	
3GPP TSG SA WG4 #114e	S4-210803
E-meeting, 19th – 28th May 2021 	
	CR-Form-v12.0

	Pseudo CHANGE REQUEST

	

	
	26.804
	CR
	<CR#>
	rev
	-
	Current version:
	1.2.8
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	[FS_5GMS-EXT] Key Topic Scalable distribution of unicast Live Services

	
	

	Source to WG:
	 Qualcomm Incorporated

	Source to TSG:
	SA4

	
	

	Work item code:
	FS_5GMS-EXT
	
	Date:
	2021-05-11

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	56
	

	This CR's revision history:
	

===== CHANGE =====
[bookmark: _Toc67898898]5.11	TV-grade mass distribution of unicast Live Services
[bookmark: _Toc67898899]5.11.1	Description
Live TV services of different scale (professional, user-generated, session-based, etc.) are increasingly distributed over broadband and mobile networks. Live TV services are characterized by:
-	scalability (in terms of concurrent users),
- 	consistent quality,
-	high bandwidth requirements, and
-	target latency constraints.
Consistent support of the distribution of such services to a different scale of users and in a concurrent fashion is a prime concern. 5G Media Streaming is expected to support such service distribution and end-to-end optimizations. Improvements and optimizations on the architectural level and stage 3 are expected to be studied.
Based on a report developed jointly between DVB and DASH-IF on Low-Latency DASH [9], this clause defines details on how to support consistent latency in DASH for linear TV services. In [9], several definitions had been introduced, repeated here for consistency.
-	End-to-End Latency (EEL): The latency for an action that is captured by the camera until its visibility on the remote screen.
-	Encoder-Display Latency (EDL): The latency of the linear playout output (which typically serves as input to distribution encoder(s)) to the screen.
-	Packager-Display Latency: The latency after the output of the distribution encoder to the screen.
-	CDN latency: The delay caused by the CDN delivery from CDN input to CDN output.
-	Live Edge Start-up Delay (LSD): The time between a user action (service access or service join) and the time until the first media sample of the service is perceived by the user when joining at the live edge. Typically also the channel change time.
-	Seek Start-up Delay (SSD): The time between a user action (service access or service join) and the time until the first media sample of the service is perceived by the user when seeking to a time shift buffer.
Those two categories, latency and delay are subject to be controllable by the service provider for a consistent service offering. In the remainder, primarily the Encoder-Display Latency (EDL) and the Live Edge Start-up Delay are considered, but for some use cases also the End-to-End Latency (EEL) may be relevant. Figure 5.11.1‑1 provides a schematic overview of the different latencies.
[image:]
[bookmark: _Ref36234973]Figure 5.11.1‑1: Different latencies and delays relevant for low-latency distribution
The Low Latency DASH scenario is a variant of the Live Services recommended approach focused on ensuring that the Encoder-Display Latency of the DASH Media Presentation is comparable to the latency when distributing over terrestrial, cable or satellite broadcast. Latency in broadcast is not a unique universal value, as it is influenced by many factors such as the duration of the broadcast encoding pipeline, the latency of the transport channel which can slightly differ per type (satellite, cable, IPTV or, DTT...), or the artificial delays introduced by local content moderation regulations. However, most of the measurements converge on a 3 - 10 seconds latency between the moment where the source signal is acquired for encoding and the moment when it's played back on the TVs, i.e the EDL. Start-up delay requirements are typically in the range of 1-2 seconds. For details refer to [9].
Low-latency mode are supported to minimize the architectural impacts on existing workflows. Figure 5.11.1‑2 provides a basic flow of information for operating a low-latency DASH service as defined in DASH-IF’s Low-latency Modes for DASH [10]. The DASH packager gets information on the general description of the service as well as the encoder configuration. The encoder produces CMAF chunks and fragments. The chunks are mapped by the MPD packager onto Segments and provided to the network in incremental fashion using HTTP/1.1 chunked transfer.
[image:]
Figure 5.11.1-2 Basic operation flow Low-Latency DASH
HTTP chunked transfer coding needs to be supported up from the ingest into the packager up to the CDN edge, whereas the last mile delivery is expected happen using HTTP chunked transfer coding or HTTP in regular mode. If HTTP chunked transfer coding is supported by the DASH player, it basically means that a media segment carrying the latest moment of the program (also known as the "live edge time" as defined in clause 4 of this document) could be consumed on the player while it's still being produced by the encoder and the packager.
In case chunked segments are used, clients may want to access partially available Segments for example for fast random access, see ISO/IEC 23009-1 [11]. However, requesting available byte ranges of a partially available Segment, i.e., Segments still being produced, is not consistently supported in CDNs, but solutions are provided in RFC8673 [X6]. This functionality may also be needed to support common segment handling for low-latency DASH and low-latency HLS.
Key aspects for low-latency live distribution include:
-	Consistent support for chunked transfer from ingest to client.
-	Support for partially access of non-complete resources.
-	End-to-end optimizations to support the latency requirements.
[bookmark: _Toc67898900]5.11.2	Deployment Architectures
A deployment architecture is shown in Figure 5.11.3-1. In this case the
· A live stream is ingested into a live encoder
· The live stream is then packaged to CMAF chunks
· The CMAF chunks are uploaded to an origin server using chunked transfer encoding input
· Segment are then available and moved through the CDN all the way to the client.
[image:]
Figure 5.11.3-1 Deployment architecture for low-latency CMAF streaming

