ML model used.
Factors to consider when deciding the split point for such an operation (and indeed which entity to actually make the decision) may include those related to the UE device, the network, the data required for distribution, the model format and architecture itself, as well as other user focus related factors. A list of the specific factors which may require detailed study is presented in table 2 below.

	Device
	Network
	Data
	AI/ML Models
	User focus

	· CPU/GPU/NPU capability
· Battery
· Heat
	· Network (Cellular, WiFi, BT…)
· Mobility
	· Intermediate data size
· Model Size
	· Model arch. (CNN, RNN,..)
· Model parameters (IN, float)
· Back/forward links (propagation)
	· Service KPI
· Data privacy
· Cost of hosting

Table 2 – Potential split point decision factors for split inferencing

In addition to the factors listed in table 2, the end to end inference time also plays a significant factor in the requirements for split inferencing. Like that of the motion-to-photon latency requirements for XR, inference time requirements for different AI/ML services can be expected, with these requirements being affecting the split conditions for split inferencing.
Preliminary studies shown in table 3 from [3] shows that typical model inference times differ drastically depending on whether they are run on a client, or on a server (edge), and also what type of device is available at such endpoints. The results presented in the paper[3] were based on running two separate well known DNN models for identifying human poses (MobileNet and PoseNet), each on an Raspberry Pi (RPi)Pi device as a client, and on a Samsung Galaxy S20 device as a server.
Using video as the input to the models, the considerable differences in inference run times highlight the significance of factors such as UE device processing capability, and model architecture, size, and complexity. Analysing the inference run times from a service KPI perspective, if the video input for such a service is given as 15fps (1 frame every 67ms), then only one of the configurations shown can actually meet a “live” inferencing/processing requirement (the MobileNet model run on a Samsung Galaxy S20).

	Models
	Input Model Size
	Input Data
Size
	Inference
Run time on Client
(RPi Device)
	Inference
Run time on Server
(Galaxy S20 Device)

	MobileNet_v1
	4.07 MB
	150KB
(3x224x224)
	181 ms
	40 ms

	PoseNet_v1
	12.6 MB
	790KB
(3x257x257)
	584 ms
	89 ms

Table 3 – A comparison of different inference run times between a client and a server [3]

With such variation in results even in such a controlled experimental environment, careful study of the factors as introduced in table 2 should be considered in SA4 in order to define, and meet service KPIs and network requirements, especially when taking in account network latencies during split inference operations between a UE device and server.
5.3 Detailed IoT split inferencing example
Further details on the IoT split inferencing example carried out in [3] is described here, highlighting the dynamic split computing of PoseNet inferencing for fitness applications in a home IoT-Edge platform.
[image:]
Figure 5 – Architecture used for IoT split inferencing example [3]
The PoseNet model used to recognize and count (from video) the total number of arm movements of a user, and split inferencing was performed between a client device (Raspberry Pi) and a server device (Samsung Galaxy S20).
[image:]
Table 4 – Results showing the variation of inference time depending on the split-point
Table 4 shows the results of split-point versus inference time, where an algorithm taking into consideration the available data rate was applied. The inference time T here takes into account both the inference latencies in the device, and in the edge, as well as the delivery of the intermediate data (its size, and available data rate) for the split-point.
As can be seen, all identified split-points have a shorter inference time than complete on-device inferencing. For an average Wi-Fi data rate of 12.6 Mbps, the optimal split of 39:61 gives an inference time of T=345ms. This is in comparison to complete on-device inferencing which gives an inference time of T=445ms, and to complete on-edge inferencing which gives an inference time of T=535ms (for complete on-edge inferencing, most of the delay is due to the delivery latency of the intermediate data).
5.4 AI/ML model compression
In general, there are many different categories of compression techniques for deep neural networks. These include:
· Network pruning, where unimportant components such as layers, filters, channels and such are removes from the AI/lML model, such as layer, channel pruning etc.
· Sparse representation, which exploits sparsity in the AI/ML model whilst preserving the overall structure of the model, such as quantization.
· Bits precision, which reduces the number of bits required for representing the weight matrices, such as float-to-integer transformation.
· Knowledge distillation, where the performance of compressed models can be improved via techniques such as teacher assistant.

