
This specification is now in final community review. You may file issues at
https://github.com/cta-wave/common-media-client-data/issues

Common Media Client Data

CTA-5004 (Release Candidate)

Introduction 2

Data transmission modes 2
2.1 Header field definition 3
2.2 Query Argument definition 3
2.3 JSON Object definition 3

Data payload definition 3
3.1 Payload definition for JSON transmission 4
3.2 Payload definition for Headers and Query Argument transmission 4
3.3 Reserved keys 5

Encoded bitrate 5
Buffer length 5
Buffer starvation 5
Content ID 5
Object duration 6
Deadline 6
Measured throughput 6
Next object request 6
Next range request 6
Object type 7
Playback rate 7
Requested maximum throughput 7
Streaming format 8
Session ID 8
Stream type 8
Startup 8
CMCD version 8

4. Server processing requirements 9

5. Security considerations 10

https://github.com/cta-wave/common-media-client-data/issues

6. Examples 10
6.1 Header examples 10
6.2 Corresponding Query Arg examples 11
6.3 Corresponding JSON examples 12

7. External References 13

1. Introduction

Media player clients can convey information to Content Delivery Networks (CDN) with each object
request. This information can be useful in log analysis, QoS monitoring and delivery optimization.
Session identification allows thousands of individual server log lines to be interpreted as a single user
session, leading to a clearer picture of end-user quality of service. Bitrate, buffer and segment signaling
allow CDNs to fine-tune and optimize their midgress traffic by intelligently reacting to the time
constraints implicit in each request. Prefetch hints allow CDNs to have content ready at the edge ahead
of the client request, improving delivery performance. Buffer starvation flags allow performance
problems across a multi-CDN delivery surface to be identified in real-time. In combination, this
transferred data should improve the quality-of-service offered by CDNs which in turn will improve the
quality-of-experience enjoyed by consumers.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC2119 [1].

This document outlines a simple means by which every media player can communicate data with each
media object request and have it received and processed consistently by every CDN.

2. Data transmission modes

The media client data can be sent by one of three means:

● As a custom HTTP request header
● As a HTTP query argument
● As a JSON object independent of the HTTP object request.

A HTTP request can carry a Common Media Client Data (CMCD) header or a CMCD query arg, but it
MUST NOT carry both. The preferred mode of transmission for HTTP requests is to use custom
headers.

Note: usage of a custom header from a web browser user-agent will trigger a preflight OPTIONS
request before each unique media object request. This will lead to an increased request rate against
the server. As a result, for CMCD transmissions from web browser user-agents that require
CORS-preflighting per URL, the preferred mode of use is query arguments.

2.1 Header field definition

Four headers are defined to transmit the data. The payload key/value pairs are sharded over these
headers based upon their expected level of entropy, in order to assist with HPACK/QPACK [2] header
compression. The headers begin with the prefix "CMCD-" and have the following case-insensitive
names:

CMCD-Request

CMCD-Object

CMCD-Status

CMCD-Session

2.2 Query Argument definition

The query argument is case-sensitive and capitalization MUST be used

CMCD=<URL_encoded_concatenation_of_key_value_pairs><reserved_character>

The reserved character is defined by RFC3986 [3]. This reserved character is optional at the end of the
URL.

If the request already bears a query string, then an ampersand Unicode 0x26 character should precede
the CMCD field.

2.3 JSON Object definition

{ <key>:<value>, … }

The JSON object must follow the formatting requirements defined by RFC8259 [4]. Key names and
values are defined in Table 1.

3. Data payload definition

3.1 Payload definition for JSON transmission

1. The key names described in this specification are reserved. Custom key names may be used,
but they MUST carry a hyphenated prefix to ensure that there will not be a namespace collision
with future revisions to this specification. Clients SHOULD use a reverse-DNS syntax when
defining their own prefix.

2. All key names are case-sensitive.
3. Values of type Token in Table 1 MUST be encoded as JSON type String.
4. Values of type Decimal and Integer in Table 1 MUST be encoded as JSON type Number.
5. All keys are OPTIONAL.
6. Key-value pairs SHOULD be sequenced in alphabetical order of the key name in order to

reduce the fingerprinting surface exposed by the player.