5.11.32	Collaboration Scenarios
The following collaboration scenarios may be considered:
1) Original content is uploaded as a live stream to the MNO, and the MNO does the encoding and packaging
2) Encoded and packaged low-latency CMAF content is uploaded as a live stream to the MNO, and the MNO does the encoding and packaging. The MNO produces the MPD for its distribution. In this case, the content is augmented producer reference times.
3) The origin server is external to the MNOs network and the content is pulled from the clients
In either case, the content provider and the service provider agree on:
· The MNO monitors if the end-to-end latency is maintained
· The desired latency from glass-to-glass is met for example to be 3 seconds
· The content is provided in low-latency, but also in time shift mode
· The content can be accessed before the whole segment is uploaded
·
Editor’s Note: Study collaboration scenarios between the 5G System and Application Provider for each of the key topics.
[bookmark: _Toc67898901]5.11.3	Deployment Architectures
Editor’s Note: Based on the 5GMS Architecture, develop one or more deployment architectures that address the key topics and the collaboration models.
[bookmark: _Toc67898902]5.11.4	Mapping to 5G Media Streaming and High-Level Call Flows
5.11.4.1	Collaboration 1: MNO provides encoding and packaging
Architecture:
-	relates to content preparation
5.11.4.2	Collaboration 2: MNO provides DASH distribution
Architecture:
-	relates to content preparation
5.11.4.3	Collaboration 3: MNO acts as CDN

Editor’s Note: Map the key topics to basic functions and develop high-level call flows.
[bookmark: _Toc67898903]5.11.5	Potential open issues
Editor’s Note: Identify the issues that need to be solved.
[bookmark: _Toc67898904]5.11.6	Candidate Solutions
Editor’s Note: Provide candidate solutions (including call flows) for each of the identified issues.

image1.png
Encoder-to-End Latency (EEL)

Live stream latency = end-to-end latency = glass-to-glass latency = hand-waving latency

o = -

CAMERA PRODUCTION OTT ENCODER

Live Edge Start-up Delay
| Channel Change Time

Connection latency |
(RTT)

Encoder-Display Latency (EDL)

image2.png
Service
Description

Encoder
DASH Segment
CNC CNC cl CNC CNC H
DASH HITP g
Gurk ok
- Packager
CH = CMAF Header
CNC = CMAF non-initial chunk

CIC = CMAF initial chunk
Regular
« DASH

Client
CDN stores

Segments
Low-Latency
DASH
Client

image3.png
Achievable 2s glass to glass latency with 1.5s latency target set on dash.js

Referencetime
>3
L0 0 0]
Streamline Server
- NICE!!
<o/ No custom settings: NICE!!!

LIVEPACKAGING ORIGINATION HTMLPLAYBACK
Streamline Server Nginx CDN
Live |)|
q Chunkedtransfer S m Chunkedtransfer Chunkedtransfer
encoaer encodingingest STREAMLINE SOUICIH encoding egress encodingegress
(HTTPPU Ingest (PULL)”_stield (PULL) (PULL)
Requests collapsing
Nginx
dash.js 2.9.2+
in /etc/nginx/sites-available/default
Ngi player.setlowLatencyEnabled(true);
anx # Expires map player.setLiveDelay(1.5);
map $sent_http_content_type $expires { player setCatchUpPlaybackRate(0.2);
S default off, player setAutoPlay(true);
rtmp { application/dash+xml 5s;
" video/MP4. 24h; +++ sefCatchupPlaybackRate /
i : 1935; } setlowLatencyMinDrift /
|I)Tneg"305' 3 setlowLatencyMaxDriftBeforeSeeking
buflen 100ms; server {
wait_key on; bcah::p;;;‘lld%arshlr‘\,(mauéw {
10ms; 3
m:?y m’glsﬁod jet; add_header Cache-Control public; location /idash {
application m: ag { client_max_body._size 100M; client_max_body._size 100M;
e proxy_request_buffering off; proxy_request_buffering off;
P chunked_transfer_encoding on; chunked_transfer_encoding on;
1 proxy_max_temp_file_size 1024m; proxy_max_temp_file_size 1024m;
} proxy_buffer_size 8k; proxy_buffer_size 8k;
proxy_buffers 8 8k; proxy_buffers 8 8k;
proxy_buffering on; proxy_buffering on;
proxy_http_version 1.1; proxy_http_version 1.1;
proxy_pass http://127.0.0.1:8080; proxy_pass htp://127.0.0.1:8080;
3 3

expires $expires;

}

