

FriSBE: Adaptive Bit Rate Streaming of Immersive Tiled Video

Saba Ahsan
 Nokia Technologies

 Finland
saba.ahsan@nokia.com

Ari Hourunranta
 Nokia Technologies

 Finland
ari.hourunranta@pp.inet.fi

Igor D.D. Curcio
 Nokia Technologies

 Finland
igor.curcio@nokia.com

Emre Aksu
 Nokia Technologies

 Finland
emre.aksu@nokia.com

ABSTRACT

DASH streaming for 360-degree content is gaining more traction

in research and commercial areas. The usefulness of H.265/HEVC

Motion Constrained Tile Sets (MCTS) and viewport-dependent

streaming is recognized. Streaming high quality tiles for the

viewport and lower quality tiles in the surrounding area provide

considerable bandwidth saving. However, required bit rate

estimation is difficult for a changing viewport with variable tiles,

prompting research in development of new ABR algorithms. In this

paper, we present Full Sphere Bit rate Estimation (FriSBE), an

Adaptive Bit Rate (ABR) technique for tiled omnidirectional

content that reuses existing ABR algorithms developed for 2D

video. We implemented FriSBE in an OMAF-based DASH player

and found that it is able to adapt to both head motion and changing

network conditions with minimal stalls. Our experiments showed

no stall events for stable conditions with or without head motion,

and on average 1s stall duration for varying network conditions

when bandwidth was sufficient for at least the lowest quality video,

despite a short 3 second buffer.

CCS CONCEPTS

• Information systems → Multimedia streaming; • Human-

centered computing → Virtual reality.

KEYWORDS

MPEG-DASH, Adaptive Streaming, Motion-constrained Tile Sets,

OMAF, Immersive Video, 360-degree Video

ACM Reference format:

Saba Ahsan, Ari Hourunranta, Igor D.D. Curcio and Emre Aksu. 2020.

FriSBE: Adaptive Bit Rate Streaming of Immersive Tiled Video. In

Proceedings of ACM Packet Video Workshop (PV’20). ACM, Istanbul,

Turkey, 7 pages. https://doi.org/10.1145/3386292.3397121

1 Introduction

There is a growing interest in extended reality in research and

industry with efforts on various fronts vested in the success of the

technology. Moving Picture Experts Group (MPEG) has developed

the first international Virtual Reality (VR) system standard,

Omnidirectional MediA Format (OMAF), a file format for storage

and distribution of 360-degree video and audio [1]. MPEG-DASH

is supported by the OMAF format, which allows adaptive

streaming of VR content over HTTP, enabling the use of existing

infrastructures and services to stream 360-degree videos.

Managing user experience and network bandwidth limitations pose

a big challenge for 360-degree video streaming. VR content is often

viewed on Head Mounted Display (HMD) devices, which project

the images much closer to the eyes and block the real world. This

makes users more prone to noticing visual defects in the media and

exposes them to physical side effects, such as motion sickness.

Hence, immersive video has more stringent requirements for high

quality, uninterrupted content than 2D video. Furthermore, 360-

degree video content size is much larger than 2D content, and a

good experience calls for a spatial resolution of at least 4K or

higher, leading to higher bandwidth requirements.

Viewport-dependent delivery offers respite to bandwidth

requirements, where the viewport content is streamed at a higher

quality than the surrounding non-viewport content. Since, at a

given point of time, the non-viewport part of the content is not

being watched, it does not have an impact on the user experience,

except when the user turns his/her head. In such a case, updating

the non-viewport content to viewport quality as early as possible is

desirable. Extensive work has been done to show the bandwidth

savings through Viewport-Dependent Streaming (VDS), where

viewport tiles are requested at higher quality [2, 4, 5, 7, 10, 15, 16].

The primary challenge of using tiled VDS with ABR arises because

the client receives only tile bit rates as part of the DASH manifest.

At any time, depending on the viewport orientation, the number and

size of the tiles in the viewport may differ, hence drastically

changing the required bit rate for a particular viewport and non-

viewport quality. This paper presents our work on developing an

ABR solution for tiled 360-degree video streaming. We developed

the Full Sphere Bit rate Estimation (FriSBE) process to estimate the

bit rate for each viewport quality level, considering viewport

orientation and variation in tile bit rates. We implemented FriSBE

in the Nokia OMAF player and tested it with a fetch time based

ABR algorithm [12], as well as the Buffer Occupancy Lyapunov

Algorithm (BOLA) from dash.js [11]. In our implementation, the

algorithms were able to avoid stall events and adapt to varying

network conditions.