3.2 Payload definition for Headers and Query Argument transmission

The data payload for Header and Query Argument transmission consists of a series of key/value pairs
constructed according to the following rules:

1. All information in the payload MUST be represented as <key>=<value> pairs.
2. The key and value MUST be separated by an equals sign Unicode 0x3D. If the value type is

BOOLEAN and the value is TRUE, then the equals sign and the value MUST be omitted.
3. Successive key/value pairs MUST be delimited by a comma Unicode 0x2C.
4. The key names described in this specification are reserved. Custom key names may be used,

but they MUST carry a hyphenated prefix to ensure that there will not be a namespace collision
with future revisions to this specification. Clients SHOULD use a reverse-DNS syntax when
defining their own prefix.

5. If headers are used for data transmission, then custom keys SHOULD be allocated to one of the
four defined header names based upon their expected level of variability:

a. CMCD-Request : keys whose values vary with each request.
b. CMCD-Object : keys whose values vary with the object being requested.
c. CMCD-Status : keys whose values don’t vary with every request or object.
d. CMCD-Session : keys whose values are expected to be invariant over the life of the

session.
6. All key names are case-sensitive.
7. Any value of type String MUST be enclosed by opening and closing double quotes Unicode

0x22. Double quotes and backslashes MUST be escaped using a backslash "\" Unicode 0x5C
character. Any value of type Token does not require quoting.

8. All keys are OPTIONAL.
9. Key-value pairs SHOULD be sequenced in alphabetical order of the key name, in order to

reduce the fingerprinting surface exposed by the player.
10. If the data payload is transmitted as a query argument, then the entire payload string MUST be

URLEncoded per [5]. Data payloads transmitted via headers MUST NOT be URLEncoded.
11. The data payload syntax is intended to be compliant with Structured Field Values for HTTP [6].

3.3 Reserved keys
The reserved keys and their definitions are defined in Table 1 below:

Description Key
Name

Header
Name

Type & Unit Value definition

Encoded bitrate
br CMCD-

Object
Integer kbps The encoded bitrate of the audio or video

object being requested. This may not be
known precisely by the player, however it MAY
be estimated based upon playlist/manifest
declarations.

Buffer length
bl CMCD-

Request
Integer milliseconds The buffer length associated with the media

object being requested. This value MUST be
rounded to the nearest 100 ms. This key
SHOULD only be sent with an object type of
‘a’,‘v’ or ‘av’.

Buffer
starvation

bs CMCD-
Status

Boolean Key is included without a value if the buffer
was starved at some point between the prior
request and this object request, resulting in the
player being in a rebuffering state and the
video or audio playback being stalled. This
key MUST NOT be sent if the buffer was not
starved since the prior request.

If the object type ‘ot’ key is sent along with this
key, then the ‘bs’ key refers to the buffer
associated with the particular object type. If no
object type is communicated, then the buffer
state applies to the current session.

Content ID
cid CMCD-

Session
String A unique string identifying the current content.

Maximum length is 64 characters. This value is
consistent across multiple different sessions

and devices and is defined and updated at the
discretion of the service provider.

Object duration
d CMCD-

Object
Integer milliseconds The playback duration in milliseconds of the

object being requested. If a partial segment is
being requested, then this value MUST
indicate the playback duration of that part and
not that of its parent segment. This value can
be an approximation of the estimated duration
if the explicit value is not known.

Deadline
dl CMCD-

Request
Integer milliseconds Deadline from the request time until the first

sample of this Segment/Object needs to be
available in order to not create a buffer
underrun or any other playback problems. This
value MUST be rounded to the nearest 100ms.
For a playback rate of 1, this may be
equivalent to the player’s remaining buffer
length.

Measured
throughput

mtp CMCD-
Request

Integer kilobits per
second (kbps)

The throughput between client and server, as
measured by the client and MUST be rounded
to the nearest 100 kbps. This value, however
derived, SHOULD be the value that the client
is using to make its next Adaptive Bitrate
switching decision. If the client is connected to
multiple servers concurrently, it must take care
to report only the throughput measured against
the receiving server. If the client has multiple
concurrent connections to the server, then the
intent is that this value communicates the
aggregate throughput the client sees across all
those connections.

Next object
request

nor CMCD-
Request

String Relative path of the next object to be
requested. This can be used to trigger
pre-fetching by the CDN.This MUST be a path
relative to the current request. This string
MUST be URLEncoded [5]. The client
SHOULD NOT depend upon any pre-fetch
action being taken - it is merely a request for
such a pre-fetch to take place.