MPEG Neural Network Coding and Representation (NNR) contains a selection of such tools in its NNR Encoder as shown in figure 6.
[image:]
Figure 6 – NNR encoding pipelines [4]
Many compression tools for parameter reduction and parameter quantization, which fall into the network pruning, sparse representation and bits precision categories, are readily made available as generic tools by framework/platform providers, such as the TensorFlow Model Optimization Toolkit. With such a diversity in the common tools used for compression, whilst MPEG NNR is a good starting reference, SA4 should study the impacts of the latest individual tool technologies. It should also be noted that new compression tools (even for entropy coding) in this topic of AI/ML model compression is advancing at a very rapid pace.
6 Related industry movements and requirements
[bookmark: _GoBack]From 2021, Samsung Tizen devices already support IoT split model inferencing and offloading, the details of which are described in [5]. Extending the IoT use cases supported by these devices to cloud and edge applications, particularly through the development of 3GPP SA4 specifications, can realistically have a beneficial impact on media services, not only in terms of meeting service requirements, but also in supporting lower computational power devices. Aligning work in SA4 with the movements in the industry and standardising the essential elements will help different companies support user experiences and media services.

7 Conclusion
This contribution presented a brief discussion on different services and technical issues related to AI/ML services in SA4, with an objective to trigger further relevant discussions on starting a Study Item on AI/ML for Rel-18.

8 References
[1] “6G, The Next Hyper-Connected Experience for all”, Samsung White Paper, 2020
[2] Deep learning has a size problem
[https://heartbeat.comet.ml/deep-learning-has-a-size-problem-ea601304cd8]
[3] "Split Computing: Dynamic Partitioning & Reliable Communications in IoT-Edge for 6G Vision", 8th IEEE Fi-Cloud 2021
[4] ISO/IEC 15938-17:2020 Compression of neural networks for multimedia content description and analysis
[5] https://www.youtube.com/watch?v=QI5uuqWsch0 : #Samsung #SDC21 #Tizen [Highlight Session] What's new in Tizen 6.5
image3.png
Download Streaming

i@
.- '

Conv 1-1:
complete model
Conv 2-1:
Output
FC-1:

1 8

image4.png
Device 10%

Phone 90%

image5.PNG
Device

1 @ Camera Module ©

Device-sida NN NNStreamer Pip 1

Input video image Inference (PoseNlet)

Tensor Conversion
(Arm exercise) c-0sc Algoritm | © ‘a

Inference results) —

from Edge

N
8RPC Client Interpret results —»(If pose? >
() @ S

Edge
ERPC Server L
Send PoseNet inference
e m received Result from o to server ®
from device
model Inference Count of arm
iy NNStreamer Pipeline exercise If yes, increase the

Tensor Conversion Edge-side NN number of counts

(7] Inference (PoseNet) displayed

image6.png
Available data rate Model Pa n Split-point Inference e
[device:edge]
TH <4 Mbps 100:0 Complete on-device execution T=445ms
4 Mbps < TH < 8 Mbps 90:10 Layers 1-28 (on-device) and Layers 29-31 425ms <T <445 ms
(on-edge)
8 Mbps < TH < 31 Mbps 39:61 Layers 1-12 (on-device) and Layers 13-31 230ms <T <425 ms
(on-edge)

TH > 31 Mbps 0:100 Complete on-edge execution T<230ms

image7.png
original
Neural
Net

. Parameter reduction I

Sparsification

Decomposition

Unification

Parameter Quantization

Uniform
Quantization

Codebook
Quantization

Dependent
Quantization

Entropy Coding

Deep CABAC

image1.png
£__4

g

Stand-alone device

T

Split computing device

~» Wireless communication
) Low computing power @ mobile device
3 High computing power @ BS

image2.png
Recurrent network

Fully
Connected

Convolution

Pooling ...+

output tayer

inputtayer

Feature Extraction Classification hiaden tayers

CNN RNN