The remainder of this paper is organized as follows. Related work

is presented in section 2. The design of FriSBE is discussed in

section 3, followed by a description of our own implementation in

section 4. Section 5 explains the test conditions used for evaluating

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from Permissions@acm.org.

PV'20, June 10–11, 2020, Istanbul, Turkey

© 2020 Association for Computing Machinery. 978-1-4503-7946-5/20/06…$15.00

https://doi.org/10.1145/3386292.3397121

PV'20, June 10-11, 2020, Istanbul, Turkey S. Ahsan et al.

the implementation and finally the results are presented in section

6. Conclusions and future work are discussed in section 7.

2 Related Work

Adaptive streaming over HTTP is a well-established field with

extensive research in the area and commercial solutions available

for traditional video [14]. 360-degree video adaptive streaming is a

relatively new area. Tile-based 360-degree content with viewport-

dependent delivery has been found to be an effective solution for

adaptive streaming with 30-70% savings in bandwidth

consumption [2, 5, 7, 10, 15, 16]. In [8], the authors present an

adaptation scheme, which assigns a weighted portion of the

available bandwidth to each tile based on its distance from the

viewport. An HTTP/2 based approach is provided in [22], with

experiments using constant bit rate tiles, which simplifies required

bit rate calculations for tile download. Variable video bit rates are

more often used in practice, so our paper addresses the problems

arising from variability in tile bit rates. Unlike previous work, we

provide an OMAF implementation and a method for making 360-

degree video compatible with existing ABR algorithms.

In addition to traditional DASH schemes, there is an effort to

identify aspects that are unique to 360-degree video and how they

can be manipulated for better adaptation. For instance, viewport

prediction techniques can help reduce the latency of viewport

updates observed for viewport-dependent streaming [6, 9].

Previous studies include work on using machine learning

techniques for viewport prediction and tile bit rate selection [23,

24]. Head motion trajectory prediction can also help in reducing

streaming data wastage by up to 25% [17]. An adaptive 360-degree

solution for mobile devices with viewport prediction and ABR is

proposed in [4]. The algorithm fetches a subset of tiles, incurring

stalls when a tile in the visible region is missing of up to 0.96 s/min.

The authors in [3] propose a variable-sized tiling scheme that

balances video encoding efficiency with perceived quality for

bandwidth savings; the quality of 360-degree video is influenced

by the speed of the viewpoint, change in scene luminance and

depth-of-field of the region. While these are important areas to

explore, our work lays the groundwork for 360-degree adaptive

video streaming that adapts to changing network conditions without

prior knowledge about the content or viewport changes.

3 Design

Traditional ABR algorithms for 2D/flat video have a single bit rate

value for the full picture in the DASH manifest, which is used by

the algorithms when selecting the appropriate quality for the next

segment. The DASH manifest for OMAF tiled videos provides an

average bit rate per tile to the player, where the full sphere (FS) is

composed of multiple tiles. In order to save bandwidth, VDS is

used so that viewport tiles are downloaded at a high quality,

whereas tiles that are outside the viewport (consequently not visible

to the user) are downloaded at a lower quality. While FS bit rate is

simply the sum of bit rates for the tiles, several factors make

estimating FS bit rate from the manifest difficult. Firstly, the

content complexity and the tile sizes are not always homogenous

1 Nokia OMAF implementation https://github.com/nokiatech/omaf

for a 360-degree video; some tiles may have a much higher bit rate

than others due to larger size or the encoder assigning more bits to

it due to content complexity. Secondly, the viewport does not

always align with tile-boundaries with some orientations requiring

larger number of tiles than others. Therefore, the required FS bit

rate can change drastically depending on the number of tiles in the

viewport, their sizes, and the complexity of the content within those

tiles. In Figure 1, the bit rate variation is shown for one of our test

sequences using three vertical and 8 horizontal viewport

orientations. It shows that slight head movements can create a large

difference in the required bit rate values. Our motivation for

FriSBE is to estimate a set of FS bit rates for different quality levels

that provide the client an approximation of the required bit rate at a

particular quality regardless of the current viewport. Our design

consists of the following steps, which are discussed in detail later:

(i) find the representative viewport V (ii) estimate the required FS

bit rates for different qualities based on V, and (iii) use the

calculated FS bit rates from the previous step in the ABR algorithm

for network adaptation. Despite when using HEVC Motion

Constrained Tile Sets it is possible to independently decode video

tiles (possibly using multiple decoders), the FriSBE method treats

all tiles of a single DASH segment collectively based on the

assumption that a segment cannot be played until all tiles from that

segment are available. This is an implementation1 restriction which

will be removed in the future.

