TSG SA4#107 meeting	Tdoc S4-200042
20-24 January 2020, Wroclaw, Poland	

	[bookmark: page1]CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.928
	CR
	pseudo
	rev
	-
	Current version:
	1.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Proposed Updates to Baseline Technologies

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	S4

	
	

	Work item code:
	FS_5GXR
	
	Date:
	14/01/2020

	
	
	
	
	

	Category:
	B
	
	Release:
	16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	This document assumes the document in S4-200041 is agreed.

[bookmark: _Toc524259343]

[bookmark: _Toc23169686]Introduction
[The present document documents collects information on eXtended Reality (XR) in the context of 5G radio and network services. Extended reality (XR) refers to all real-and-virtual combined environments and human-machine interactions generated by computer technology and wearables. It includes representative forms such as augmented reality (AR), augmented virtuality (AV), mixed reality (MR), and virtual reality (VR) and the areas interpolated among them.]
[bookmark: _Toc23169687]
1	Scope
The present document collects information on eXtended Reality (XR) in the context of 5G radio and network services. The primary scope of the present document is the documentation of the following aspects:
-	Introducing Extended Reality by providing definitions, core technology enablers, a summary of devices and form factors, as well ongoing related work in 3GPP and elsewhere.
-	Collecting and documenting core use cases in the context of Extended Reality
-	Identifying relevant client and network architectures, APIs and media processing functions that support XR use cases
-	Analysing and identifying the media formats (including audio and video), metadata, accessibility features, interfaces and delivery procedures between client and network required to offer such an experience
-	Collecting key performance indicators and Quality-of-Experience metrics for relevant XR services and the applied technology components.
-	Drawing conclusions on the potential needs for standardization in 3GPP.
[bookmark: _Toc23169688]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TR 26.918: "Virtual Reality (VR) media services over 3GPP".
[3]	3GPP TS 26.118: "3GPP Virtual reality profiles for streaming applications".
[4]	ARCore, https://developers.google.com/ar/
[5]	ARKit, https://developer.apple.com/arkit/
[6]	3GPP TR 22.842: "Study on Network Controlled Interactive Service in 5GS".
[7]	3GPP TR 26.247: "Transparent end-to-end Packet-switched Streaming Service (PSS); Progressive Download and Dynamic Adaptive Streaming over HTTP (3GP-DASH)".
[8]		3GPP TS 23.501: "System Architecture for the 5G System ".
[9]	Schuemie, Martijn J., Peter Van Der Straaten, Merel Krijn, and Charles A.P.G. Van Der Mast. “Research on Presence in Virtual Reality: A Survey.” CyberPsychology & Behavior, Vol. 4, No. 2. April 2001.
[10]	Ching, Teo Choong. “The Concept of Presence in Virtual Reality.” Medium. 27 August 2016.
[11]	Sparks, Matt. “Don't Break the Spell: Creating Presence in Virtual Reality” Learning Solutions Magazine, 17 July 2017.
[12]		3GPP TS 26.501: "5G Media Streaming Architecture".
[13]	3GPP TS 22.173: "IP Multimedia Core Network Subsystem (IMS) Multimedia Telephony Service and supplementary services; Stage 1".
[14]	3GPP TS 26.114: " IP Multimedia Subsystem (IMS); Multimedia Telephony; Media handling and interaction ".
[15]	3GPP TR 22.891 "Feasibility Study on New Services and Markets Technology"
[X]	"Cloud Gaming: Architecture and Performance", Ryan Shea and Jiangchuan Liu, Simon Fraser University; Edith C.-H. Ngai, Uppsala University; Yong Cui, Tsinghua University; IEEE Network-July/August 2013.
[Y] 	M. Claypool and K. Claypool. Latency and player actions in online games. Communications of the ACM, 49(11):40–45, 2006.
[Z]	 Quax, P., Monsieurs, P., Lamotte, W., De Vleeschauwer, D., and Degrande, N. Objective and subjective evaluation of the influence of small amounts of delay and jitter on a recent first person shooter game. In Proceedings of 3rd ACM SIGCOMM workshop on Network and system support for games (New York, NY, USA, 2004), NetGames ’04, ACM, pp. 152–156.
[W] 	Chen, K.-t., Huang, P., Wang, G.-s., Huang, C.-y., and Lei, C.-l. On the Sensitivity of Online Game Playing Time to Network QoS. Proceedings of IEEE INFOCOM 2006 00, c (2006).
[V]	3GPP TR 23.758: " Study on application architecture for enabling Edge Applications"
[T]	3GPP TR 23.748: "Study on enhancement of support for Edge Computing in 5G Core network (5GC)"
[S]	S. Schwarz et al., "Emerging MPEG Standards for Point Cloud Compression," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 1, pp. 133-148, March 2019.

[bookmark: _Toc23169689]3	Definitions of terms, symbols and abbreviations
[bookmark: _Toc23169690]3.1	Terms
[bookmark: OLE_LINK1][bookmark: OLE_LINK2][bookmark: OLE_LINK3][bookmark: OLE_LINK4][bookmark: OLE_LINK5]For the purposes of the present document, the terms given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

[bookmark: _Toc23169691]3.2	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
3DoF	Three Degrees of Freedom
6DoF	Three Degrees of Freedom
API	Application Programming Interface
AR	Augmented Reality
ATW	Asynchronous TimeWarp
CDN	Content Delivery Network
DoF	Degrees of Freedom
FLUS	Framework for Live Uplink Streaming
FOV	Field-Of-View
FPS	Frames Per Second
GNSS	Global Navigation Satellite System
GPU	Graphics Processing Unit
HMD	Head-Mounted Display
IDMS	Inter-destination Multimedia Synchronization
MCPTT	Mission Critical Push To Talk
MEC	Multi-access Edge Computing
MMS	Multimedia Messaging Service
MOBA	Multiplayer Online Battle Arena
MR	Mixed Reality
PBR	Physically-Based Rendering
PTT	Push To Talk
RCS	Rich Communication Service
RGB	Red-Green-Blue color space
RTP	Real-Time Protocol
RTT	Round Trip Time
SLAM	Simultaneous Localization and Mapping
ToF	Time of Flight
TPU	Tensor Processing Unit
USB	Universal Serial Bus
VR	Virtual Reality
XR	Extended reality
[bookmark: _Toc23169692]4	Introduction to Extended Reality
[bookmark: _Toc23169693]4.1	XR Terms and Definitions
[bookmark: _Toc23169694]4.1.1	Different Types of Realities
The scope of the present document is the introduction of eXtended Reality (XR) to 3GPP services and networks. eXtended Reality (XR) is an umbrella term for different types of realities as shown in Figure 4.1-1. The figure also shows different application domains of XR such as entertainment, healthcare, education, etc. The different terms are defined in the following, reusing and extending some definitions from TR26.918 [2].
[image: realities]
Figure 4.1-1: Different Types of Realities and some applications
Virtual reality (VR) is a rendered version of a delivered visual and audio scene. The rendering is designed to mimic the visual and audio sensory stimuli of the real world as naturally as possible to an observer or user as they move within the limits defined by the application. Virtual reality usually, but not necessarily, requires a user to wear a head mounted display (HMD), to completely replace the user's field of view with a simulated visual component, and to wear headphones, to provide the user with the accompanying audio. Some form of head and motion tracking of the user in VR is usually also necessary to allow the simulated visual and audio components to be updated in order to ensure that, from the user's perspective, items and sound sources remain consistent with the user's movements. Additional means to interact with the virtual reality simulation may be provided but are not strictly necessary.
Augmented reality (AR) is when a user is provided with additional information or artificially generated items or content overlaid upon their current environment. Such additional information or content will usually be visual and/or audible and their observation of their current environment may be direct, with no intermediate sensing, processing and rendering, or indirect, where their perception of their environment is relayed via sensors and may be enhanced or processed.
Mixed reality (MR) is an advanced form of AR where some virtual elements are inserted into the physical scene with the intent to provide the illusion that these elements are part of the real scene.
Extended reality (XR) refers to all real-and-virtual combined environments and human-machine interactions generated by computer technology and wearables. It includes representative forms such as AR, MR and VR and the areas interpolated among them. The levels of virtuality range from partially sensory inputs to fully immersive VR. A key aspect of XR is the extension of human experiences especially relating to the senses of existence (represented by VR) and the acquisition of cognition (represented by AR).
Other terms used in the context of XR are Immersion as the sense of being surrounded by the virtual environment as well as Presence providing the feeling of being physically and spatially located in the virtual environment. The sense of presence provides significant minimum performance requirements for different technologies such as tracking, latency, persistency, resolution and optics. For more details, refer to clause 4.2..
Other relevant terms in the context of XR experiences are:
· Parallax is the relative movement of objects as a result of a change in point of view. When objects move relative to each other, users to estimate their size and distance.
· Occlusion is the phenomena when one object in a 3D space is blocking another object from view.

This document uses the acronym XR throughout to refer to equipment, applications, and functions used for Virtual Reality, Augmented Reality, and other related technologies. Examples include, but are not limited to:
· Head-mounted displays for VR
· Augmented Reality glasses
· Mobile devices with positional tracking
All in common with them is the ability that they offer some degree of spatial tracking and the spatial tracking results in an interaction to view some form of virtual content. More details on XR devices are provided in clause 4.X.
[bookmark: _Toc23169695]4.1.2	Degrees of Freedom and XR Spaces
User want to interact and act in extended realities as shown in Figure 4.1-2. Actions and interactions involve movements, gestures, body reactions. Thereby, Degrees of Freedom (DoF) describes the number of independent parameters used to define movement of a viewport in the 3D space.
Any consistent interaction for an XR application with XR hardware is assumed to be restricted to an XR session. Once a XR session has been successfully established, it can be used to poll the viewer pose, query information about the user’s environment, and present imagery to the user.
[image:]
Figure 4.1-2: Different degrees of freedom for a user in extended realities
Typically, the following different types of Degrees-of-Freedom are described (and also shown in Figure 4.1-3).
-	3DoF: Three rotational and un-limited movements around the X, Y and Z axes (respectively pitch, yaw and roll). A typical use case is a user sitting in a chair looking at 3D 360 VR content on an HMD (see Figure 4.1-3 (a)).
-	3DoF+: 3DoF with additional limited translational movements (typically, head movements) along X, Y and Z axes. A typical use case is a user sitting in a chair looking at 3D 360 VR content on an HMD with the capability to slightly move his head up/down, left/right and forward/backward (see Figure 4.1-3 (b)).
-	6DoF: 3DoF with full translational movements along X, Y and Z axes. Beyond the 3DoF experience, it adds (i) moving up and down (elevating/heaving); (ii) moving left and right (strafing/swaying); and (iii) moving forward and backward (walking/surging). A typical use case is a user freely walking through 3D 360 VR content (physically or via dedicated user input means) displayed on an HMD (see Figure 4.1-3 (d)).
-	Constrained 6DoF: 6DoF with constrained translational movements along X, Y and Z axes (typically, a couple of steps walking distance). A typical use case is a user freely walking through VR content (physically or via dedicated user input means) displayed on an HMD but within a constrained walking area (see Figure 4.1-3 (c)).

