

	
3GPP TSG SA WG4 #114e	S4-210746
E-meeting, 18th – 29th May 2021 	
												
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.955
	CR
	
	rev
	
	Current version:
	1.1.3
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Software Updates

	
	

	Source to WG:
	Qualcomm Incoroporated

	Source to TSG:
	

	
	

	Work item code:
	FS_5GVideo
	
	Date:
	12/05/2021

	
	
	
	
	

	Category:
	
	
	Release:
	17

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	The software may be used ro do the following details:
1)	Create anchors
2)	Generate Metrics
3)	Verification of bitstreams
4)	Verification of reconstruction

	
	

	Summary of change:
	This document updates the Annex for addressing new information

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	We also did a first verification of files using the software. The data is provided here: https://github.com/haudiobe/5GVideo/tree/master/sample/Anchors/Scenario-3 - unfortunately the verification was not successful

S3-A36-265_22 | decoder verification =====
md5 mismatch - expected:unknown - result: None
YPSNR - expected:49.6 - result: 49.28744626843126
UPSNR - expected:51.06 - result: 50.68773747659844
VPSNR - expected:53.1 - result: 52.558710360343696
MS_SSIM - expected:0.9986 - result: 1.0
VMAF - expected:99.99 - result: 0

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
[bookmark: _Toc71665500]Annex E: Software Package
[bookmark: _Toc71665501]E.1	Introduction
The development of anchors, tests and metrics is supported by a software package provided here. The software packager permits the following functionalities:
1. to produce anchors and test bitstreams.
a) Input
-	a reference sequence csv according to the format in this document. It includes the key and the reference to the online repository
-	a stream csv file according to the format provided in this document. It includes the tuple key, the reference sequence, the reference encoder, the configuration files, the variations and the anchor keys.
b) Output
-	the set of anchors in an anchor tuple in json according to the agreed naming convention
2. to produce metrics. The following information is needed.
a) Input
-	a reference sequence csv according to the format in this document. It includes the key and the reference to the online repository
-	a stream csv file according to the format provided in this document. It includes the tuple key, the reference sequence, the reference encoder, the configuration files, the variations and the anchor keys.
-	the set of anchors in an anchor tuple in json according to the agreed naming convention
b) Output
-	a metrics json file for each anchor tuple according to the definition in clause 5.5.
3. to verify reconstruction and metrics. The following information is needed.
a) Input
-	a reference sequence csv according to the format in this document. It includes the key and the reference to the online repository
-	a stream csv file according to the format provided in this document. It includes the tuple key, the reference sequence, the reference encoder, the configuration files, the variations and the anchor keys.
-	the set of anchors in an anchor tuple in json according to the agreed naming convention
b) Output
-	a list of verification report entries according to the definition in Annex B.4.
4. to verify bitstreams. The following information is needed.
a) Input
-	a reference sequence csv according to the format in this document. It includes the key and the reference to the online repository
-	a stream csv file according to the format provided in this document. It includes the tuple key, the reference sequence, the reference encoder, the configuration files, the variations and the anchor keys.
-	the set of anchors in an anchor tuple in json according to the agreed naming convention
b) Output
-	a list of verification report entries according to the definition in Annex B.4.
Editor’s Note: needs update for final scripting details. The software is currently hosted here: https://github.com/haudiobe/5GVideo
[bookmark: _Toc71665502]E.2	Readme
[bookmark: _Toc71665503]Quickstart
· the script are designed to work with data downloaded from: https://dash-large-files.akamaized.net/WAVE/3GPP/5GVideo
Using docker
a sample Dockerfile is provided to build an image with the scripts dependencies.
to build the image:
git clone https://github.com/haudiobe/5GVideo.git
cd 5GVideo
docker build -t anchortools -f ./docker/Dockerfile .
to use the image:
root_dir=/path/to/host/data
scenario=Scenario-3
anchor_key=S3-A36-265

docker run -it \
 --mount type=bind,source=$root_dir/Anchors,target=/data/Anchors \
 --mount type=bind,source=$root_dir/ReferenceSequences,target=/data/ReferenceSequences \
 anchortools:latest ./verify.py decoder --scenario_dir /data/Anchors/$scenario -k $anchor_key
anchor verification
verify.py script runs verification for bitstream or metrics, updates the anchor's metrics if verification is successfull.
verify a specific anchor's bitstreams:
verify.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 bitstream

verify all bitstreams in a scenarios:
verify.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 bitstream