Figure 1 A chart showing variation in FS bit rate values for different

viewports: 3 vertically and 8 horizontally adjacent positions. The FS

bit rate is calculated using the advertised bit rate for the highest

quality for viewport tiles and lowest quality for non-viewport tiles.

3.1 Representative Viewport V

As discussed previously, the FS bit rate can vary significantly based

on the viewport orientation. Defining the required bit rate for

several orientations for all levels is not only complicated, it also

does not help in keeping a constant quality level, which is

imperative for a good user experience [13]. So, we define a method

for selecting a representative viewport for estimating the required

bit rates. First the client identifies a multitude of viewports by

moving the head orientation over the video’s tile grid in granular

steps, both vertically and horizontally. A viewport is selected

whenever the tiles change. Once the viewports are identified, the

FS bit rate is calculated using a higher quality level for the viewport

tiles and a lower quality level for the non-viewport tiles. We used

the highest and the lowest quality, respectively, to calculate FS bit

https://github.com/nokiatech/omaf

FriSBE: Adaptive Bit Rate Streaming of Immersive Tiled Video PV'20, June 10-11, 2020, Istanbul, Turkey

rates at this stage. The viewport with the median FS bit rate was

chosen as V. While we found using median to be better than using

the initial viewport (azimuth and elevation are 0 for the OMAF

spherical coordinates) whether using a different bit rate percentile

is more efficient is left as future work.

3.2 Full sphere bit rate estimation

To compute FS bit rate we aggregate the required bit rate of all tiles

at the quality at which they will be downloaded using the

representative viewport. The tiles are divided in two groups; the

group of tiles (partially or fully) within the viewport, V, and the

group of all remaining tiles, V′. We only modify the quality for V,

whereas V′ is always downloaded at the lowest quality. Hence, for

N quality levels (and corresponding required bit rates) advertised

in the DASH manifest, we create N quality levels (and

corresponding required bit rates) for FS where the required FS bit

rate has a direct correlation with quality. To minimize the effects of

delayed viewport update after head motion, we add a margin area

to the actual viewport size of the device and use that as the viewport

size. Formally, for a quality level q, the DASH manifest contains

the tile bit rate 𝐵𝑇
𝑞
, where T is a tile that is fully or partially within

the viewport area 𝑉, or it is part of the non-viewport tiles 𝑉′. Then

the full sphere bit rate 𝐵𝐹𝑆
𝑞

 is:

𝐵𝐹𝑆
𝑞

= ∑ 𝐵𝑇
𝑞

𝑉

+ ∑ 𝐵𝑇
0

𝑉′

 (1)

where q has N levels, 0 is the lowest and N-1 is the highest.

Note that we use the term viewport/viewport area to imply the

region including the margin and not just the device’s viewport in

the formula and also other sections of the paper, as both viewport

and margin are treated equally (i.e., downloaded at the same

quality). More complex schemes with variable margin sizes or

higher quality for all non-viewport tiles can also be used, but

require more insight into the role of margins as it may affect the

relationship between quality and bit rate (a viewport with a wide

margin at a lower quality may require more bit rate than one at high

quality with no margin). This is left for future work.

3.3 ABR Algorithms

Having a set of FS quality levels and bit rates, the player can now

use existing ABR algorithms for adaptation. Some modifications in

the computation of the indicators used in ABR algorithms is

required to take into account all tiles for each segment. For instance,

in our implementation, we define buffer occupancy as the number

of segments in the buffer for which all tiles have been downloaded,

and throughput values account for overall throughput for all tile

downloads. Once the ABR has chosen the FS quality for the

segment, the player uses the current viewport orientation to

determine the tiles currently in viewport. Each quality for the FS is

mapped to a particular V and V′ quality. The player downloads the

viewport tiles at quality for V and non-viewport tiles at quality for

V′ (lowest) based on currently chosen FS quality.

To summarize, Figure 2 illustrates the player operations described

in this section. The manifest provides a KxN set of bit rates, 𝐵𝑇
𝑞
, for

K tiles and N qualities. From this set, FriSBE creates a set of N FS

bit rates, 𝐵𝐹𝑆
𝑞

, that each represent V at quality q and V′ at quality 0,

which are provided to the ABR algorithm. A mapping for each FS

quality and the corresponding V/V′ quality is made available to the

video downloader. The ABR algorithm uses the set {𝐵𝐹𝑆
𝑞

}N and the

ABR indicators collected by the video downloader to choose the

quality for the next segment. A further sanity check based on

throughput is performed to ensure that the chosen quality by the

ABR algorithm is sustainable in the current network conditions. If

the sanity check passes, q = q′, otherwise q > q′. Finally, the

downloader determines based on the current viewport, the tiles that

qualify in V and those in V′, and downloads them according to the

available quality mapping.