	[image:]
	[image:]

	(a) 3DoF
	(b) 3DoF+

	[image:]
	[image:]

	(c) Constrained 6DoF
	(d) 6DoF

Figure 4.1-3: Different degrees of freedom
Another term for Constrained 6DoF is Room Scale VR being a design paradigm for XR experiences which allows users to freely walk around a play area, with their real-life motion reflected in the XR environment. A Constrained 6DoF is not intended to describe multi-room spaces, areas with uneven floor levels, or very large open areas. Content that needs to handle those scenarios should use unconstrained 6DoF.
The degrees of freedom may also be used to describe the tracking capabilities of an XR device. For more details on tracking, refer to clause 4.1.4. Content or tracking capabilities of a device do not necessarily have to match. However, if content with less degrees of freedom is consumed than the tracking device is typically capabable to do, then the user is preferably aware of this limitation. The same would hold, if the user consumes content with more degrees of freedom then the device permits to track, the user is preferably aware of this.

[Editor's Note: We need a diagram that reflects the different definitions below. All definitions should be clearly introduced.]
Spaces provide a relation of the user’s physical environment with other tracked entities. An XR Space represents a virtual coordinate system with an origin that corresponds to a physical location. The world coordinate system is the coordinate system in which the virtual world is created. Coordinate systems are essential for operating in 3-dimensional virtual and real worlds for XR applications.
As an example, a coordinate system is defined by OpenXR [X] in clause 2.15 as well as for WebXR [X], both using a Cartesian right-handed coordinate system as shown in Figure 4.1-4. This coordinate system is right-handed, where +X is considered "Right", +Y is considered "Up", and -Z is considered "Forward".
It is expected to be a rectangular Cartesian coordinate system in which all axes are equally scaled.

Figure 4.1-4 Right-Handed Coordinate system
A three-dimensional vector is defined by the (x,y,z) coordinates. If used to represent physical distances (rather than e.g. velocity or angular velocity) and not otherwise specified, values are in meters. A position in the XR space is a 3D-vector representing a position within a space and relative to the origin.
An XR reference space is one of several common XR Spaces that can be used to establish a spatial relationship with the user’s physical environment. An XR reference space may be restricted, determining the ability by the user to move. This aligns with to the definitions above as well as Figure 4.1-3, namely an XR reference space providing the degrees of freedom for a user.
· For 3DoF, the XR reference space is limited to a single position.
· For 3DoF+, the XR reference space is limited to a single position, a small bounding box around a single position is provided.
· For constrained 6DoF, the XR reference space has a native bounds geometry describing the border around the space, which the user can expect to safely move within. Such borders may for example be described by polygonal boundary given as an array representing a loop of points at the edges of the safe space. The points describe offsets from the origin in meters.
· For unconstrained 6DoF, the XR reference space is unlimited and basically includes the whole universe.
Unless the user does a reconfiguration, XR reference spaces within an XR session are static, i.e. the space the user can move in is restricted by the initial definition.
[Spatial data exchanged in the context of an agreed XR Space is always expressed in relation to a specific XR Space at the time. Numeric values such as pose positions are coordinates in that space relative to its origin.]
An XR View describes a single view into an XR scene for a given time. Each view corresponds to a display or portion of a display used by an XR device to present the portion of the scene to the user. Rendering of the content is expected to be done to well align with to the view's physical output properties, including the field of view, eye offset, and other optical properties. A view, among others, has associated
· a view offset, describing a position and orientation of the view in the XR reference space
· an eye which is describing which eye this view is expected to be shown. Displays may support stereoscopic or monoscopic viewing.
Editor's Note: Clarify difference between view offset and XR Pose.
An XR Viewport describes a viewport, or rectangular region, of a graphics surface. An XR viewport is predominantly defined by the width and height of the rectangular dimensions of the viewport.
Generally, an XR Pose describes a position and orientation in space relative to an XR Space.
· The position in the XR space is an 3D-vector representing position within a space and relative to the origin defined by the (x,y,z) coordinates. If used to represent physical distances, x, y, and z are in meters.
· The orientation in the XR space is a quaternion representing the orientation within a space and defined by a four-dimensional or homogeneous vector with (x,y,z,w) coordinates with w the real part of the quarternion and x, y and z the imaginary parts.
Unit quaternions are used to document spatial rotations in three dimensions. The more familiar and easy to visualize roll, pitch, and yaw are limited (for example due to the well-known gimbal lock) and in computer science, engineering and XR applications, they are replaced with the more robust quaternion.
An XR Viewer Pose is an XR Pose describing the state of a viewer of the XR scene as tracked by the XR device. XR Viewer Poses are documented relative to an XR Reference Space.
The views array is a sequence of XR Views describing the viewpoints of the XR scene, relative to the XR Reference Space the XR Viewer Pose was queried with.
[bookmark: _Toc23169696]4.1.3	Tracking and Pose Generation
In XR applications, one essential element is the use of some degree of spatial tracking and based on the tracking and the derived XR pose, content is rendered to simulate a view of virtual content.
XR pose and motions can be sensed by Positional Tracking, i.e. the process of tracing the XR scene coordinates of moving objects in real-time, such as HMDs or motion controller peripherals. Positional Tracking allows to derive the XR Viewer Pose, i.e. the combination of position and orientation of the viewer. Different type of tracking exist:
-	Outside-In Tracking: a form of positional tracking and, generally, it is a method of optical tracking. Tracking sensors placed in a stationary location and oriented towards the tracked object that moves freely around a designated area defined by sensor coverage.
-	Inside-out Tracking: a method of positional tracking commonly used in virtual reality (VR) technologies, specifically for tracking the position of head-mounted displays (HMDs) and motion controller accessories whereby the location of the cameras or other sensors that are used to determine the object's position in space are located on the device being tracked (e.g. HMD).
-	World Tracking: a method to create AR experiences that allow a user to explore virtual content in the world around them with a device's back-facing camera using a device's orientation and position, and detecting real-world surfaces, as well as known images or objects.
Editor's Note: Can we check if we need anything on object tracking in clause 4.1.3 or is included in World Tracking
-	Simultaneous Localization and Mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of the user's location within an unknown environment
If not mentioned otherwise, it is assumed that devices in the context of the document are able to track 6DoF.
To maintain a reliable registration of the virtual world with the real world as well as to ensure accurate tracking of the XR pose for VR, XR applications require highly accurate, low-latency tracking of the device at about 1kHz sampling frequency. The size of a XRPose is typically in the range of 50-100 bytes, such that the generated data is around several hundred kbit/s if delivered over the network.
Editor's Note Tracking Frequency and uplink traffic.
[bookmark: _Toc23169697]4.1.5	XR Spatial Mapping and Localization
Spatial mapping, creating a map of the surrounding area, and localization, establishing the position of users and objects within that space, are some of the key areas of XR. Multiple sensor inputs are combined to get better localization accuracy, e.g., monocular/stereo/depth cameras, radio beacons, GPS, inertial sensors, etc.
Some of the methods involved are listed below:
1)	Spatial anchors are used for establishing the position of a 3D object in a shared AR/MR experience, independent of the individual perspective of the users. Spatial anchors are accurate within a limited space (e.g., 3m radius for the Microsoft Mixed Reality toolkit). Multiple anchors may be used for larger spaces.
2)	Simultaneous Localization and Mapping (SLAM) is used for mapping previously unknown environments, while also maintaining the localization of the device/user within that environment.
3)	Visual Localization, e.g., vSLAM, Visual Positioning System (VPS), etc., perform localization using visual data from, e.g., a mobile camera, combined with other sensor data.
Spatial mapping and localization can be done on the device. However, network elements can support the operations in different ways:
1)	Cloud services may be used for storing, retrieving and updating spatial data. For larger public spaces, crowdsourcing may be used to keep the data updated and available to all.
2)	A Spatial Computing Server that collects data from multiple sources and processes it to create spatial maps including, but not limited to, visual and inertial data streamed from XR devices. The service can then provide this information to other users and also assist in their localization based on the data received from them.
Indoor and outdoor mapping and localization are expected to have different requirements and limitations. Privacy concerns need to be explored by the service provider when scanning indoor spaces and storing spatial features, especially when it is linked to global positioning.
NOTE:	It should be discussed if a difference needs to be established between localization and tracking of an XR device, and if and when the terms can be used interchangeably.
[bookmark: _Toc23169698]4.2	Presence and Quality-of-Experience for XR
4.2.1	Immersiveness and Presence
For providing XR experiences that make you feel immersed and present, several relevant quality of experience factors count and have been collected (https://xinreality.com/wiki/Presence). Presence is the feeling of being physically and spatially located in an environment. Presence is divided into 2 types: Cognitive Presence and Perceptive Presence. Cognitive Presence is the presence of one's mind. It can be achieved by watching a compelling film or reading an engaging book. Cognitive Presence is important to an immersive experience of any kind.
Perceptive Presence is the presence of one's senses. To accomplish perceptive presence, one's senses, sights, sound, touch and smell, have to be tricked. To create perceptive presence, the XR Device has to fool the user's senses, most notably the audio-visual system. XR Devices achieve this through positional tracking based on the movement. The goal of the system is to maintain your sense of presence and avoid breaking it.
Perceptive Presence is the objective to be achieved by XR applications and is what is referred in the following.
In a paper [9] titled “Research on Presence in Virtual Reality: A Survey”, the authors quote Matthew Lombard’s slightly more scientific definition of presence: "Presence (a shortened version of the term “telepresence”) is a psychological state of subjective perception in which even though part or all of an individual’s current experience is generated by and/or filtered through human-made technology, part or all of the individual’s perception fails to accurately acknowledge the role of the technology in the experience. Except in the most extreme cases, the individual can indicate correctly that s/he is using the technology, but at some level, and to some degree, her/his perceptions overlook that knowledge and objects, events, entities, and environments are perceived as if the technology was not involved in the experience." In other words, feeling like you’re really there.
Presence is achieved when the involuntary aspects of our reptilian corners of our brains are activated. When the user reaches out to grab the virtual apple, becomes unwilling to step off a plank or feel nervous when walking on rooftops. According to Teo Choong Ching [10], there are four components relevant for feeling present, namely the
1. The Illusion of being in a stable spatial place
2. The Illusion of self-embodiment.
3. The Illusion of Physical Interaction
4. The Illusion of Social Communication
Most relevant from a the technical aspect in the context of this Technical Report is the first one. This part of presence can be broken down into three broad categories, listed in order of most important to least important for their impact on creating presence: Visual presence, Auditory presence, and sensory or haptic presence.
Technical Requirements for visual presence have been formulated by Valve's ™ R&D Team and Brendan Iribe (https://www.roadtovr.com/oculus-shares-5-key-ingredients-for-presence-in-virtual-reality/) from Oculus ™ as well as from experience collected from 3GPP members product development teams:
· Tracking
· 6 degrees of freedom tracking - ability to track user's head in rotational and translational movements.
· 360 degrees tracking - track user's head independent of the direction the user is facing.
· Sub-millimeter centimeter accuracy - tracking accuracy of less than a millimeter centimeter.
· Quarter-degree-accurate rotation tracking
· No jitter - no shaking, image on the display has to stay perfectly still.
· For room-scale games and experiences, Comfortable comfortable tracking volume - large enough space to move around and still be tracked of roughly 2m cubes. For seated games/experiences a smaller tracking volume is sufficient.
· Latency
· Less than 20 ms motion-to-photon latency - less than 20 milliseconds of overall latency (from the time you move your head to when you see the display change).
· Minimize the time of pose-to-render-to-photon. Rendering content as quickly as possible. Less than 50ms for render to photon in order to avoid wrongly rendered content.
· Fuse optical tracking and inertial measurement unit (IMU) data –
· Minimize loop: tracker → CPU → GPU → display → photons.
· Minimize the content age depending on the application. For more details see 4.2.2.
· Persistence
· Low persistence - Turn pixels on and off every 2 - 3 ms to avoid smearing / motion blur. Pixel persistence is the amount of time per frame that the display is actually lit rather than black. “Low persistence” is simply the idea of having the screen lit for only a small fraction of the frame. The reason is that the longer a frame goes on for, the less accurate it will be compared to where you’re currently looking. The brain is receiving the same exact image for the entire frame even as you turn your head whereas in real life your view would constantly adjust.
· 90 Hz and beyond display refresh rate to eliminate visible flicker.
· Resolution
· No visible pixel structure - you cannot see the pixels.
· In 2014, It was thought at least 1k by 1k pixels per eye would be sufficient.
· However, in theory, in our fovea, we need about 120 pixels per degree of view to match reality, possibly requiring significantly more than the 1k by 1k, all the way to 6k by 6k..
· In 2019, it is commonly accepted that 2k by 2k per eye provide sufficient quality.
· It may be that higher resolutions are still considered in the long-term future.
· Optics
· Wide Field of view (FOV) is the extent of observable world at any given moment and typically 100 - 110 degrees FOV is needed. For details on FoV, see TR 26.918 [2], 4.2.2.
· Comfortable eyebox - the minimum and maximum eye-lens distance wherein a comfortable image can be viewed through the lenses.
· High quality calibration and correction - correction for distortion and chromatic aberration that exactly matches the lens characteristics. For details on optics, see TR 26.918 [2], clause 4.2.3 and 4.2.4.
For requirements on auditory presence, refer to TR 26.918 [2] and [11].
For requirements on sensory and haptics presence, refer for example to [11].
Presence is equally important to an immersive AR experience. To achieve Presence in Augmented Reality, seamless integration of virtual content and physical environment is required. Like in VR, the virtual content has to align with user's expectations. One theory is that to have truly immersive AR, user cannot discern virtual objects from real objects.
Also relevant for VR and AR, but in particular AR, is not only the awareness for the user as shown in Figure 4.1-5, but also for the environment. This includes:
· Safe zone discovery
· Dynamic obstacle warning
· Geometric and semantic environment parsing
· Environmental lighting
· World mapping
[image:]
Figure 4.1-5 Environmental Awareness in XR Applications
Editor's NOTE: more details on AR relevant functionalities are necessary
4.2.2 User Reaction and Content Age
Beyond the issue of presence and experiences, the age of the content is important.
For gaming, for example, Ref. [X],[Y] provides interaction delay tolerance thresholds per game type in table X-1.
Table X-1. Interaction delay tolerance in traditional gaming (from [X]).
	Example game type
	Perspective
	Delay tolerance