verify a specific anchor's metrics:
verify.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 bitstream

verify all metrics in a scenarios:
verify.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 bitstream
the verification script has additional command line arguments to customize directory layout, see verify.py -h.
see the samples directory for sample verification logs and reports.
metrics generation
decode and compute metrics for a specific anchor, eg. S3-A36-265 in Scenario-3:
cmd.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 decoder
decode and compute metrics for all anchors in Scenario-3:
cmd.py --scenario_dir /data/Anchors/Scenario-3 decoder
Notes
· reference sequences and encoder configuration should be accessible from the same relative path, relative to the target scenario.
· the scenario directory must contain anchors.csv, reference-sequences.csv
anchor generation
encode a specific anchor, eg. S3-A36-265 in Scenario-3:
create.py --scenario_dir /data/Anchors/Scenario-3 -k S3-A36-265 encoder
encode all anchors in Scenario-3:
create.py --scenario_dir /data/Anchors/Scenario-3 encoder
environment variables
Some environment variables are configured in the docker file. In order to run the scirpts on a custom environment, the following environment variables are used to locate the executables.
reference encoder/decoders:
JM
JM_ENCODER=/path/to/JM/bin/lencod_static
JM_DECODER=/path/to/JM/bin/ldecod_static
HM
HM_ENCODER=/path/to/HM/bin/TAppEncoderStatic
HM_DECODER=/path/to/bin/TAppDecoderStatic
SCM ENV SCM_ENCODER=/path/to/SCM/bin/TAppEncoderStatic ENV SCM_DECODER=/path/to/SCM/bin/TAppDecoderStatic
VTM
VTM_ENCODER=/path/to/bin/EncoderAppStatic
VTM_DECODER=/path/to/bin/DecoderAppStatic
VTM
VTM_ENCODER=/path/to/bin/EncoderAppStatic
VTM_DECODER=/path/to/bin/DecoderAppStatic
Adding a custom encoder
implement the ReferenceEncoder interface (encoder_id, encode_variant, decode_variant) and decorate your class (@register_encoder)
metrics computation:
HDRTools
HDRMETRICS_TOOL=/path/to/HDRTools/build/bin/HDRMetrics
VMAF add your vmaf lib to your path
PATH=/home/deps/vmaf:/home/deps/vmaf/libvmaf/build/tools:$PATH
Raw video sequence description
YUV sequences are currently described through a sidecar file. the sidecar file format follows the json schema specified at : https://github.com/haudiobe/5G-Video-Content/blob/main/3gpp-raw-schema.json
Limitations
· framerate is converted to integer (HM only supports integer values)
· RGB support is not complete
· HDR PQ metrics are not complete
E.2.1	Quickstart
Given an anchor definition, the tool performs encoding, reconstruction and runs additional metrics computation for all variants.
1.	add the samples/references/yuv420_1280x720_8bit_rec709.yuv sequence
2.	set the environment variable: HM_ENCODER=/path/to/HM/bin/TAppEncoderStatic
3.	generate the sample HM anchor
./cmd.py ./samples/anchors/sample_hm.json encode decode`
[bookmark: _Toc71665504]E.2.2	Using docker
A sample Dockerfile is provided to build an image containing all the dependencies: HM, JM, and VTM
git clone https://github.com/haudiobe/5GVideo.git

cd 5GVideo

docker build -t anchortools -f ./docker/Dockerfile .

add the missing `./samples/references/yuv420_1280x720_8bit_rec709.yuv` sequence

docker run --mount type=bind,source=./samples,target=/samples -it anchortools cmd.py /samples/anchors/sample_hm.json