4 Implementation

We augmented the public sourced Nokia OMAF Player Engine

with our FriSBE ABR technique. We used two ABR algorithms: a)

the TIME algorithm based on work in [12], and b) the BOLA

algorithm adapted from the DASH reference player [11]. Since, the

scope of the paper is not to compare adaptation logic, the ABR

algorithms are treated as black boxes and their detailed operation is

not described in the interest of space. As mentioned previously, the

indicators such as throughput and buffer occupancy consider all

tiles for each segment. The TIME algorithm uses time to download

as an indicator for which we use single tile downloads, but the

parameters are adjusted to consider that all tiles must be

downloaded within a fraction of their playout time.

For segment download the player uses a parallel segment fetching

method as described in [12]. The method maintains multiple HTTP

connections at the same time; one HTTP connection for each tile,

i.e., one HTTP thread per tile (12 or 24 tiles for our test sequences).

Figure 2 Flow diagram of player operation with FriSBE

PV'20, June 10-11, 2020, Istanbul, Turkey S. Ahsan et al.

The download is not strictly synchronized for segments; however,

the HTTP thread of a tile may download up to one segment in the

future if the download for a previous segment is still pending for

any of the other tiles. For example, if segment i is still being

downloaded for one or more tiles, the HTTP threads of the other

tiles may download segment i+1, but not segment i+2; the thread

must wait for all tiles to finish downloading segment i before

sending a GET request for segment i+2. The simultaneous multiple

HTTP connections for tiles that are part of the same segment can

create race conditions; this is a limitation left for future work.

Finally, when the viewport changes, the player attempts to

download the segments of any new tiles in the viewport at higher

quality even when they are already buffered in the lowest quality.

If this is done in time for the segment to be played out, the higher

quality is rendered, otherwise the already buffered lower quality is

rendered. We used a buffer duration of 3 seconds with a pre-

buffering threshold of at least 1 second to begin playout. The short

buffer was used to minimize bandwidth waste created by re-

downloading viewport tiles at higher quality after head motion; the

longer the buffer, the higher the number of segments that need to

be downloaded again. The viewport size used was 110x110 degrees

including margin area (device viewport size was 90x90 degrees).

Table 1: Test Sequences

Video Resolution Bit rate (Mbps) Tiling Scheme

Trolley 7680x3840 25,20,15,10 4x3, 6x4

HarborBiking 5760x2880 35,30,25,20,10 4x3, 6x4

PoleVault 3840x2160 20,15,10,4 4x3, 6x4

5 Experiments

We evaluated the FriSBE based player using three sequences:

PoleVault, Harbor Biking and Trolley [18] encoded using Kvazaar

[19]. Table 1 summarizes the test sequences. Each sequence was

created with two tiling schemes (4x3 and 6x4) using a single

resolution, multiple quality scheme described in OMAF Annex

D4.2. Smaller tiles were used in the polar regions; approximately

30 degrees high for each pole and about 120 and 60 degrees for the

equator for the 4x3 and 6x4 grid respectively. All tiles had the same

width. All sequences have a segment size of 566ms: a Group of

Pictures (GOP) size of 16 + I frame at 30fps. A short segment size

allowed quick viewport update after head motion. The experiments

used monitor-based rendering of the viewport and the viewport

information was fed using text files for the sake of automation and

reporting. However, some basic testing with HMD was conducted

to validate the findings and player operation.

5.1 Head Motion

The tests were conducted with i) no head motion ii) only horizontal

head motion represented with the speed of head in degrees per

second (dps) iii) fast random head motion in all directions, and iv)

a human generated head motion specific to the content. For the

latter, we used a single test subject who explored each of the three

sequences, focusing generally on interesting aspects of the video

(e.g., reading texts, following the pole vault jumper, watching the

approaching train etc.) while also exploring the surrounding at least

once (looking towards the poles and behind). The viewport

orientation over time for the three user-generated head motion files

and the random fast head motion for 60 seconds is shown in Figure

3. The user generated motion has a gap at the back because a

tethered HMD was used, and the user remained in the comfort zone

where she did not have to readjust the cable. Also note that the

points on the figure represent the centre of the viewport; the

rectangular viewport can be imagined around it. The fast random

head motion reaches maximum speeds of 60dps in the horizontal

direction maintained over a few seconds. The human head motion

has speeds of over 100dps horizontally. However, they only last for

a second or less. Viewport was updated at 500ms intervals.