	First person shooter (FPS)
	First person
	100 ms

	Role playing game (RPG)
	Third person
	500 ms

	Real-time strategy (RTS)
	Omnipresent
	1000 ms

In [Z], the authors set up a 12 player match of Unreal Tournament 2003 in a controlled environment. Each player is assigned a specific amount of latency and jitter for the duration of the match. After the match, the players answer a questionnaire about their experience in the game. This study still uses relatively few players, but they are able to conclude that 60ms of latency noticeably reduces both performance and experience of this game.
In general, it seems that 60 ms [18], or even 45 ms [W] are better estimates at how much latency is acceptable in the most fast-paced games than the traditionally quoted 100ms value.
In other cases the latency of the content is for example determined by conversational delay thresholds. Typically, around 200ms are acceptable.
Overall, different applications and use cases require different content age requirements and this phenomena should be considered.
The five following categories are considered:
· Ultra-Low-Latency applications: delay threshold of at most 50ms latency.
· Low-Latency applications: delay threshold of at most 100ms latency.
· Conversational applications: delay threshold of at most 200ms latency.
· Moderate latency applications: delay threshold of at most 500ms latency.
· Non latency critical applications: delay threshold of at most 1000ms latency.
[bookmark: _Toc23169699]4.3	XR Delivery in 5G System
[bookmark: _Toc23169700]4.3.1	General Delivery Categories
For the purpose of classifying use cases, this clause defines delivery categories for XR experiences. The following categories are defined:
-	Download: An XR experience is downloaded and consumed offline without requiring a connection. All media and experience related traffic is downlink.
-	(Passive) Streaming: The experience is consumed in real-time from a network server. The user does not interact with the XR experience, or if interacting with the XR experience, the interaction is not triggering any uplink traffic. All media related traffic is downlink.
-	Interactive (Streaming): The experience is consumed in real-time from a network server. The user (or the device automatically) interacts with the XR experience and the interaction changes the delivered content. The traffic is predominantly downlink, but certain traffic is uplink, e.g. pose information. Different flavours of interaction exist, for example viewport adaptation, gaming events, etc. Interaction delay limit requirements may be different, ranging immersive latency requirements to more static selection interaction.
-	Conversational: The experience is generated, shared and consumed in real-time from two or more participants with conversational latency requirements.
-	Split Compute/Rendering: Network functions run an XR engine to support processing of immersive scenes and the delivery is split into more than one connection, e.g. Split rendering, Edge Computing, etc. The latency and interaction requirements again depend on the use case and the architecture implementation
A more detailed analysis of architectures in the context of 5G is provided in clause X.
[bookmark: _Toc23169701]4.3.2	5G System and Radio Functionalities for XR
The integration of XR applications within the 5G System is approached following the model of 5G Media Streaming as defined in TS26.501 [8]. Assume a 5G-XR Application Provider being an XR Application provider that makes use of 5G System functionalities for its services. For this purpose, it provides a 5G-XR Aware Application on the UE to make use of a 5G-XR client and network functions using interfaces and APIs, potentially defined in 5G-XR related specifications.
The architecture in Figure 4.2.8-1 represents potential 5G-XR functions within the 5G System (5GS) as defined in TS23.501 [23]. Three main functions are defined:
· 5G-XR AF: An Application Function similar as defined in TS23.501 [23], clause 6.2.10, dedicated to 5G-XR Services.
· 5G-XR AS: An Application Server dedicated to 5G-XR Services.
· 5G-XR Client: A UE internal function dedicated to 5G-XR Services.
In the context of this Technical Report, 5G-XR AF and 5G-XR AS are initially considered Data Network (DN) functions and communicate with the UE via N6, N3 and Uu as defined in TS23.501 [23].
Communication through sidelink PC5 may be an alternative to Uu based communication.
Functions in trusted DNs are trusted by the operator’s network as illustrated in Figure 4..3-5 of TS 23.501[23]. Therefore, AFs in trusted DNs may directly communicate with all 5G Core functions.
Functions in external DNs may only communicate with 5G Core functions via the NEF using N33.

Figure 4.2.8-1: 5G-XR functions integrated in 5G System
NOTE 1: The functions indicated by the yellow filled boxes are in potential scope of stage 3 specifications for 5G-XR. The functions indicated by the grey boxes are defined in 5G System specifications. The functions indicated by the blue boxes are assigned to the applications. neither in scope of 5G Media Streaming nor 5G System specifications.
The above architecture is used as a starting point. With XR related functions exlusively assigned to either DN or UE. However, architectural extensions may be identified for the 3GPP system that may benefit XR applications.Examples include the use of network slicing, edge computing or usage of 5G quality of service.

Editor's Note: Add a diagram similar to the one in TS26.501 with the different interfaces
Figure 4.2.8-2: 5G-XR Interfaces and Architecture
A basic XR architecture integrated in 5G is shown in Figure 4.2.8-2.
The following functions may be considered defined:
-	5G XR Client on UE: Receiver of 5G-XR session data that may be accessed through well-defined interfaces/APIs by the 5GXR Aware Application.
-	The 5GXR Client contains two sub-functions
-	XR Session Handler: A function on the UE that communicates with the 5GXR AF in order to establish, control and support the delivery of an XR session. The XR Session Handler exposes APIs that can be used by the 5GXR Aware Application.
-	XR Engine: A function on the UE that communicates with the 5GXR Application Server in order get access to XR related data, processes this data and communicates with the XR Session Handler for XR session control.
-	5GXR Aware Application: The 5GXR Client is typically controlled by an external XR aware application, e.g. an App, which implements external application service provider specific logic and enables establishing an XR session. The 5GXR Aware Application makes use of 5GXR Client and network functions using interfaces and APIs.
-	5GXR AS: An Application Server which hosts 5GXR media and medua functions.
-	5GXR Application Provider: External XR application provider that makes use of 5GXR client and network functionalities to provide an XR experience to the 5GMXR Aware applications.
-	5GXR AF: provides various control functions to the XR Session Handler on the UE and/or to 5GXR Application Provider. It may relay or initiate a request for different Policy or Charging Function (PCF) treatment or interact with other network functions.
In the context of the above, 5G radio may also be differentiated between 5G Uu and 5G Sidelink. Uu is the interface between User Equipement (UE) and Radio Access Network (RAN) as defined in TS38.300. Sidelink is a mode of communication whereby UEs can communicate with each other directly as defined in TS38.300.
[bookmark: _Toc23169702]4.3.3	 Quality-of-Service in 5G
Clause 5.7 of TS 23.501 [8] explains the QoS Model for 5G. The 5G QoS model is based on QoS Flows. The 5G QoS model supports both QoS Flows that require guaranteed flow bit rate (GBR QoS Flows) and QoS Flows that do not require guaranteed flow bit rate (Non-GBR QoS Flows). The 5G QoS model also supports Reflective QoS (see clause 5.7.5 of TS 23.501 [8]).
A QoS Flow ID (QFI) is used to identify a QoS Flow in the 5G System. User Plane traffic assigned to the same QoS Flow within a PDU Session receives the same traffic forwarding treatment (e.g. scheduling, admission threshold).
The QFI may be dynamically assigned or may be equal to the 5QI. A QoS Flow may either be 'GBR', 'Non-GBR' or “Delay Tolerant GBR” depending on its QoS profile and it contains QoS parameters as follows:
For each QoS Flow, the QoS profile includes the QoS parameters:
-	5G QoS Identifier (5QI); and
-	Allocation and Retention Priority (ARP).
-	For each Non-GBR QoS Flow only, the QoS profile can also include the QoS parameter:
-	Reflective QoS Attribute (RQA).
-	For each GBR QoS Flow only, the QoS profile also include the QoS parameters:
-	Guaranteed Flow Bit Rate (GFBR) - UL and DL; and
-	Maximum Flow Bit Rate (MFBR) - UL and DL; and
-	In the case of a GBR QoS Flow only, the QoS profile can also include one or more of the QoS parameters:
-	Notification control;
-	Maximum Packet Loss Rate - UL and DL
The one-to-one mapping of standardized 5QI values to 5G QoS characteristics is specified in table 5.7.4-1 if TS 23.501 [8] and shown below in Table 4.2.8-1.
5QI values potentially relevant for XR applications in the context of this Technical Report are highlighted in italics.
Table 4.2.8-1: Standardized 5QI to QoS characteristics mapping (identical to Table 5.7.4.1-1 in TS 23.501 [10])
	5QI
Value
	Resource Type
	Default Priority Level
	Packet Delay Budget
	Packet Error
Rate
	Default Maximum Data Burst Volume
(NOTE 2)
	Default
Averaging Window
	Example Services

	1

	
GBR
	20
	100 ms
	10-2
	N/A
	2000 ms
	Conversational Voice

	2

	(NOTE 1)
	40
	150 ms
	10-3
	N/A
	2000 ms
	Conversational Video (Live Streaming)

	3
	
	30
	50 ms
	10-3
	N/A
	2000 ms
	Real Time Gaming, V2X messages
Electricity distribution – medium voltage, Process automation - monitoring

	4

	
	50
	300 ms
	10-6
	N/A
	2000 ms
	Non-Conversational Video (Buffered Streaming)

	65
	
	7
	75 ms
	
10-2
	N/A
	2000 ms
	Mission Critical user plane Push To Talk voice (e.g., MCPTT)

	66

	
	
20
	100 ms
	
10-2
	N/A
	2000 ms
	Non-Mission-Critical user plane Push To Talk voice

	67

	
	15
	100 ms
	10-3
	N/A
	2000 ms
	Mission Critical Video user plane

	75
	
	25
	50 ms
	10-2
	N/A
	2000 ms
	V2X messages

	5
	Non-GBR
	10
	100 ms
	10-6
	N/A
	N/A
	IMS Signalling

	6
	(NOTE 1)
	
60
	
300 ms
	
10-6
	N/A
	N/A
	Video (Buffered Streaming)
TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)

	7
	
	
70
	
100 ms
	
10-3
	N/A
	N/A
	Voice,
Video (Live Streaming)
Interactive Gaming

	8
	
	
80
	

300 ms
	

10-6
	

N/A
	

N/A
	Video (Buffered Streaming)
TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive

	9
	
	90
	
	
	
	
	video, etc.)