Next range
request

nrr CMCD-
Request

String of the form
"<range-start>-<ran
ge-end>"

If the next request will be a partial object
request, then this string denotes the byte
range to be requested. If the ‘nor’ field is not

set, then the object is assumed to match the
object currently being requested. The client
SHOULD NOT depend upon any pre-fetch
action being taken - it is merely a request for
such a pre-fetch to take place. Formatting is
similar to the HTTP Range header, except that
the unit MUST be ‘byte’, the ‘Range:’ prefix is
NOT required and specifying multiple ranges is
NOT allowed. Valid combinations are:
"<range-start>-"
"<range-start>-<range-end>"
"-<suffix-length>"

Object type
ot CMCD-

Object
Token - one of [m,
a,v,av,i,c,tt,k,o]

The media type of the current object being
requested:
m = text file, such as a manifest or playlist
a = audio only
v = video only
av = muxed audio and video
i = init segment
c = caption or subtitle
tt = ISOBMFF timed text track
k = cryptographic key, license or certificate.
o = other

If the object type being requested is unknown,
then this key MUST NOT be used.

Playback rate
pr CMCD-

Session
Decimal 1 if real-time, 2 if double speed, 0 if not

playing. SHOULD only be sent if not equal to
1.

Requested
maximum
throughput

rtp CMCD-
Status

Integer kilobits per
second (kbps)

The requested maximum throughput that the
client considers sufficient for delivery of the
asset. Values MUST be rounded to the nearest
100kbps. For example, a client would indicate
that the current segment, encoded at 2Mbps,
is to be delivered at no more than 10Mbps, by
using rtp=10000.

Note: This can benefit clients by preventing
buffer saturation through over-delivery and can
also deliver a community benefit through
fair-share delivery. The concept is that each

client receives the throughput necessary for
great performance, but no more. The CDN
may not support the rtp feature.

Streaming
format

sf CMCD-
Session

Token - one of
[d,h,s,o]

The streaming format which defines the
current request
d = MPEG DASH
h = HTTP Live Streaming (HLS)
s = Smooth Streaming
o = other

If the streaming format being requested is
unknown, then this key MUST NOT be used.

Session ID
sid CMCD-

Session
String A GUID identifying the current playback

session. A playback session typically ties
together segments belonging to a single media
asset. Maximum length is 64 characters. It is
RECOMMENDED to conform to the UUID
specification [7].

Stream type
st CMCD-

Session
Token - one of [v,l] v = all segments are available e.g. VOD

l = segments become available over time e.g.
LIVE

Startup
su CMCD-

Request
Boolean Key is included without a value if the object is

needed urgently due to startup, seeking or
recovery after a buffer-empty event. The media
SHOULD not be rendering when this request is
made. This key MUST not be sent if it is
FALSE.

CMCD version
v CMCD-

Session
Integer The version of this specification used for

interpreting the defined key names and values.
If this key is omitted, the client and server
MUST interpret the values as being defined by
version 1. Client SHOULD omit this field if the
version is 1.

Table 1: Reserved Key and Value definitions

It is RECOMMENDED that a player supply sid on all media object requests in a session, including
playlists/manifests, init files, captioning files and DRM key requests. Other keys should be applied
where they have contextual meaning. For example, a ‘br’ (bitrate) key on a manifest request is
inappropriate and could be omitted.

4. Server processing requirements

1. Server MUST only process these requirements when data is received via a valid CMCD header
or query arg.

2. A server, upon receiving common media client data, MUST interpret the keys according to their
definition in this document.

3. Unknown keys, which the server does not understand, MUST be ignored.
4. Values which do not meet the structured data definition (such as an invalid token, or a string

when an integer is expected) MUST be ignored.
5. Since there is no guarantee that keys are included, the server MUST be robust against the

absence of individual keys on any given request.
6. The server MUST be able to correctly process the key-value pairs irrespective of the order in

which they are defined.
7. If the sid key is present, the server SHOULD propagate that value to the server access logs.

The server access logs SHOULD conform to RFC6302 [8].
8. The server MUST support both the header and query argument methods of data transmission.

The server MUST process data from only the query arg or header channel, but never both for a
given request. If any CMCD headers are present then any CMCD query arg information MUST
be ignored.

9. The server, upon receiving the requested throughput (rtp) attribute, is not required to throttle the
response at the requested value. It is merely a request from the client and the server may have
other business requirements that dictate throttling at a different value, or not throttling the
response at all.

10. The server, upon receiving the nor "next object request" or nrr "next range request" attributes,
MAY optionally decide not to implement any pre-fetch action against that data.