5.2 Network conditions

The tests were carried out in two phases. The first phase consisted

of testing the sequences (duration is approximately 60s for all)

under stable network conditions. Here the goal was to evaluate the

performance in the presence of head-motion; therefore, the test

durations were short and the network conditions were stable. We

tested with no head motion, five horizontal head motion with steady

speeds (5, 10, 15, 20dps), fast random and human-generated head

motion. Bandwidths of 50, 35, 25 and 15 Mbps were used. Each

test case was repeated 10 times for statistical significance.

In the second phase, we performed 10 minute long tests by running

the sequences in a loop. In this phase we used two different varying

network conditions: i) SeeSaw, where the bandwidth cycles

between 50Mbps and 15Mbps every 30 seconds, starting at 50Mbps

ii) Slide, where the bandwidth starts at 50Mbps and then changes

every 30 seconds to 35, 20, 10, 20, 35, 50 and then repeats in that

order. Since the human generated head motion does not terminate

Figure 3 An illustration of the head motion; each point represents the center of viewport at a given time, the colour lightens with the passage of

time changing in the order red-orange-yellow-white. The first viewport is marked with a black diamond. Note that the grid on the sphere is shown

for clarity and does not match the tiling grid of the sequences.

FriSBE: Adaptive Bit Rate Streaming of Immersive Tiled Video PV'20, June 10-11, 2020, Istanbul, Turkey

at the initial head position, looping it would have resulted in full

viewport jumps. Therefore, we used the fast random head motion

for this phase of testing. In addition, we also tested for horizontal

head motion (15dps) and no head motion. The 10 minute testing

took significantly longer to run; hence, the testing was repeated 5

times instead of 10 as in the first phase.

5.3 Metrics

We evaluated the performance using typical adaptive streaming

metrics such as stall events, stall duration, throughput, quality

levels and changes. In addition, to include the 360-degree aspect,

we introduced the metric for rendered viewport quality. The

viewport quality is calculated at the time of rendering using the

following formula, where L is the total number of tiles visible in

the viewport at a given time:

𝑉𝑖𝑒𝑤𝑝𝑜𝑟𝑡𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = ∑(QR[i] · Coverage [i])

𝐿

𝑖=1

 (2)

QR is the Quality Ranking of the tile and Coverage is the

percentage of the viewport the tile is covering. The formula is

borrowed from 3GPP [20]. Since the ranking follows the OMAF

specification, the highest quality has the lowest value. Hence, a low

value of ViewportQuality indicates a better quality. Note that we

used the ranking such that 1 is always the highest quality and the

remaining are in uniformly descending order with a decrement of

one. Since there are 5 bit rate levels for Harbor Biking (see Table

1), the lowest quality is 5, whereas it is 4 for the other two

sequences. With this scheme, if the ViewportQuality value is not a

whole number or close to a whole number, it can be deduced that

the viewport is displaying tiles of two qualities at least.

6 Results

In this section, we present the results of our experiments, first under

stable and then under variable network conditions.

6.1 Stable Network Conditions

Stable network conditions were used with different levels of head

motion to study the effects of a changing viewport on the adaptation

algorithm. The results for different metrics follow.

6.1.1 Stall Events. Stalls were generally not observed for any of the

test conditions with steady horizontal head motion even at 20dps.

The average stall duration for any sequence for all test cases was

less than 17ms for the Time algorithm and below 2ms for BOLA.

For the user-generated head motion and random head motion, the

TIME algorithm showed some stalling. The total number of stall

events was no more than 2, with 1 being more common. The total

stall duration for any of the tests ranged from about 25ms to a little

over 300ms. BOLA algorithm was more successful in avoiding

stalls, with only one 25ms stall experienced for the PoleVault

sequence with random fast head motion, too low to impact user

experience [21].

6.1.2 Quality Variation. The average ViewportQuality (see

Equation 2) observed for the sequences was higher for the 6x4 grid

than the 4x3 grid as shown in Figure 4. Furthermore, the 6x4 grid

was better at avoiding stall events as well. This is expected, since

the tiles are smaller and viewport changes lead to smaller overhead

caused by segments download. However, the MCTS tiling implies

that smaller tiles have lower encoding efficiency; so this should be

considered when analysing the overall benefits.

To estimate the stability of the viewport quality, Figure 5 shows for

the entire duration of the video, a stacked bar graph of the ratio of

viewport tiles that were rendered at a given quality to all the

viewport tiles rendered. For human head motion, the viewport is

less stable than any of the horizontal head motion schemes we used.