	69
	
	5
	60 ms
	10-6
	N/A
	N/A
	Mission Critical delay sensitive signalling (e.g., MC-PTT signalling)

	70
	
	55
	200 ms
	10-6
	N/A
	N/A
	Mission Critical Data (e.g. example services are the same as QCI 6/8/9)

	79
	
	65
	50 ms
	10-2
	N/A
	N/A
	V2X messages

	80
	
	68
	10 ms

	10-6
	N/A
	N/A
	Low Latency eMBB applications Augmented Reality

	82
	Delay Critical GBR
	19
	10 ms
(NOTE 4)
	10-4
	255 bytes
	2000 ms
	Discrete Automation (see TS 22.261 [2])

	83
	
	22
	10 ms
(NOTE 4)
	10-4
	1358 bytes
(NOTE 3)
	2000 ms
	Discrete Automation (see TS 22.261 [2])

	84
	
	24
	30 ms
(NOTE 6)
	10-5
	1354 bytes
	2000 ms
	Intelligent transport systems (see TS 22.261 [2])

	85
	
	21
	5 ms
(NOTE 5)
	10-5
	255 bytes
	2000 ms
	Electricity Distribution- high voltage (see TS 22.261 [2])

	NOTE 1:	A packet which is delayed more than PDB is not counted as lost, thus not included in the PER.
NOTE 2:	It is required that default MDBV is supported by a PLMN supporting the related 5QIs.
NOTE 3:	This MDBV value is set to 1354 bytes to avoid IP fragmentation for the IPv6 based, IPSec protected GTP tunnel to the 5G-AN node (the value is calculated as in Annex C of TS 23.060 [56] and further reduced by 4 bytes to allow for the usage of a GTP-U extension header).
NOTE 4:	A delay of 1 ms for the delay between a UPF terminating N6 and a 5G-AN should be subtracted from a given PDB to derive the packet delay budget that applies to the radio interface.
NOTE 5:	A delay of 2 ms for the delay between a UPF terminating N6 and a 5G-AN should be subtracted from a given PDB to derive the packet delay budget that applies to the radio interface.
NOTE 6:	A delay of 5 ms for the delay between a UPF terminating N6 and a 5G-AN should be subtracted from a given PDB to derive the packet delay budget that applies to the radio interface.

The applicability of 5QI and potential gaps for XR Services over 5G are one of the subjects to be analysed further in this Technical Report.
[bookmark: _Toc23169703]4.3.4	5G Media Delivery
In the context of this Technical Report and the delivery options identified in clause 4.2.5.1, the first three basic delivery types download, passive streaming and interactive streaming are most suitably mapped to 5G Media Streaming as defined in TS26.501 [23] and relating stage 3 specifications. The applicability of 5G Media Streaming for XR applications and potential necessary extensions are identified in this Technical Report.
Conversational services are most suitably mapped to the Multimedia Telephony Service for IMS (MTSI) as defined in 3GPP TS 22.173 [24] with focus on XR media handling (e.g. signalling, transport, codecs, formates) when using 3GPP access, in particular 5G radio technologies. It is expected that the media handling of MTSI clients as defined in TS 26.114 [25] may be suitably extended in order to support XR applications and services.
Split Compute/Rendering architectures are not yet specified in the 5G System architecture beyond those being part of an 5G-XR aware application. Integration of computational resources into the 5G System as part of edge processing functionalities are currently under study in 3GPP. This technical report serves to identify potentially relevant functions for XR applications when using edge processing and rendering.
4.3.5	Edge Computing
Beyond the use of Application Servers as defined in 5G Media Streaming today, the 5G XR application may benefit from additional processing in the edge. As for example shown in Figure X, an edge platform may be offered within the 5G network operator to support XR services served from the content or from the cloud.
[image:]
Figure X Cloud and Edge Processing
[bookmark: _Hlk29932105]In context of Release-17, 3GPP work is ongoing in order to identify the integration of edge processing in 5G systems. TR 23.748 [T] definies modifications to 5GS system architecture to enhance Edge Computing. This work is currently in study phase, defining Key Issues and scope for Rel-17. In addition, in TR 23.758 [V] a new set of application layer interfaces for Edge Computing are identified that may potentially be useful for integration edge computing. However, the media aspects for using edge processing are not identified in these studies and information in this Technical Report may be beneficially contribute to edge-based processing.
In particular, split Compute/Rendering architectures are not yet specified in the 5G System architecture beyond those being part of an 5G-XR aware application. Integration of computational resources into the 5G System as part of edge processing functionalities are currently under study in 3GPP. This technical report serves to identify potentially relevant functions for XR applications when using edge processing and rendering.

[bookmark: _Toc23169704]4.4	XR Engines and Rendering
[bookmark: _Toc23169705]4.4.1	Introduction
XR engines provide a middleware that abstracts hardware and software functionalities for developers of XR applications. In the market as understood when initially writing this report, such engines were predominantly based on proprietary and commercial solutions, but with a trend towards providing standardized abstraction layers and APIs, notably provided by Khronos' OpenXR [X] as well as W3C's WebXR [X]. An overview of the landscape as seen by the OpenXR community is shown in Figure 4.3.3-1.
[image:]
Figure 4.4.1-1 XR engine and ecosystem landscape today and in the future as seen by OpenXR © Khronos
An XR engine is a software-development environment designed for people to build XR experiences such as games and other XR applicatoins. The core functionality typically provided by XR engines include a rendering engine ("renderer") for 2D or 3D graphics, a physics engine or collision detection (and collision response), sound, scripting, animation, artificial intelligence, networking, streaming, memory management, threading, localization support, scene graph, and may include video support.
A couple of typical components are summarized below
· Rendering engine: This engine basically provides the functionalities as documented in clause 4.2.2 with a set of well defined APIs. In summary, the rendering engine generates animated 3D graphics by any of a number of methods (rasterization, ray-tracing etc.). Instead of being programmed and compiled to be executed on the CPU or GPU directly, most often rendering engines are built upon one or multiple rendering application programming interfaces (APIs), such as Direct3D [X], OpenGL [X], or Vulkan [X] which provide a software abstraction of the graphics processing unit (GPU).
· Audio engine: The audio engine is the component which consists of algorithms related to the loading, modifying and output of sound through the client's speaker system. At a minimum it is able to load, decompress and play sound files. More advanced audio engines can calculate and produce such things as Doppler effects, echoes, pitch/amplitude adjustments, oscillation, etc. It can perform calculations on the CPU, or on a dedicated ASIC. Abstraction APIs, such as OpenAL [X], SDL audio, XAudio 2, Web Audio [X], etc. are available.
· Physics engine: The physics engine is responsible for emulating the laws of physics realistically within the XR application. Specifically, it provides a set of functions for simulating physical forces and collisions, acting on the various objects within the scene at run time.
· Artificial intelligence (AI): AI is usually outsourced from the main XR engine into a special module to be designed and written by software engineers with specialist knowledge. XR applications implement very different AI systems, and thus, AI is considered to be specific to the particular XR application for which it is created.
One of the major game engines used to create several notable games such as Fortnite ™, PlayerUnknown's Battlegrounds ™, and Life is Strange 2 ™, is the Unreal Engine 4 ™. Another game engine with significant share ise the Unity ™ engine. This engine is the one behind games such as Rust ™, Subnautica ™, and Life is Strange Before the Storm ™. Unity™ is a cross-platform XR engine developed by Unity Technologies, first announced and released in June 2005. As of 2018, the engine had been extended to support more than 25 platforms. The engine can be used to create three-dimensional, two-dimensional, virtual reality, and augmented reality games and applications. The engine has been adopted by industries outside video gaming, such as film, automotive, architecture, engineering and construction. A component of Unity are scriptable rendering pipelines for developers to create high-end graphics including high-end ones for consoles and PC experiences, as well as the lightweight ones for mobile, virtual reality, augmented reality, and mixed reality.
The Unreal Engine was first showcased in the 1998 first-person shooter game Unreal. Although initially developed for first-person shooters, it is used in a variety of other genres, including platformers, fighting games, MMORPGs, and other RPGs.
Figure 4.4.1-2 provides an overview of typical CPU and GPU operations for XR applications.
[describe and reference figure]

Figure 4.4.1-2 CPU and GPU operations for XR applications
As mentioned above, key aspects of such XR engines and abstraction layers is the integration of advanced functionalities for new XR experiences including video, sound, scripting, networking, streaming, localization support, and scene graphs. By well-defined APIs, XR engines may also be distributed, where part of the functionality is hosted in the network on an XR Server and parts of the functionality are carried out in the XR device.
GPU operations and rendering is dealt with in clause 4.4.2.
In the remainder of this Technical Report, the term XR engine is used to provide any type of typical XR functionalities as mentioned above. A key issue is the functional integration of potentially 3GPP defined technologies, including well defined APIs and interfaces for the usability and benefit of XR application developers.
[bookmark: _Toc23169706]4.4.2	Briefly on Rendering Pipelines
Rendering or graphics pipelines are basically built by a sequence of shaders that operate on different buffers in order to create a desired output. Shaders are a type of computer programs that were originally used for shading (the production of appropriate levels of light, darkness, and color within an image), but which now performs a variety of programmable functions in various fields of computer graphics as well as image and video processing.
The input to the shaders will be handled by the application, which decides what kind of data each stage of the rendering pipeline should operate on. Typically this data is 3d assets consisting of geometric primitives and material components. The application controls the rendering by providing the shaders instructions which describe how models should transformed and projected on a 2d surface.
Generally there are 2 types of rendering pipelines (i) rasterization rendering and (ii) ray traced rendering as shown in Figure 4.2-1. However, there are several flavors to each type and they may in some cases be combined to generate hybrid pipelines. Generally both pipelines process similar data, the input consists of geometric primitives such as triangles and their material components. The main difference is that rasterization focuses to enable real-time rendering at a desired level of quality, whereas ray tracing may be used to mimic light transmission to produce more realistic images. Ray tracing heavy pipelines are typically considered as more computationally expensive thus less suitable for real-time rendering. However, in recent years real-time ray tracing has leaped forward due to improved hardware support and advances in ray tracing algorithms and post-processing.
	[image: rendering02]
	[image: rendering01]