11. Servers SHOULD provide the necessary CORS responses to allow browser-based clients to
send custom headers, specifically:

a. Access-Control-Allow-Headers response header with a value that contains
"CMCD-Request, CMCD-Object, CMCD-Status, CMCD-Session"

b. Access-Control-Allow-Methods with a value that includes GET.
12. Servers SHOULD be aware that malicious clients may send false key data with the objective of

either attacking the server or gaining an unfair delivery advantage. The server SHOULD validate
incoming key data before any performance impacting behaviors are executed.

13. Servers MUST ignore the entire data set if the signaled version is greater than they understand,
as they cannot know which fields have been modified or deprecated. Servers SHOULD log the
version incompatibility so that there is a record of why the data is not getting logged.

Note: any caching proxy should be aware that the CMCD payload will be constantly changing and
therefore has the potential to pollute cache keys. Implementers may wish to exclude CMCD query
arguments from any cache key.

Note: origin servers are advised to not include the CMCD-Request, CMCD-Object, CMCD-Status,
CMCD-Session headers in the Vary header [9].

5. Security considerations

Note: it cannot be assumed that all clients are benevolent, honest and accurate. However, the
specification does not expose any security issues that are not already exposed to an edge server which
answers all requests. A number of steps have been taken to mitigate security and privacy concerns:

1. The ‘nor’ key value must be a relative path to the current request. This makes it harder to inject
false requests to arbitrary objects.

2. Only one object can be requested by the ‘nor’ key value - this lowers amplification opportunity.
3. All requests to the server are optionally executed by the server, meaning that a server can

ignore them for security concerns (such as a rate-based threshold being exceeded) and still be
compliant with the specification.

4. Session ID is a GUID which never repeats for a particular user.
5. Measured throughput, requested maximum throughput, deadline and buffer length are bucketed

to reduce fingerprinting surface.
6. Key-value pairs should be sequenced in alphabetical order to reduce fingerprinting surface.
7. Personally Identifiable Information, such as IP address, cookie information and location data is

intentionally not carried by the specification.

6. Examples

These examples illustrate valid data combinations across the three delivery modes.

6.1 Header examples

1. CMCD-Session: sid="6e2fb550-c457-11e9-bb97-0800200c9a66"

2. CMCD-Request:mtp=25400

CMCD-Object:br=3200,d=4004,ot=v
CMCD-Status:bs,rtp=15000
CMCD-Session: sid="6e2fb550-c457-11e9-bb97-0800200c9a66"

3. CMCD-Status:bs,rtp=15000

CMCD-Session: sid="6e2fb550-c457-11e9-bb97-0800200c9a66"

4. CMCD-Status:bs

CMCD-Request:su

5. CMCD-Object:d=4004,
CMCD-Session:com.example-myNumericKey=500,com.example-myStringKey="myStri
ngValue",

6. CMCD-Session:sid="6e2fb550-c457-11e9-bb97-0800200c9a66"

CMCD-Request:nor="..%2F300kbps%2Fsegment35.m4v"

7. CMCD-Session:sid="6e2fb550-c457-11e9-bb97-0800200c9a66"
CMCD-Request:nrr="12323-48763"

8. CMCD-Session:sid="6e2fb550-c457-11e9-bb97-0800200c9a66"

CMCD-Request:nor="..%2F300kbps%2Ftrack.m4v",nrr="12323-48763"

9. CMCD-Request:bl=21300,dl=18500,mtp=48100,nor="..%2F300kbps%2Ftrack.m4v",nrr
="12323-48763",su
CMCD-Object:br=3200,d=4004,ot=v
CMCD-Status:bs,rtp=12000
CMCD-Session:cid="faec5fc2-ac30-11ea-bb37-0242ac130002",pr=1.08,sf=d,sid="6e2fb
550-c457-11e9-bb97-0800200c9a66",st=v

6.2 Corresponding Query Arg examples

1. ?CMCD=sid%3D%226e2fb550-c457-11e9-bb97-0800200c9a66%22

2. ?CMCD=br%3D3200%2Cbs%2Cd%3D4004%2Cmtp%3D25400%2Cot%3Dv%2Crtp%3
D15000%2Csid%3D%226e2fb550-c457-11e9-bb97-0800200c9a66%22

3. ?CMCD=b%2Crtp%3D15000%2Csid%3D%226e2fb550-c457-11e9-bb97-0800200c9a6

6%22

4. ?CMCD=bs%2Csu

5. ?CMCD=d%3D4004%2Ccom.example-myNumericKey%3D500%2Ccom.example-mySt
ringKey%3D%22myStringValue%22