(a) Fixed bandwidth of 50Mbps

(b) Fixed bandwidth of 15Mbps

Figure 5 Stacked graph showing ratio of the viewport tiles at different

quality levels (1-5). For 50Mbps, the quality was maintained at

highest level (1) for most cases. For 15Mbps, each sequence maintains

a different quality.

Hence, we used that in the graphs along with no head motion for

comparison. At 50Mbps, most sequences remain at the highest

level of quality for most of the time. At 15Mbps, Harbor maintains

the lowest quality (5) and Trolley maintains the second lowest (4)

for the whole sequence. PoleVault has a lower range of required bit

rates and has more alteration between QR 3 and 4. Note, that the

small share of QR 1 in all 15Mbps cases is because the player

always starts at the highest quality before stepping down, leading

to higher startup delays (mean: 4.5s).

Figure 4 The 6x4 tile grid was able to not only achieve a higher quality

viewport, but was able to maintain the quality during head motion

better than the 4x3 grid for most cases. Results for human and no head

motion (none) are shown.

PV'20, June 10-11, 2020, Istanbul, Turkey S. Ahsan et al.

6.1.3 Throughput. The average throughput was calculated as the

sum of the sizes of the segments downloaded over the total duration

of the test. Figure 6 shows the observed throughput for the different

sequences under different network bandwidths. The values are

indicative of all test conditions: single viewport, horizontal, random

and human head motion. We found that the bandwidth utilization

factors were not as high as some 2D ABR schemes that can be

found in the literature. The reason was threefold: i) the encoding bit

rate levels did not always match exactly with the bandwidth, ii) the

chosen quality takes into account head motion and the possibility

of sudden rise in throughput, and hence is more conservative and

iii) potential race conditions caused by the use of multiple HTTP

connections for each tile, which can penalize the player at times.

We hope to address the last of these in future work.

Figure 6 Average throughput for the different sequences and network

bandwidth shown here with error bars.

6.2 Variable Network Conditions

The 10-minute tests show the adaptability of the algorithms to

changing network conditions. Of the two configurations we used,

Slide has one bandwidth level that is too low for two of the

sequences we used, and stalls are expected. The other, SeeSaw,

never falls to a bandwidth that is too low to sustain uninterrupted

streaming but is more challenging as it sees sudden large drops in

bandwidth.
6.2.1. Stall Events. We observed no stall events for PoleVault in

our testing for variable network conditions. Short stall events, 100-

200ms were sometimes observed when bandwidth dropped in

SeeSaw. For, Slide, more stalls were observed because the

bandwidth dropped to 10Mbps, which was too low for both Trolley

and Harbor at even the lowest quality as can be seen in Figure 7a.

The stall event duration per stall was short due to a short buffer

duration. Since several stalls are less preferred to one long stall

[21], as future work we plan to experiment with buffer lengths to

overcome this. Average total stall duration for the entire duration

for all test conditions is summarized in Table 2.

 Table 2: Total stall duration

6.2.2. Adaptability. Our implementation was able to adapt to

changing network conditions with and without head motion. For

reference, we show timeline graphs in Figure 7 for the BOLA

algorithm.

The first one is the 10-minute looped Trolley sequence with the

SeeSaw network profile. Note that Quality 1 is the highest, so the

algorithm is switching to highest quality when the bandwidth is

50Mbps and to lowest quality when the bandwidth is 15Mbps; there

is no head motion and no stall events for this test, although there

were some short stalls for bandwidth drops in some cases. The

second graph is for the 10-minute looped Harbor case with Slide

network profile with random fast head motion. Note that the stalls

are mostly in the region where bandwidth is too low for the

sequence and the algorithm adapts otherwise. When bandwidth is

large, the head motion causes the quality to drop occasionally

(calculated based on Equation 2). Note that the graph in Figure 7b

shows the most challenging test sequence and test condition.

(a) SeeSaw network profile with no head motion

(b) Slide network profile with random head motion

Figure 7 A timeline showing the adaptation of quality levels

7 Conclusions

In this paper, we presented a method for calculating the required bit

rates for the full sphere of a tiled 360-degree video when viewport-

dependent streaming is used. It provides a practical approach for

integrating the now widely deployed ABR algorithms for 2D video

that have been improved over various iterations with the emerging

360-degree video use case. Using a DASH OMAF player, we

showed the effectiveness of the method when used with two

existing ABR algorithms to adapt based on viewport orientation as

well as network conditions while minimizing the occurrence of stall

events. With a buffer-based algorithm, we observed that when

bandwidth was sufficient average stall duration for our 10-minute-

long tests was under 1s. This was observed in the presence of head

motion and drastically changing network conditions and despite a

very short 3 second buffer duration. The paper highlights areas of

future work to further optimize throughput utilization and stability.