the --mount option mounts the directory source path, and makes it available as target path in the running container.
[bookmark: _Toc71665505]E.2.3	Usage
[bookmark: _Toc71665506]E.2.3.1	General
./cmd.py ./anchor.json [encode] [decode] [metrics]
•	the tool assumes you have reference encoders compiled, with environment variables pointing to the executables, see below.
[bookmark: _Toc71665507]E.2.3.2	encode
./cmd.py ./anchor.json encode decode
runs the reference encoder to generate both bitstream, and reconstructed sequence for all the anchors, with the reconstructed chroma format as specified in the encoder config.
./cmd.py ./anchor.json encode
runs the reference encoder to generate bitstream only.
[bookmark: _Toc71665508]E.2.3.3		decode
./cmd.py ./anchor.json decode
runs the reference decoder to reconstruct the bitstream, with the output chroma format matching the bitstream.
[bookmark: _Toc71665509]E.2.3.4		metrics
./cmd.py ./anchor.json metrics
generates some metrics for each variant defined in the anchor
the metrics options uses third party tools, see below.
[bookmark: _Toc71665510]E.2.4	Reference encoders
the following environment variables are needed depending on the encoder/decoder you want to use:
JM
JM_ENCODER=/path/to/JM/bin/lencod_static
JM_DECODER=/path/to/JM/bin/ldecod_static
HM
HM_ENCODER=/path/to/HM/bin/TAppEncoderStatic
HM_DECODER=/path/to/bin/TAppDecoderStatic
VTM
VTM_ENCODER=/path/to/bin/EncoderAppStatic
VTM_DECODER=/path/to/bin/DecoderAppStatic
Adding a custom encoder
implement the ReferenceEncoder interface (encoder_id, encode_variant, decode_variant) and decorate your class (@register_encoder)
[bookmark: _Toc71665511]E.2.5	Anchor definition
[bookmark: _Toc71665512]E.2.5.1	example anchor.json :
{
 "description": "human readable description, use case, settings overview ...",
 "reference": "path/to/reference/sample.yuv",
 "encoder": "HM",
 "encoder_cfg": "path/to/anchor/encoder_cfg.cfg",
 "variants": {
 "variant_id0": {
 "OptionKey": "OptionValue0",
 "OptionKey2": "{ANCHOR_DIR}/sub0.cfg",
 [...]
 },
 "variant_id1": {
 "OptionKey": "OptionValue1",
 "OptionKey2": "{ANCHOR_DIR}/sub1.cfg",
 [...]
 },
 [...]
 }
}

NOTE:
· if test_sequence or encoder_cfg is a relative path, it is interpreted as relative to anchor.json.
· when used in the variant options {ANCHOR_DIR} is expanded to the anchor's encoder config directory: path/to/anchor.
[bookmark: _Toc71665513]E.2.5.2	Variant options to encoder CLI args mapping
HM, VTM
{
 "encoder_cfg": "/encoder.cfg",
 "variants": {
 "variant_id0": {
 "-k": "v",
 "--Key": "value"
 }
 }
}
maps to -c /encoder.cfg -k v --Key=value
JM
{
 "encoder_cfg": "/encoder.cfg",
 "variants": {
 "variant_id0": {
 "-f": "file.cfg",
 "Key": "value"
 }
 }
}
maps to -d /encoder.cfg -f file.cfg -p Key=value
[bookmark: _Toc71665514]E.2.5.3	Output
the above configuration would generate the following :
variant bitstream
path/to/anchor/encoder_cfg.variant_id0.bit

encoder log (VTM has additional .opl file)
path/to/anchor/encoder_cfg.variant_id0.enc.log

reconstructed variant
path/to/anchor/encoder_cfg.variant_id0.yuv

variant metrics
path/to/anchor/encoder_cfg.variant_id0.csv

[...]

path/to/anchor/encoder_cfg.variant_id1.bit
path/to/anchor/encoder_cfg.variant_id1.yuv
path/to/anchor/encoder_cfg.variant_id1.enc.log
path/to/anchor/encoder_cfg.variant_id1.csv

[...]

averaged metrics, one variant per row
path/to/anchor/encoder_cfg.csv
[bookmark: _Toc71665515]E.2.6	Raw video sequence description
YUV sequences are currently described through a sidecar file.
eg. for the above path/to/reference/sample.yuv, add the following path/to/reference/sample.json
{
 "width": 1280,
 "height": 720,
 "chroma_format": "yuv",
 "chroma_subsampling": "420",
 "bitdepth": 8,
 "fps": 30,
 "colour_space": "rec709",
 "transfer": null,
 "framecount": 30
}
[bookmark: _Toc71665516]E.2.7	Current limitations
•	fps is converted to integer
•	only planar YUV reference sequences are supported
•	the transfer and colour_space properties are currently ignored, however colour space conversions can be configured through the encoder.cfg file and through variant options for each encoder
•	metrics computation assumes reference sequence and reconstructed sequences share the same chroma format, frame packing and bitdepth
[bookmark: _Toc71665517]E.2.8	Dependencies [metrics]
The open-source gpac application is needed for metrics computation.
Detailed build instruction please refer to : https://github.com/gpac/gpac/wiki/Build-Introduction
the path to the gpac executable can be configured through environment variable, eg. :
GPAC_APP=/path/to/bin/gpac