Figure 4.2-1 Rasterized (left) and ray-tracing based (right) rendering

[bookmark: _Toc23169707]4.4.3	Real-time 3D Rendering
3D rendering is the process of converting 3D models into 2D images to be presented on a display. 3D rendering may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene, i.e. creating the viewport. These range from the distinctly non-realistic wireframe rendering through polygon-based rendering, to more advanced techniques such as ray tracing. The 2D rendered viewport 2D image is is simply a two dimensional array of pixels with specific colors.
Typically, rendering needs to happen in real-time for video and interactive data. Rendering for interactive media, such as games and simulations, is calculated and displayed in real-time, at rates of approximately 20 to 120 frames per second. The primary goal is to achieve an a desired level of quality at desired minimum rendering speed. The rapid increase in computer processing power and in the number of new algorithms has allowed a progressively higher degree of realism even for real-time rendering. Real-time rendering is often based on rasterization and aided by the computer's GPU.
Animations for non-interactive media, such as feature films and video, can take much more time to render. Non real-time rendering enables use of brute force ray tracing to obtain higher image quality.
However, in the context of XR in this Technical Report, the assumption of rendering is to be real-time to react to updated XR pose information, updates in the scene as produced, and so on.
4.4.4	Network Rendering and Buffer Data
In several applications, rendering or pre-rendering is not exclusively carried out in the device GPU, but assisted or splt across the network. If this is the case, then the following aspects matter:
· The type of buffers that are pre-rendered/baked in the network. Typical buffer formats are summarized below.
· The format of the buffer data. Again, some data is collected below.
· The number of parallel buffers that are handled
· Specific delay requirements of each of the buffers
· The dimensions of the buffers in terms of size and time
· The ability to compress the buffers using conventional video codecs.
Typical buffers are summarized in the following:
· Vertex Buffers: A rendering resource managed by a rendering API holding vertex data. May be connected by primitive indices to assemble rendering primitives such as triangle strips.
· Depth Buffers: a bitmap image holding depth values (either a Z buffer or a W buffer), used for visible surface determination, during rasterization of 3D scenes.
· Texture Buffers: A region of memory (or resource) used as both a render target and a texture map. A texture map is defined as image/rendering resource used in texture mapping, applied to 3D models and indexed by UV mapping for 3D rendering. Texture/Image represents a set of pixels. Texture buffers have assigned parameters to specify creation of an Image. It can be 1D, 2D or 3D, have various pixel formats (like R8G8B8A8_UNORM or R32_SFLOAT) and can also consist of many discrete images, because it can have multiple array layers or MIP levels (or both). As an example, detailed formats for Vulkan are provided here:
· https://www.khronos.org/registry/vulkan/specs/1.0/html/chap33.html
· https://vulkan.lunarg.com/doc/view/1.0.30.0/linux/vkspec.chunked/ch31s03.html
· Frame Buffers: a region of memory containing a bitmap that drives a video display. It is a memory buffer containing a complete frame of data. Frame buffers as are supported by swap chain being a series of virtual frame buffers utilized by the graphics card and graphics API for frame rate stabilization and several other functions. In every swap chain there are at least two buffers. The first frame buffer, the screen buffer, is the buffer that is rendered to the output of the video card. The remaining buffers are known as backbuffers. Each time a new frame is displayed, the first backbuffer in the swap chain takes the place of the screenbuffer, this is called presentation or swapping. A variety of other actions may be taken on the previous screenbuffer and other backbuffers (if they exist). The screen buffer may be simply overwritten or returned to the back of the swap chain for further processing. The action taken is decided by the client application and is API dependent.
In MPEG, work has started on integration of timed media into XR scenes in order to provide input to rendering buffers through network APIs, for example by retrieving compressed 2D or 3D compressed data.
[bookmark: _Toc23169708]4.5	2D Compression Technologies
4.5.1 Core Compression Technologies
This clause provides an overview of core 2D video compression technologies that are available on mobile platforms as well as their performance. For power-efficient and best performance, encoding and decoding is preferably exclusively carried out in hardware. This clause reviews the 3GPP specifications, actual hardware availability as well as the performance of codecs.
As of today, two codecs are prominently referenced and available, namely H.264/AVC [12] and H.265/HEVC [13]. Both codecs are defined as part of the TV Video Profiles in TS26.116 [14] and are also the foundation of the VR Video Profiles in TS26.118 [3]. The highest referenced profiles are:
· H.264/AVC Progressive High Profile Level 5.1 [12] with the following additional restrictions and requirements:
· the maximum VCL Bit Rate is constrained to be 120Mbps with cpbBrVclFactor and cpbBrNalFactor being fixed to be 1250 and 1500, respectively.
· the bitstream does not contain more than 10 slices per picture
· H.265/HEVC Main-10 Profile Main Tier Profile Level 5.1 [13] without any restrictions
These profile and levels basically permit up 4K at 60 frames per second. In modern mobile CPUs, the above profile level combinations are supported, and recently even extended to support 8K video.
An overview of typical coding performance is provided in Table 4.2.4-1.
Table 4.2.4-1: Expected Video coding standards performance and bitrate target
	Codec
	Coding performance
(Random-Access)
	Targeted bitrate
(Random Access)

	
	Objective
	Subjective
	

	AVC
	
	
	FullHD: ???
4k:
· Statmux: 20-25 Mbps
· CBR: 35 - 50 Mbps
8k:
· CBR: 80 - 100 Mbps
· High quality: 100 - 150 Mbps
[16][17][18]

	HEVC
	-40% vs AVC [16][17][18]
	-60% vs AVC [16][17][18]
	FullHD: ???

4k:
· Statmux: 10-13 Mbps
· CBR: 18-25 Mbps
8k:
· CBR: 40-56 Mbps
· High quality: 80-90 Mbps
[16][17][18]

A more detailed analysis codec performance would be beneficial.
Editor's Note: More details would be appreciated on different settings and performance. This includes usage for low latency encoding, etc.

Work on video compression technologies beyond the capabilities of HEVC [15] are continued by the MPEG/ITU. For example, the Joint Video Exploration Team (JVET) initiated the work on the development of a new video coding standard, to be known as Versatile Video Coding (VVC). Ín addition, according to the press release from MPEG#125 (https://mpeg.chiariglione.org/meetings/125), MPEG started working on a new video coding standard to be known as MPEG-5 Essential Video Coding (EVC) in January 2019. Also noteworthy is the improvement of encoders over time even for existing standards which also leads to bitrate reductions at the same quality.
Based on this information it can be expected that within the time frame until 2025, video compression technology permit bitrate reductions by a factor of 50% compared to what is today possible with HEVC [13].
On top of regular lossy video compression algorithms, low-latency, low-complexity and near lossless codecs are important for certain applications. As an example, JPEG XS is a recent standard for visually lossless low-latency lightweight image coding. According to https://jpeg.org/static/whitepapers/jpeg-xs-whitepaper.pdf, such a codec permits simple yet efficient coding, keeps latency and complexity very low and at the same time achieve visually lossless quality at compression ratios up to 10:1.
<add low latency compression such as JPEG-XR>
Furthermore, for XR formats beyond regular 2D, two different approaches are taken in the compression
1) usage of existing 2D codecs and providing pre- and post-processing in order to convert the signals to 3D signals
2) usage of dedicated compression technologies for specific formats.
More details on these issues are discussed in clause 4.6XXX.
4.5.2 Format and Parallel Decoding Challenges
In XR type of applications, when buffers are processed by rendering engines, existing video codecs may be used to efficiently compress buffers, when those need to be retrieved over the network. As typically a huge amount of data is exchanged and operation needs to be done in a power-efficient manner in constraint environments (see clause 4.8), XR applications rely on existing video codecs on mobile platforms, for example those defined in 3GPP specifications (see clause 4.5.1). While serving an immediate need and providing a kickstart for XR type of services, such video codecs may not be fully suitable for XR applications for different reasons, some of them listed below.
First of all, the formats of the buffers in XR and graphics applications may be different and more variety exists, see clause 4.4.4. Also in certain case, not only textures need to be supported, but also 3D formats, see clause 4.6.
Beyond this, XR applications may require that multiple buffers are served and synchronized in order to render an XR experience. This results in requirements for parallel decoding of multiple streams for multiple buffers (texture, geometry, etc.) as well as multiple objects. In many cases these buffers need to be made available to the rendering engine in a synchronized manner to ensure highest quality of the rendered scene. Furthermore, the amount of streams and data to be processed may vary heavily over the period of an XR session and requires flexible video decoding architectures, also taking into account efficient and low-latency processing.
As an example, MPEG is addressing several of these challenges as part of their MPEG-I project on immersive media coding. In particular, for the variety of applications, a flexible and powerful hardware based decoding and processing architecture is desirable.

[bookmark: _Toc23169709][bookmark: _Hlk22533552]4.6	3D and XR Visual Formats
[bookmark: _Toc23169710]4.6.1	Introduction
This clause introduces 3D and XR visual formats. Both, static images as well as video formats are introduced. In all cases it is assumed that the visual signal is provided as a sequence of pictures with a specific frame rate in frames per second. The chosen frame rate may be a matter of the production of the video, or it may be based on requirements due to interactions with the content, for example in case of conversational applications or when using split rendering.
[bookmark: _Toc23169711]4.6.2	Omnidirectional Visual Formats
[bookmark: _Toc23169712]4.6.2.1	Introduction
Omnidirectional formats have been introduced in TS26.118 [3], clause 4.1, as well as in TR26.928 [2], 4.2.5.
[bookmark: _Toc23169713]4.6.2.2	Definition
Omnidirectional visual signals are represented in a spherical coordinate space in angular coordinates (ϕ,θ). The viewing is from the origin looking outward toward the inside of the sphere. Even though a spherical coordinate is generally represented by using radius, elevation, and azimuth, it assumes that a unit sphere is used for capturing and rendering. Thus, a location of a point on the unit sphere is identified by using the sphere coordinates azimuth () and elevation (). The spherical coordinates are defined so that ϕ is the azimuth and θ is the elevation.
For video, such a centre point may exist for each eye, referred to as stereo signal, and the video consists of three color components, typically expressed by the luminance (Y) and two chrominance components (U and V).
According to TS 26.118, clause 4.1.3, mapping of a spherical picture to a 2D texture signal is illustrated in Figure 4.4-1. The most commonly used mapping from spherical to 2D is the equirectangular projection (ERP) mapping. The mapping is bijective, i.e. it may be expressed in both directions.