REFERENCES
[1] Miska M. Hannuksela, Ye-Kui Wang and Ari Hourunranta. An Overview of the

OMAF Standard for 360° Video. In Data Compression Conference (DCC),

Snowbird, UT, USA, 2019. 418-427. https://doi.org/10.1109/DCC.2019.00050

 BOLA TIME

 Stable SeeSaw Slide Stable SeeSaw Slide

Mean 0.00s 0.55s 7.93s 0.01s 1.47s 8.00s

Std.Dev. 0.00s 0.78s 5.70s 0.05s 1.47s 5.87s

FriSBE: Adaptive Bit Rate Streaming of Immersive Tiled Video PV'20, June 10-11, 2020, Istanbul, Turkey

[2] Alireza Zare, Alireza Aminlou, Miska M. Hannuksela, and Moncef Gabbouj.

2016. HEVC-compliant Tile-based Streaming of Panoramic Video for Virtual

Reality Applications. In Proceedings of the 2016 ACM Conference on

Multimedia Conference, MM 2016, Amsterdam, The Netherlands, October 15-

19, 2016. ACM, 601–605. https://doi.org/10.1145/

[3] Yu Guan, Chengyuan Zheng, Xinggong Zhang, Zongming Guo, and Junchen

Jiang. 2019. Pano: optimizing 360° video streaming with a better understanding

of quality perception. In Proceedings of the ACM Special Interest Group on Data

Communication, SIGCOMM 2019, Beijing, China, August 19-23, 2019. ACM,

394–407. https://doi.org/10.1145/3341302.3342063

[4] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018. Flare:

Practical Viewport-Adaptive 360-Degree Video Streaming for Mobile Devices.

In Proceedings of the 24th Annual International Conference on Mobile

Computing and Networking, MobiCom 2018, New Delhi, India, October 29 -

November 02, 2018. ACM, 99–114. https://doi.org/10.1145/3241539.3241565

[5] Xavier Corbillon, Gwendal Simon, Alisa Devlic, and Jacob Chakareski. 2017.

Viewport-adaptive navigable 360-degree video delivery. In IEEE International

Conference on Communications, ICC 2017, Paris, France, May 21-25, 2017.

IEEE, 1–7. https://doi.org/10.1109/ICC.2017.7996611

[6] Lan Xie, Xinggong Zhang, and Zongming Guo. 2018. CLS: A Cross-user

Learning based System for Improving QoE in 360-degree Video Adaptive

Streaming. In 2018 ACM Multimedia Conference on Multimedia Conference,

MM 2018, Seoul, Republic of Korea, October 22-26, 2018. ACM, 564–572.

https://doi.org/10.1145/3240508.3240556

[7] Robert Skupin, Yago Sanchez, Cornelius Hellge, and Thomas Schierl. 2016. Tile

Based HEVC Video for Head Mounted Displays. In IEEE International

Symposium on Multimedia, ISM 2016, San Jose, CA, USA, December 11-13,

2016. IEEE Computer Society, 399–400. https://doi.org/10.1109/ISM.2016.0089

[8] Cagri Ozcinar, Ana De Abreu, and Aljosa Smolic. 2017. Viewport-aware

adaptive 360° video streaming using tiles for virtual reality. In 2017 IEEE

International Conference on Image Processing, ICIP 2017, Beijing, China,

September 17-20, 2017. IEEE, 2174–2178.

https://doi.org/10.1109/ICIP.2017.8296667

[9] Lan Xie, Zhimin Xu, Yixuan Ban, Xinggong Zhang, and Zongming Guo. 2017.

360ProbDASH: Improving QoE of 360 Video Streaming Using Tile-based HTTP

Adaptive Streaming. In Proceedings of the 2017 ACM on Multimedia

Conference, MM 2017, Mountain View, CA, USA, October 23-27, 2017. ACM,

315–323. https://doi.org/ 10.1145/3123266.3123291

[10] Mohammad Hosseini and Viswanathan Swaminathan. 2016. Adaptive 360 VR

Video Streaming: Divide and Conquer. In IEEE International Symposium on

Multimedia, ISM 2016, San Jose, CA, USA, December 11-13, 2016. IEEE

Computer Society, 107–110. https://doi.org/10.1109/ISM.2016.0028

[11] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2016. BOLA:

Nearoptimal bitrate adaptation for online videos. In 35th Annual IEEE

International Conference on Computer Communications, INFOCOM 2016, San

Francisco, CA, USA, April 10-14, 2016. IEEE, 1–9.

https://doi.org/10.1109/INFOCOM.2016.7524428

[12] Chenghao Liu, Imed Bouazizi, Miska M. Hannuksela, and Moncef Gabbouj.