6. ?CMCD=nor%3D%22..%252F300kbps%252Fsegment35.m4v%22%2Csid%3D%226e2

fb550-c457-11e9-bb97-0800200c9a66%22

7. ?CMCD=nrr%3D%2212323-48763%22%2Csid%3D%226e2fb550-c457-11e9-bb97-080

0200c9a66%22

8. ?CMCD=nor%3D%22..%252F300kbps%252Ftrack.m4v%22%2Cnrr%3D%2212323-48
763%22%2Csid%3D%226e2fb550-c457-11e9-bb97-0800200c9a66%22

9. ?CMCD=bl%3D21300%2Cbr%3D3200%2Cbs%2Ccid%3D%22faec5fc2-ac30-11ea-bb3

7-0242ac130002%22%2Cd%3D4004%2Cdl%3D18500%2Cmtp%3D48100%2Cnor%3
D%22..%252F300kbps%252Ftrack.m4v%22%2Cnrr%3D%2212323-48763%22%2Cot
%3Dv%2Cpr%3D1.08%2Crtp%3D12000%2Csf%3Dd%2Csid%3D%226e2fb550-c457-1
1e9-bb97-0800200c9a66%22%2Cst%3Dv%2Csu

6.3 Corresponding JSON examples

1. { "sid": "6e2fb550-c457-11e9-bb97-0800200c9a66" }

2. { "br": 3200,"bs","d": 4004,"mtp": 25400, "ot": "v", "rtp":15000,"sid":

"6e2fb550-c457-11e9-bb97-0800200c9a66" }

3. { "bs","rtp":15000,"sid": "6e2fb550-c457-11e9-bb97-0800200c9a66" }

4. { "bs","su" }

5. {"d":4004,"com.example-myNumericKey":500,"com.example-myStringKey":"myStringVa
lue"}

6. {"nor":"..%2F300kbps%2Fsegment35.m4v","sid":"6e2fb550-c457-11e9-bb97-0800200c

9a66"}

7. {"nrr":"12323-48763","sid":"6e2fb550-c457-11e9-bb97-0800200c9a66"}

8. {"nor":"..%2F300kbps%2Ftrack.m4v","nrr":"12323-48763","sid":"6e2fb550-c457-11e9-bb
97-0800200c9a66"}

9. {"bl":21300,"br":3200,"bs","cid":"faec5fc2-ac30-11ea-bb37-0242ac130002","d":4004,"dl":

18500,"mtp":48100,"nor":"..%2F300kbps%2Ftrack.m4v","nrr":"12323-48763","ot":"v","pr"
:1.08,"rtp":12000,"sf":"d","sid":"6e2fb550-c457-11e9-bb97-0800200c9a66","st":"v","su"}

7. External References

1. RFC2119 - Key words for use in RFCs to Indicate Requirement Levels -
https://tools.ietf.org/html/rfc2119

2. RFC7541 - HPACK Header compression - https://httpwg.org/specs/rfc7541.html
3. RFC3986 - Uniform Resource Identifier (URI): Generic Syntax -

https://tools.ietf.org/html/rfc3986

4. RFC8259 - The JavaScript Object Notation (JSON) Data Interchange Format -
https://tools.ietf.org/html/rfc8259

5. URL Encoding - https://url.spec.whatwg.org/#application/x-www-form-urlencoded
6. Structured Field Values for HTTP -

https://www.ietf.org/id/draft-ietf-httpbis-header-structure-18.txt (work in progress).
7. RFC4122 - A Universally Unique IDentifier (UUID) URN Namespace -

https://www.ietf.org/rfc/rfc4122.txt
8. RFC6302 - Logging Recommendations for Internet-Facing Servers -

https://tools.ietf.org/html/rfc6302
9. RFC 7231 - Vary header - http://tools.ietf.org/html/rfc7231#section-7.1.4

https://tools.ietf.org/html/rfc2119
https://httpwg.org/specs/rfc7541.html
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc8259
https://url.spec.whatwg.org/#application/x-www-form-urlencoded
https://www.ietf.org/id/draft-ietf-httpbis-header-structure-18.txt
https://www.ietf.org/rfc/rfc4122.txt
https://tools.ietf.org/html/rfc6302
http://tools.ietf.org/html/rfc7231#section-7.1.4