Figure 4.1-5: Examples of Spherical to 2D mappings
Using the definitions in TS26.118 [3], clause 4.1.2, the mapping of the color samples of 2D texture images onto a spherical coordinate space in angular coordinates (ϕ,θ) for use in omnidirectional image and video applications for which the viewing perspective is from the origin looking outward toward the inside of the sphere. The spherical coordinates are defined so that ϕ is the azimuth and θ is the elevation.
Assume a 2D texture with pictureWidth and pictureHeight, being the width and height, respectively, of a monoscopic projected luma picture, in luma samples and the center point of a sample location (i,j) along the horizontal and vertical axes, respectively, then for the equirectangular projection the sphere coordinates (,) for the luma sample location, in degrees, are given by the following equations:
 = (0.5 − i ÷ pictureWidth) * 360
 = (0.5 − j ÷ pictureHeight) * 180
Whereas ERP is commonly used for production formats, other mappings may be applied, especially for distribution. For more details on projection formats, refer tp TR26.918 [2], clause 4.2.5.4.
[bookmark: _Toc23169714]4.6.3.3	Production and Capturing Systems
For production, capturing and stitching of spherical content, refer to TR26.918 [2], clause 4.2.5.2 and 4.2.5.3.
[bookmark: _Toc23169715]4.6.3.4	Rendering
Rendering of spherical content depends on the field of view (FoV) of a rendering device. The pose together with the field of view of the device enables the system to generate the user viewport, i.e., the presented part of the content at a specific point in time. According to TS 26.118 [3], the renderer uses the projected texture signals and rendering metadata (projection information) and provides a viewport presentation taking into account the viewport and possible other information. With the pose, a user viewport is determined by determining horizontal/vertical field of view of the screen of a head-mounted display or any other display device to render the appropriate part of decoded video or audio signals. For video, textures from decoded signals are projected to the sphere with rendering metadata received from the file decoder. During the texture-to-sphere mapping, a sample of the decoded signal is remapped to a position on the sphere.
Related to the generic rendering approaches in clause 4.2.2, the following steps are part of rendering spherical media:
-	Generating a 3D Mesh (set of vertexes linked into triangles) based on the projection metadata. The sphere is mapped to a mesh and the transformation of the mesh is dynamically updated based on updated projection metadata.
-	Mapping each vertex to a position on a 2D texture. This is again done using the available projection metadata.
-	Rotating the camera to match the user’s head orientation. This is based on the available pose information.
-	Computing the viewport by using computer graphic algorithms as discussed in details in clause 4.2.2
[bookmark: _Toc23169716]4.6.3.5	Compression, Storage and Data Formats
According to TS26.118 [3], clause 4.1.3, commonly used video encoders cannot directly encode spherical videos, but only 2D textures. However, there is a significant benefit to reuse conventional 2D video encoders. Based on this, Figure 4.4-2 provides the basic video signal representation in the context of omnidirectional video in the context of the present document. By pre-processing, the spherical video is mapped to a 2D texture. The 2D texture is encoded with a regular 2D video encoder and the VR rendering metadata (i.e. the data describing the mapping from the spherical coordinate to the 2D texture) is encoded and provided along with the video bitstream, such that at the receiving end the inverse process can be applied to reconstruct the spherical video.

Figure 4.4-2: Video Signal Representation
Compression, storage and data formats are defined for example in TS26.118 [3] as well as in ISO/IEC 23090-2 [15]. This includes viewport-independent and viewport-dependent compression formats. A principle overview of different approaches is documented in TR26.918 [2], clause 4.2.5.6.
[bookmark: _Toc23169717]4.6.3.6	Quality and Bitrate considerations
According to clause 4.1.6, 1k by 1k per eye is essential for the signal in the viewport, and for stereoscopic rendering this results in basically a signal for 2k by 1k, typically at a frame rate of 50 or 60fps.With current codecs according to clause 4.2.4, the pure viewport data can be represented with around 4-10 Mbit/s. However, a viewport typically only covers around 100 degree horizontal and 60 degree vertical. Hence, to present a full omnidirectional presentation, about 20 times more data may be necessary, leading to 80 – 200 Mbit/s. Viewport-dependent coding and delivery, in particular tiling, can support to reduce the required bitrates.
[bookmark: _Toc23169718]4.6.3.7	Applications
For use cases and applications, see TR26.918 [2], clause 5.
[bookmark: _Toc23169719]4.6.3	3D Meshes
[bookmark: _Toc23169720]4.6.3.1	Introduction
A polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object in 3D computer graphics and solid modeling. The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-gons), since this simplifies rendering, but may also be more generally composed of concave polygons, or even polygons with holes.
https://en.wikipedia.org/wiki/Polygon_mesh
[bookmark: _Toc23169721]4.6.3.2	Definition
Objects created with polygon meshes are represented by different types of elements. These include vertices, edges, faces, polygons and surfaces as shown in Figure 4.6.3-1. In many applications, only vertices, edges and either faces or polygons are stored.
[image: Elements of polygonal mesh modeling.]
Figure 4.6.3-1 Elements necessary for mesh representations ©Wikipedia (Mesh_overview.jpg: The original uploader was Rchoetzlein at English Wikipedia.derivative work: Lobsterbake [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)])
Polygon meshes are defined by the following elements:
-	Vertex: A position in 3D space defined as (x,y,z) along with other information such as color (r,g,b), normal vector and texture coordinates.
-	Edge: A connection between two vertices.
-	Face: A closed set of edges, in which a triangle face has three edges, and a quad face has four edges. A polygon is a coplanar set of faces. In systems that support multi-sided faces, polygons and faces are equivalent. Mathematically a polygonal mesh may be considered an unstructured grid, or undirected graph, with additional properties of geometry, shape and topology.
-	Surfaces: or smoothing groups, are useful, but not required to group smooth regions.
-	Groups: Some mesh formats contain groups, which define separate elements of the mesh, and are useful for determining separate sub-objects for skeletal animation or separate actors for non-skeletal animation.
-	Materials: defined to allow different portions of the mesh to use different shaders when rendered.
-	UV coordinates: Most mesh formats also support some form of UV coordinates which are a separate 2D representation of the mesh "unfolded" to show what portion of a 2-dimensional texture map to apply to different polygons of the mesh. It is also possible for meshes to contain other such vertex attribute information such as colour, tangent vectors, weight maps to control animation, etc (sometimes also called channels).
[bookmark: _Toc23169722]4.6.3.3	Production and Capturing Systems
tbdMeshes are commonly produced by many different graphics engines, computer games, and so on.
[bookmark: _Toc23169723]4.6.3.4	Rendering
A renderer may support only 3-sided faces, so polygons must be constructed of many of these, as shown above. Meshes can be rendered directly on GPUs and GPUs are highly optimized for mesh-based rendering.
[bookmark: _Toc23169724]4.6.3.5	Storage and Data Formats
[bookmark: _Toc23169725]4.6.3.5.1	Introduction
Polygon meshes may be represented in a variety of ways, using different methods to store the vertex, edge and face data such as face-vertex, winged, half or quad-edge meshes, corner-table or vertex-vertex meshes. Different formats also store other per vertex and materials related data in different ways. Each of the representations have particular advantages and drawbacks. The choice of the data structure is governed by the application, the performance required, size of the data, and the operations to be performed. For example, it is easier to deal with triangles than general polygons. For certain operations it is necessary to have a fast access to topological information such as edges or neighboring faces; this requires more complex structures such as the winged-edge representation. For hardware rendering, compact, simple structures are needed and are as such commonly incorporated into low-level rendering APIs such as DirectX and OpenGL.
Many different formats for storage and data formats exist for storing polygon mesh data, as an example PLY-format is introduced below, because it provides 3d data in a human readable format. In practice PLY-format is rarely used in real-time rendering. Typically the data format is configured to the need of the 3d engine and as such the landscape is littered with proprietary 3d formats. 3d formats may be roughly divided in two categories, run time friendly formats such as glTF and formats which enable transferring 3d assets between systems like PLY.
[bookmark: _Toc23169726]4.6.3.5.2	PoLYgon (PLY) File Format
The PoLYgon (PLY) format (http://paulbourke.net/dataformats/ply/) is used to describe a 3D object as a list of vertices, faces and other elements, along with associated attributes. A single PLY file describes exactly one 3D object. The 3D object may be generated synthetically or captured from a real scene. Attributes of the 3D object elements that might be stored with the object include: color, surface normals, texture coordinates, transparency, etc. The format permits one to have different properties for the front and back of a polygon.
The PLY does not intend to act as a Scene Graph, so it does not include transformation matrices, multiple 3D objects, modeling hierarchies, or object sub-parts. A typical PLY object definition is a list of (x,y,z,r,g,b) triples for vertices and their color attributes (r,g,b), so they represent a point cloud. It may also include a list of faces that are described by indices into the list of the vertices. Vertices and faces elements of the 3D object representation.
PLY allows applications to create new attributes that attach to the elements of an object. New attributes are appended to the list of attributes of an element, in a way to maintain backwards compatibility. Attributes that are not understood by a parser are simply skipped.
Furthermore, PLY allows for extensions to create new element types and their associated attributes. Examples of such elements could be materials (ambient, diffuse and specular colors and coefficients). New elements can also discarded by programs that do not understand them.
A PLY file is structured as follows:
 Header
 Vertex List
 Face List
 (lists of other elements)
The header is a human-readable textual description of the PLY file. It contains a description of each element type, including the element's name (e.g. "vertex"), how many such elements are in the object, and a list of the various attributes associated with the element. The header also indicates whether the file is in binary or ASCII format. A list of elements for each element type follows the header in the order described in the header.
The following is an example PLY in binary format with 19928 vertices and 39421 faces:
	ply
format binary_little_endian 1.0
comment generated by 3GPP
element vertex 19928
property float x
property float y
property float z
property float nx
property float ny
property float nz
property int flags
property uchar red
property uchar green
property uchar blue
property uchar alpha
element face 39421
property list uchar int vertex_indices
property int flags
end_header
…

This example demonstrates the different components of a PLY file header. Each part of the header is a carriage-return terminated ASCII string that begins with a keyword. In case of binary representation, the file will be a mix of an ASCII header and binary representation of the elements, in little or big endian, depending on the architecture on which the ply file has been generated. The PLY file must start with the characters "ply".
The vertex attributes listed in this example are the (x,y,z) floating point coordinates, the (nx,ny,nz) representation of the normal vectors, a 32 bit flag mask, (r,g,b) 8-bit representations of the color of each vertex, an 8-bit representation of the transparency alpha channel. Faces are represented as a list of vertex indices with a flags attribute associated with each face.
[bookmark: _Toc23169728]4.6.3.6	Texture Formats
Different GPUs may support different texture formats, both raw and compressed. Raw formats included different representations of the RGB colorspace, e.g. 8/16/32 bit representations of each color component, with or without alpha channel, float or integer, regular or normalized, etc.
Typical GPU texture compression formats include BC1, PVRTC, ETC2/EAC, and ASTC. Other image compression formats such as JPEG and PNG need to be decompressed and passed to the GPU in a format that it supports.
Recently, the Basis Universal GPU texture format has been defined. This format also supports video texture compression. As decoding happens on the GPU, the application will benefit from reduced CPU load and CPU to GPU memory copy delay.
[bookmark: _Toc23169729]4.6.3.8	Bitrate and Quality Considerations

Tbd
[bookmark: _Toc23169730]4.6.3.7	Applications
tbdMeshes are used in many applications.
[bookmark: _Toc23169731]4.6.4	Point Clouds
[bookmark: _Toc23169732]4.6.4.1	Introduction
A point cloud is a collection of data points defined by a given coordinates system. In a 3D coordinates system, for example, a point cloud may define the shape of some real or created physical system. Point clouds are used to create 3D meshes and other models used in 3D modeling for various fields including medical imaging, architecture, 3D printing, manufacturing, 3D gaming and various XR applications.
Point clouds are often aligned with 3D models or with other point clouds, a process known as point set registration. In computer vision and pattern recognition, point set registration, also known as point matching, is the process of finding a spatial transformation that aligns two-point sets. The purpose of finding such a transformation includes merging multiple data sets into a globally consistent model, and mapping a new measurement to a known data set to identify features or to estimate its pose. Point set registration is used in augmented reality.
A great overview on point cloud definitions, formats, production and capturing systems, rendering, bitrate/quality considerations and applications is for example provided in [S]. According to this document, media-related use cases may usually contain between 100,000 and 10,000,000 point locations and color attributes with 8-10 bits per color component, along with as some sort of temporal information, similar to frames in a video sequence. For navigation purposes, it is possible to generate a 3D map by combining depth measurements from a high-density laser scanner, e.g. LIDAR, camera captured images and localization data measured with GPS and an inertial measurement unit (IMU). Such maps can further be combined with road markings such as lane information and road signs to create maps to enable autonomous navigation of vehicles around a city. This use case requires the capture of millions to billions of 3D points with up to 1 cm precision, together with additional attributes, namely color with 8-12 bits per color component, surface normals and reflectance properties attributes. According to the paper, depending on the sequence, compression factors between 1:100 to 1:500 are feasible for media-related applications. According to the paper, bitrates for single objects with such compression methods are in the range of 8 to 20 Mbit/s.

