

	
3GPP TSG-SA4 Meeting #114-e	S4-210857
19th – 28th May 2021
	CR-Form-v12.1

	pseudo CHANGE REQUEST

	

	
	26.998
	CR
	
	rev
	
	Current version:
	<Version#>
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	[FS_5GSTAR] AR Runtime Overview

	
	

	Source to WG:
	Qualcomm Incorporared

	Source to TSG:
	S4

	
	

	Work item code:
	FS_5GSTAR
	
	Date:
	2021/05/13

	
	
	
	
	

	Category:
	<Cat>
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
References
[x] 	Khronos Group, The OpenXR Specification, 1.0, https://www.khronos.org/registry/OpenXR/specs/1.0/html/xrspec.html
[y]		W3C, WebXR Device API, W3C Working Group Draft, https://www.w3.org/TR/webxr/
===== CHANGE =====
4.3.4 Work related to AR Runtime
4.3.4.1	OpenXR
OpenXR [x] is an API that is developed by the Khronos Group for developing XR applications that address a wide range of XR devices. XR refers to a mix of real and virtual world environments that are generated by computers through interactions by humans. XR includes technologies such as virtual reality (VR), augmented reality (AR) and mixed reality (MR). OpenXR is the interface between an application and XR runtime. The runtime handles functionality such as frame composition, user-triggered actions, and tracking information.
OpenXR is designed to be a layered API, which means that a user or application may insert API layers between the application and the runtime implementation. These API layers provide additional functionality by intercepting OpenXR functions from the layer above and then performing different operations than would otherwise be performed without the layer. In the simplest cases, the layer simply calls the next layer down with the same arguments, but a more complex layer may implement API functionality that is not present in the layers or runtime below it. This mechanism is essentially an architected "function shimming" or "intercept" feature that is designed into OpenXR and meant to replace more informal methods of "hooking" API calls.
Applications can determine the API layers that are available to them by calling the xrEnumerateApiLayerProperties function to obtain a list of available API layers. Applications then can select the desired API layers from this list and provide them to the xrCreateInstance function when creating an instance.
API layers may implement OpenXR functions that may or may not be supported by the underlying runtime. In order to expose these new features, the API layer must expose this functionality in the form of an OpenXR extension. It must not expose new OpenXR functions without an associated extension.
An OpenXR instance is an object that allows an OpenXR application to communicate with an OpenXR runtime. The application accomplishes this communication by calling xrCreateInstance and receiving a handle to the resulting XrInstance object.
The XrInstance object stores and tracks OpenXR-related application state, without storing any such state in the application’s global address space. This allows the application to create multiple instances as well as safely encapsulate the application’s OpenXR state since this object is opaque to the application. OpenXR runtimes may limit the number of simultaneous XrInstance objects that may be created and used, but they must support the creation and usage of at least one XrInstance object per process.
Spaces are represented by XrSpace handles, which the application creates and then uses in API calls. Whenever an application calls a function that returns coordinates, it provides an XrSpace to specify the frame of reference in which those coordinates will be expressed. Similarly, when providing coordinates to a function, the application specifies which XrSpace the runtime should use to interpret those coordinates.
OpenXR defines a set of well-known reference spaces that applications use to bootstrap their spatial reasoning. These reference spaces are: VIEW, LOCAL and STAGE. Each reference space has a well-defined meaning, which establishes where its origin is positioned and how its axes are oriented.
Runtimes whose tracking systems improve their understanding of the world over time may track spaces independently. For example, even though a LOCAL space and a STAGE space each map their origin to a static position in the world, a runtime with an inside-out tracking system may introduce slight adjustments to the origin of each space on a continuous basis to keep each origin in place.
Beyond the well-known reference spaces, runtimes expose other independently tracked spaces, such as a pose action space that tracks the pose of a motion controller over time.
The following figure depicts the lifecycle of an application that uses OpenXR for interaction and rendering with/to an HMD.
[image:]

4.3.4.2	WebXR
WebXR [y] is a set of APIs that are developed by the W3C to provide support for augmented reality (AR) and virtual reality (VR) in web environments, hence the name WebXR for cross reality in the web. When a WebXR session is created, the mode of the session is indicated, i.e. whether it is an AR or VR session. VR sessions may be consumed in 2 ways, inline and immersive. In the inline mode, the VR content is rendered on the 2D screen as part of the web document. In the immersive mode, the content is rendered on an HMD with an immersive 3DoF experience. AR sessions are always immersive.
A typical lifecycle of a WebXR application will start by checking for availabity of the WebXR API support in the current browser. When the user requests the activation of a WebXR functionality, an XRSession with the desired mode is created. The XRSession instance is then used to request a frame to render using the requestAnimationFrame call. Complex scenes may require threaded rendering, which can be achieved through the usage of Worker instances. WebGL is then ultimately used to render to the provided frame. When calling the requestAnimationFrame, the application provides a callback function that will be called when a new frame is about to be rendered. The callback function will receive a timestamp, indicating the current timestamp of the XR pose. It also receives an XRFrame, which holds information about the current XR poses for all objects that are being tracked by the session. This information is then used to perform correct rendering by the application. The XRFrame offers two main functions, the getPose and getViewerPose. The getPose functions returns the relationship between two XRSpaces, which are passed in as input to that function. The getVeiwerPose returns the viewer’s pose in relationship to a reference XRSpace that is passed to the function call.
WebXR defines a set of reference XRSpace(s) as described in the following table:
	Reference XR Space
	Description

	bounded-floor
	a tracking space with an origin that is located at the floor of the viewer’s environment when the session was created. The XR space is bounded and movement outside that space is not supposed to happen.

	local
	a tracking space that corresponds to the viewer’s position when the session was created. The user is not expected to move much beyond that starting position.

	local-floor
	a tracking space that corresponds to the viewer’s floor position when the session was created, so that the viewer will be standing on that floor.

	unbounded
	a tracking space that allows total freedom of movement.

	viewer
	a tracking space that has an origin at the viewer’s position and orientation. The origin tracks the viewer at all times.

image1.tiff
e m

FORM_FACTOR NAVATLABLE
rénuneratespiLayerproperties P xrcetsysten

xcEnuneratelnstanceExtensionproperties = esyncactions

xrGetInstanceproperties xrGetactionstatesoolean
wrGetsystesproperties Jroeuctionstarerlont
xrEnumerategnvironsentslenduodes xrGethctionstateve

xeknumeratevieuconfgurations
arcreatelnstance ArGetVieConf igurationProperties
ArEnuserateviesConf igurationvicus

xeApplybapticEeedback

srcreaten rStopanticreedack

m xehequestexitsession
xesuggestinteractionprofLesindings m Aroeginsussion
srénumerateneferencespaces L

arcreateReferencespace

onset arcreatesession

X0_SESSION STATE
SYRGHRONZED | VISIBLE | Foc

srcreateactionspace

»

xrénuseratesapchainfornats
arpontevent o &=

xrEnuseratesuapchainiaages

Sesston states Ariocatespace

Execute Grophics

xroestroytnstance

XR_SESSION_STATE
L0ss_pooniG

xroestroysession