2012. Rate adaptation for dynamic adaptive streaming over HTTP in content

distribution network. Sig. Proc.: Image Comm. 27, 4 (2012), 288–311.

https://doi.org/10.1016/j. image.2011.10.001

[13] Demóstenes Zegarra Rodríguez, Zhou Wang, Renata Lopes Rosa, and Graça

Bressan. 2014. The impact of video-quality-level switching on user quality of

experience in dynamic adaptive streaming over HTTP. EURASIP J. Wireless

Comm. and Networking 2014 (2014), 216. https://doi.org/10.1186/1687-1499-

2014-216

[14] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger

Zimmermann. 2019. A Survey on Bitrate Adaptation Schemes for Streaming

Media Over HTTP. IEEE Communications Surveys and Tutorials 21, 1 (2019),

562–585. https://doi.org/10.1109/COMST.2018.2862938

[15] Igor D.D. Curcio, Henri Toukomaa, Deepa Naik. Bandwidth Reduction of

Omnidirectional Viewport-Dependent Video Streaming via Subjective Quality

Assessment. In ACM International Workshop on Multimedia Alternate Realities

at ACM Multimedia Conference, 27 October 2017, Mountain View, CA, U.S.A.

[16] Deepa Naik, Igor D. D. Curcio, and Henri Toukomaa. 2018. Optimized Viewport

Dependent Streaming of Stereoscopic Omnidirectional Video. In Proceedings of

the 23rd Packet Video Workshop, PV@MMSys 2018, Amsterdam, Netherlands,

June 12, 2018. ACM, 37–42. https://doi.org/10.1145/3210424.3210437

[17] Dmitrii Monakhov, Igor D. D. Curcio, and Sujeet Mate. 2019. On Data Wastage

in Viewport-Dependent Streaming. In 21st IEEE International Workshop on

Multimedia Signal Processing, MMSP 2019, Kuala Lumpur, Malaysia,

September 27-29, 2019. IEEE, 1–6.

https://doi.org/10.1109/MMSP.2019.8901701

[18] Virtual Reality (VR) streaming interoperability and characterization (Release

17). 3GPP Technical Specification 26.999 v 0.3.0, January, 2020.

[19] Marko Viitanen, Ari Koivula, Ari Lemmetti, Arttu Ylä-Outinen, Jarno Vanne,

and Timo D. Hämäläinen. 2016. Kvazaar: Open-Source HEVC/H.265 Encoder.

In Proceedings of the 24th ACM international conference on Multimedia (MM

’16). Association for Computing Machinery, New York, NY, USA, 1179–1182.

https://doi.org/10.1145/2964284.2973796

[20] Virtual Reality (VR) profiles for streaming applications (Release 16). 3GPP

Technical Specification 26.118 v.16.0.2, March 27, 2020, Annex D.

[21] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. 2017.

A Quality-of-Experience Index for Streaming Video. J. Sel. Topics Signal

Processing 11, 1 (2017), 154–166. https://doi.org/10.1109/JSTSP.2016.2608329

[22] Mengbai Xiao, Chao Zhou, Viswanathan Swaminathan, Yao Liu, and Songqing

Chen. 2018. BAS-360°: Exploring Spatial and Temporal Adaptability in 360-

degree Videos over HTTP/2. In 2018 IEEE Conference on Computer

Communications, INFOCOM 2018, Honolulu, HI, USA, April 16-19, 2018.

IEEE, 953–961. https://doi.org/10.1109/INFOCOM.2018.8486390

[23] Jun Fu, Xiaoming Chen, Zhizheng Zhang, Shilin Wu, and Zhibo Chen. 2019.

360SRL: A Sequential Reinforcement Learning Approach for ABR Tile-Based

360 Video Streaming. In IEEE International Conference on Multimedia and

Expo, ICME 2019, Shanghai, China, July 8-12, 2019. IEEE, 290–295.

https://doi.org/10.1109/ICME.2019.00058

[24] Xiaolan Jiang, Yi-Han Chiang, Yang Zhao, and Yusheng Ji. 2018. Plato:

Learning based Adaptive Streaming of 360-Degree Videos. In 43rd IEEE

Conference on Local Computer Networks, LCN 2018, Chicago, IL, USA,

October 1-4, 2018. IEEE, 393–400. https://doi.org/10.1109/LCN.2018.8638092