[bookmark: _Toc23169733]4.6.4.2	Definition
XXX
[bookmark: _Toc23169734]4.6.4.3	Production and Capturing Systems
Point clouds are generally produced by 3D scanners, which measure many points on the external surfaces of objects around them.
[bookmark: _Toc23169735]4.6.4.4	Rendering
While point clouds can be directly rendered and inspected,[3][4] point clouds are often converted to polygon mesh or triangle mesh models, NURBS surface models, or CAD models through a process commonly referred to as surface reconstruction.
[bookmark: _Toc23169736]4.6.4.5	Storage and Data Formats
tbd
[bookmark: _Toc23169737]4.6.4.6	Bitrate and Quality Considerations
tbd

[bookmark: _Toc23169738]4.6.4.7	Applications
[bookmark: _Toc23169739]4.6.5	Light Fields
An excellent overview on light-field technology is for example provided in https://mpeg.chiariglione.org/sites/default/files/events/7.%20MPEG127-WS_MehrdadTeratani.pdf.
[bookmark: _Toc23169740]4.6.6	Scene Description
[bookmark: _Toc23169741]4.6.6.1	Introduction
[bookmark: _Hlk22533557]Scene Description are often called scene graphs due to their representation as graphs. A scene graph is a directed acyclic graph, usually just a plain tree-structure, that represents an object-based hierarchy of the geometry of a scene. The leaf nodes of the graph represent geometric primitives such as polygons. Each node in the graph holds pointers to its children. The child nodes can among others be a group of other nodes, a geometry element, a transformation matrix, etc.
Spatial transformations are represented as nodes of the graph and represented by a transformation matrix. Other Scene Graph nodes include 3D objects or parts thereof, light sources, particle systems, viewing cameras, …
This structure of scene graphs has the advantage of reduced processing complexity, e.g. while traversing the graph for rendering. An example operation that is simplified by the graph representation is the culling operation, where branches of the graph are dropped from processing, if deemed that the parent node’s space is not visible or relevant (level of detail culling) to the rendering of the current view frustum.
Scene descriptions permit generation of many different 3D scenes for XR applications. As an example, glTF from Khronos is a widely adopted scene description specification and was now adopted by MPEG as the baseline for their extensions to integrate real-time media into scenes.
[bookmark: _Toc23169742]4.6.6.2	Definition
[bookmark: _Toc23169743]4.6.6.3	Production and Capturing Systems
[bookmark: _Toc23169744]4.6.6.4	Rendering
[bookmark: _Toc23169745]4.6.6.5	Storage and Data Formats
[bookmark: _Toc23169746]4.6.6.6	Applications
[bookmark: _Toc23169747]4.6.7	Conversion of Formats
<tbd>
[bookmark: _Toc23169748]4.7	3D and XR Audio Formats
For 3D and XR audio formats and systems, refer to TR26.918 [2], clause 4.3 as well as to TS26.118 [3].
[bookmark: _Toc23169749]4.8 Devices and Form Factors
[bookmark: _Toc23169750]4.8.1	Device Types
Extended reality devices are of different form factors as shown in Figure 4.8-1. These form factors differ in processing capabilities, communication types and possibly power consumption.
A smartphone (XR5G-P1) may be used both for AR as well as for VR (together with a card-board). In both cases, typically an XR engine/runtime is available to support processing of sensor data, viewport rendering as well as SLAM processing. In this case, the 5G modem and all media/XR processing is integrated in the device. Power consumption of such devices is important, but not ultimately critical.
For VR, the following device types are identified:
· XR5G-V1 VR HMD standalone: Such device types are commonly available in 2019, except 5G connectivity. For such devices, the 5G modem, power supply as well as all media/XR processing is expected to be integrated in a single device.
· XR5G-V2 Simple VR Display wired: Such device types are commonly available in 2019. They only include sensors for tracking as well as a display. The remaining processing is done on a remote device, e.g. a puck or a smartphone. XR/Media Processing, connectivity and power supply are provided through wired tethering.
· XR5G-V3 Simple VR Display wireless: Such device types are not yet available in 2019. They include sensors for tracking, a display, a wireless connection (which could be WiFi based or 5G Sidelink based), and a power supply. The remaining processing is done on a remote device, e.g. a puck or a smartphone.
· XR5G-V4 Smart VR Viewer wireless tethering: Such device types are not yet available in 2019. They include sensors for tracking, a display, a wireless connection (which could be WiFi based or 5G Sidelink based), at least some XR processing, as well as a power supply. The remaining processing is done on a remote device, e.g. a puck or a smartphone.
Note that XR5G-V1 and XR5G-V2 are similar in terms of functions, but the wireless connectivity creates additional challenges and may even be done by a 5G sidelink communication.
For AR Glasses, design constraints are significantly more important. In particular, design constraits apply in terms of sleekness, weight and power. The processing power is expected to be low to avoid battery consumption and thermal dissipation. Wireless AR glasses are commercially compelling. The following device types are identified:
· XR5G-A1 AR Wearable standalone: Such device types are not available in 2019 but are under consideration. For such devices, the 5G modem, power suppy, as well as all media/XR processing is expected to be integrated in a single device.
· XR5G-A2 Simple AR Wearable wired: Such device types are available in 2019. They include a minimum number of sensors, possibly cameras for AR localization, as well as a display. Power, XR processing and connectivity is supplied from an external source.
· XR5G-A3 Simple AR Wearable wireless: Such device types are not available in 2019 and are still far out. They would include a minimum number of sensors, possibly cameras for AR localization, power supply, as well as a wireless modem for connectivity. XR processing, AR localization as well as network connectivity is provided by external means, e.g. a puck or a smartphone.
· XR5G-A4 Smart AR Wearable wireless: Such device types are not available in 2019 and are still far out. In addition to an XR5G-A3 device, such a device would include at least a certain amount of XR/Media processing capabilities such as encoders/decoders and XR processing.
· XR5G-A5 Smart AR Wearable see-through: Such device types are an initial entry for AR applications. There are much closer to XR5G-V1 type of devices, but by having cameras projecting the real world on the screen, the VR device can operate as an AR device.
·

Figure 4.3-1: XR Form Factors
Editors's Note: Graphics should be updated to show the XR Form Factors graphically

A summary of the different device types is provided in Table 4.3-1 along with tethering examples, placement of 5G Uu modem, XR engine and localization support, power supply and typical maximum available power. In all device types, the sensors are on the device. The table also addresses the options applicable for tethering between the device carrying the 5G Uu Modem, and the XR device, if applicable. The table also addresses options for the XR engine, where XR engine subsumes scene recognition and viewport rendering. The following definitions are used:
· External: the device only supports display and receives a fully rendered viewport data that can be displayed directly. Any scene recognition, if applicable, is not on the device.
· Split: the external device does a pre-rendering of the viewport based on sensor information and the device does the final rendering considering the latest sensor information. Different degrees of split exist, as discussed before. Similalrly, scene recognition can be subject to split computation. This option also subsumes the case of XR processing done entirely on the device, as defined under “XR device”.
· XR device: that device does the full rendering of the viewport in the device, sensor information is only processed locally. Any scene recognition, if applicable, is on the device.
Editor's Note: Need definition on 5G Uu, 5G Sidelink, etc, (Uu is the interface between User Equipement (UE) and Radio Access Network (RAN) as defined in TS38.300. Sidelink is a mode of communication whereby UEs can communicate with each other directly	as defined in TS38.300.)
Editor's Note: Also add the device types to the use cases. Not all use cases are supported on all device types.
One of the most important issues when considering form factors and processing is the ability of the device to dissipate power, especially when no external cooling is available. Figure 4.3-2 shows the temperature rise depending on the surface power density. As example, two points on the figure can be considered:
· At 5C rise over ambient, power density that can be dissipated is 0.023 W/square inch. A smart phone whould have a surface area from 20 to 30 square inch, i.e. the power that can be dissipated is 0.5 to 0.75 Watt.
· AT 25C rise over ambient, power density that can be dissipated is 0.18 W/square inch. For a smartphone this would allow around 4 to 5 W continuous power dissipation. However, for an AR glass, the surface area is much smaller and so much less power can be dissipated, somewhere in the range of 1W. As an example, in a 25C room, the device enclosure surface temp would be 50C, which is already on the higher end of what is generally considered acceptable.
[image:]
Figure 4.3-2: Temperature rise vs. power density
Editor's Note: Figure needs to be updated to remove background.

Table 4.3-1: XR Device Types
	XR Type
Number
	XR Device Type
Name
	Tethering
Examples
	5G Uu Modem
	XR Engine Localization
	Power Supply
	Typical Max Avail Power

	XR5G-P1
	Phone
	n/a
	XR device
	XR device or split
	Internal
	3-5 W

	XR5G-V1
	Simple VR Viewer wired tethering
	USB-C
	External
	External
	External
	2-5 W

	XR5G-V2
	Simple VR Viewer wireless tethering
	802.11ad/y, 5G sidelink, etc.
	External
	External
	Internal
	2-3 W

	XR5G-V3
	Smart VR Viewer wireless tethering
	802.11ad/y, 5G sidelink, etc.
	External
	XR device or Split
	Internal
	2-3 W

	XR5G-V4
	VR HMD Standalone
	n/a
	XR device
	XR device or Split
	Internal
	3-7 W

	XR5G-A1
	AR Wearable standalone
	n/a
	XR device
	XR device or Split
	Internal
	2 - 4 W

	XR5G-A2
	Simple AR Wearable wired tethering
	USB-C
	External
	External
	External
	1-3 W

	XR5G-A3
	Simple AR Wearable wireless tethering
	802.11ad/y, 5G sidelink. etc.
	External
	External
	Internal
	0.5 – 2 W

	XR5G-A4
	Smart AR Wearable wireless tethering
	802.11ad/y, 5G sidelink. etc.
	External
	XR device or Split
	Internal
	0.5 – 2 W

	XR5G-A54
	Smart AR Wearable wireless tetheringsee-through standalone
	n/a 802.11ad/y, 5G sidelink. etc.
	XR deviceExternal
	XR device or SplitXR device or Split
	InternalInternal
	3-7 W0.5 – 2 W

[bookmark: _Toc23169751]4.8.2	Power Consumption
This clause addresses the available power in different XR Device types as well as the power consumption of typical XR processing functions as identified in the context of XR services.
When designing media processing, XR functionality and 5G connectivity, it is important to understand the power consumption of different components that are possibly integrated in XR devices. The following should be considered:
-	Tracking and Sensing
-	3DoF tracking may be done with low power consumption, e.g., below 1 Watt
-	6DoF tracking involving for example, capturing cameras, LEDs for eye and hand tracking, etc. are more power-consumption intense
-	Display
-	Display power consumption is critical and depends on the device.
-	Display power consumption can be in the range of up to 1W
-	Render (GPU)
-	The power consumption of the GPU depends on frame rates, resolution, display technology
-	The power consumption can be from several mWatt to several Watt depending on use case
-	Compute and Media Processing (CPU)
-	Similar observation as for the GPU
-	If encoding is involved, power consumption is typically higher.
-	Connectivity
-	The power consumption of wireless contection such as 5G depends on several factors including bitrates, distance from radio access network, channel conditions, frequeny range, etc.
-	The power consumption can be from several mWatt to several Watt depending on use case.
It is expected that each of the components will undergo improvement to address power savings. It is important that in the development of technical specifications of XR devices, the power consumption of each component is considered.
[bookmark: _Toc23169752]4.9	Ongoing Standardization Work
[bookmark: _Toc23169753]4.9.1	Related Work in 3GPP
[bookmark: _Toc23169754]4.9.2.1	Introduction
This clause summarizes relevant 3GPP activities efforts in the context of XR.
· TS 26918 provides an introduction to Virtual Reality and TR 26.116 defines Virtual Reality Media Profiles for omnidirectional 3DoF media.
· TR 22.842 on Network Controlled Interactive Service (NCIS) analyses several use cases of NCIS as follows: NCIS Service Supporting
· New Requirements for VR Based NCIS Service
· Cloud Rendering for Games
· High Speed Scenario
· IoE Based Social Networking
· Communication within NCIS group
Based on the TR, several requirements are identified for new requirements in TS 22.261. Also, KPIs for such service mentioned above are documented in clause 6.2 of TR22.842, requiring additional input including some information from this TR
· In context of Release-17, 3GPP work is ongoing in order to identify the integration of edge processing in 5G systems. TR 23.748 [T] definies modifications to 5GS system architecture to enhance Edge Computing. This work is currently in study phase, defining Key Issues and scope for Rel-17. In addition, in TR 23.758 [V] a new set of application layer interfaces for Edge Computing are identified that may potentially be useful for integration edge computing.
<more details to be added: NCIS, Edge Processing>
[bookmark: _Toc23169755]4.9.2	Related Standards Work External of 3GPP
[bookmark: _Toc23169756]4.9.2.1	Introduction
This clause summarizes relevant external standardization efforts in the context of XR that may provide certain functionalities being of benefit for 5G-based XR applications.
[bookmark: _Toc23169757]4.9.2.2	MPEG
[bookmark: _Toc536800126][bookmark: _Toc5968347][bookmark: _Toc16861855][bookmark: _Toc13217763][bookmark: _Toc23169758]4.9.2.2.1	Introduction
In October 2016, MPEG initiated a new project on “Coded Representation of Immersive Media”, referred to as MPEG-I. The proposal was justified by the emergence of new devices and services that allow users to be immersed in media and navigate multimedia scenes. It was observed that a fragmented market exists for such devices and services, notably for content that is delivered “over the top”. The project is motivated by the lack of common standards that do not enable interoperable services and devices providing immersive, navigable experiences. The MPEG-I project is expected to enable existing services in an interoperable manner and to support the evolution of interoperable immersive media services. Enabled by the Parts of this Standard, end users are expected to be able to access interoperable content and services, and acquire devices that allow them to consume these.
After the launch of the project, several phases, activities, and projects have been launched that enable services considered in MPEG-I.
The project is divided in tracks that enable different core experiences. Each of the phases is supported by key activities in MPEG, namely in systems, video, audio and 3D graphics-related technologies.
Core technologies as well as additional enablers are implemented in parts of the MPEG-I standard. Currently the following 14 parts are under development:
· Part 1 – Immersive Media Architectures
· Part 2 – Omnidirectional MediA Format
· Part 3 – Versatile Video Coding
· Part 4 – Immersive Audio Coding
· Part 5 – Video-Based Point Cloud Coding (V-PCC)
· Part 6 – Immersive Media Metrics
· Part 7 – Immersive Media Metadata
· Part 8 – Network-Based Media Processing
· Part 9 – Geometry Point Cloud Coding (G-PCC)
· Part 10 – Carriage of Video-based Point Cloud Coding Data
· Part 11 – Implementation Guidelines for Network-based Media Processing
· Part 12 - Carriage of Geometry-based Point Cloud Coding Data
· Part 13 – Multi-Decoder Video Decoding Interface for Immersive Media
· Part 14 – Extensions to Scene Descriptions for Timed Media

In addition, additional technical components may be provided in existing MPEG specifications outside of MPEG-I (e.g., HEVC and AVC) in order to create interoperable immersive experiences.
<Details to be added>
[bookmark: _Toc23169759]4.9.2.3	Khronos
[bookmark: _Toc23169760]4.9.2.3.1	Introduction
Khronos creates open standards for 3D graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks, and Vision Processing. Specifically relevant for the work on XR are the following activities:
· OpenGL® is the most widely adopted 2D and 3D graphics API in the industry, bringing thousands of applications to a wide variety of computer platforms. It is window-system and operating-system independent as well as network-transparent. OpenGL enables developers of software for PC, workstation, and supercomputing hardware to create high-performance, visually compelling graphics software applications, in markets such as CAD, content creation, energy, entertainment, game development, manufacturing, medical, and virtual reality. OpenGL exposes all the features of the latest graphics hardware.
· Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access to modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded platforms.
· OpenXR is an open standard that provides high-performance access to Augmented Reality (AR) and Virtual Reality (VR)—collectively known as XR—platforms and devices.
· glTF™ (GL Transmission Format) is a specification for the efficient transmission and loading of 3D scenes and models by applications. glTF minimizes both the size of 3D assets, and the runtime processing needed to unpack and use those assets. glTF defines an extensible, common publishing format for 3D content tools and services that streamlines authoring workflows and enables interoperable use of content across the industry.

<Details to be added>
[bookmark: _Toc23169761]4.9.2.4	W3C WebXR
The WebXR Device API Specification (https://immersive-web.github.io/webxr/) provides interfaces to VR and AR hardware to allow developers to build compelling, comfortable VR/AR experiences on the web. The latest “WebXR Device API, Editor’s Draft, 25 September 2019” is available here https://immersive-web.github.io/webxr/ and provides an interface to VR/AR hardware. It is no longer marked as “UNSTABLE API”. It also provides a link to WebXR Device API Explained.
[bookmark: _Toc23169762]4.10	XR Use Cases
In Annex A of this document, a significant amount of use cases are collected that serve for identifying potential interfaces, formats, protocols and requirements for the 5G system in order to support XR applications. The use cases are summarized in clause 5 into several core scenarios.
[bookmark: _Toc23169763]4.11	Summary of Scope for this Document
Based on these introduced technologies and the use cases, the scope of this Technical Report is summarized as follows:
· identify the mapping of different XR use cases to the 5G System and 5G Media Delivery services according to clause 4.3.
· identify functions, interfaces and APIs for different delivery scenarios
· define high-level call flows and parameter exchange for the different service scenarios
· for the different scenarios, identify the formats as well as traffic requirements/properties
· [bookmark: _GoBack]identify technical requirements on formats, processing functions, interfaces, and protocols in order to achieve adequate Quality of Experience based on the considerations in clause 4.2.
3GPP
image1.png

image2.png

image3.jpeg

image4.jpeg

image5.png

image6.jpeg

image7.emf
yxzOrigin

Microsoft_Visio_Drawing.vsdx
y
x
z
Origin

image8.png

image9.emf
External DN5G-XR ASUu5G-XR ApplicationProviderPCFNEF5G-XR AFTrusted DN5G-XR AS5G-XR AFN33N5N33RANUPFN3N6N6UE5G-XR Aware Application5G-XR Client5G-XR5G SystemExternal

Microsoft_Visio_Drawing1.vsdx
External DN
5G-XR AS
Uu
5G-XR Application Provider
PCF
NEF
5G-XR AF
Trusted DN
5G-XR  AS
5G-XR  AF
N33
N5
N33
RAN
UPF
N3
N6
N6
UE
5G-XR Aware Application
5G-XR Client
5G-XR
5G System
External

image10.emf
DN5GXRAS5GXR Application ProviderPCFNEF5GXRAFN33N5UE5GXR Aware Application5GXR Client5GMS5GSExternalX8XR EngineXR Session HandlerX1X2M3X4X5X6X7X7Exposed API5GMS Scope5GS ScopeOut of scopeX6

Microsoft_Visio_Drawing2.vsdx
DN
5GXR AS
5GXR Application Provider
PCF
NEF
5GXR AF
N33
N5
UE
5GXR
 Aware Application
5GXR Client
5GMS
5GS
External
X8
XR Engine
XR Session Handler
X1
X2
M3
X4
X5
X6
X7
X7
Exposed API
5GMS Scope
5GS Scope
Out of scope
X6

image11.png

image12.png

image13.emf
CPUSystem MemoryVideo MemoryGPUShadersFragmentVertexGeometryTesselationTextureRasterizationPrimitive AssemblyRendererOperationVertexAssemblyOperating System KernelAbstraction APIs: Vulkan, OpenGL, etc.XR EngineMain control loopGPU Commands and Data StreamsAudioPhysicsAIScene GraphStreamingLocalization

Microsoft_Visio_Drawing3.vsdx
CPU
System Memory
Video Memory
GPU
Shaders

Fragment
Vertex
Geometry
Tesselation
Texture
Rasterization
Primitive  Assembly
Renderer
Operation
Vertex Assembly
Operating System Kernel
Abstraction APIs:  Vulkan, OpenGL, etc.
XR Engine
Main control loop

GPU Commands  and Data Streams
Audio
Physics
AI
Scene Graph
Streaming
Localization

image14.jpeg

image15.jpeg

image16.emf
Mapping90°-90°-180°180°3D SpaceProjected picture (2D texture signal)

Microsoft_Visio_Drawing4.vsdx
Mapping
90°
-90°
-180°
180°
3D Space
Projected picture (2D texture signal)

image17.emf
Preprocessing

Sphere to Texture

Mapping

Conventional 2D

Video Encoder

2D Texture

VR Metadata

Encoding

VR Rendering

Metadata

Video Bitstream

Coded Metadata

Conventional 2D

Video Decoder

VR Metadata

Decoding

2D Texture

VR Rendering

Metadata

Postprocessing

Texture to Sphere

Mapping

Microsoft_Visio_2003-2010_Drawing.vsd
Preprocessing
Sphere to Texture Mapping

Conventional 2D  Video Encoder

2D Texture

VR Metadata  Encoding

VR Rendering Metadata

Video Bitstream

Coded Metadata

Conventional 2D  Video Decoder

VR Metadata  Decoding

2D Texture

VR Rendering Metadata

Postprocessing
Texture to Sphere Mapping

image18.png

image19.emf

Microsoft_Word_Document.docx

image1.png

image20.png

