

CHANGE REQUEST

 DASH-IF IOP CR rev - Current version: 4.3

Status: Draft X Internal Review X Community Review Agreed

Title: DASH Events and timed metadata tracks timing and processing model and
client reference model

Source: DASH-IF IOP Event TF

Supporting
Companies:

Qualcomm Incorporated, LG Electronics, Sony, Ericsson, Nomor Research, Tencent
America

Category: A Date: 2019-10-18
 Use one of the following categories:

C (correction)
A (addition of feature)
B (editorial modification)

Reason for change: For an API description suitable across platforms that corresponds to the proper

usage of Events and Timed Metadata distributed in DASH Media Presentations, APIs

pertaining to subscription and notification delivery are beneficially defined between

the DASH client and the application consuming the Events.

Summary of change: Addition of a client processing model for Events

Consequences if not
approved:

Inconsistent implementations

Sections affected: New section X

Other comments: This document contains several notes.

Disclaimer: This document is not yet final. It is provided for public review until the deadline
mentioned below. If you have comments on the document, please submit
comments by one of the following means:

- at the github repository https://github.com/Dash-
IndustryForum/Events/issues, or
- dashif+iop@groupspaces.com with a subject tag [Events]

Please add a detailed description of the problem and the comment.

Based on the received comments a final document will be published latest by the
expected publication date below, integrated in a new version of DASH-IF IOP if
the following additional criteria are fulfilled:

 - All comments from community review are addressed
- The relevant aspects for the Conformance Software are provided
 - Verified IOP test vectors are provided

Commenting Deadline: September 30th, 2019

Expected Publication: October 31st, 2019
Contributors: Iraj Sodagar (Tencent America)

Charles Lo (Qualcomm)
Giridhar Mandyam (Qualcomm)
Thomas Stockhammer (Qualcomm)
Rufael Mekuria (Unified Streaming)
Andy Rosen (DSR)
Nicol So (Arris)
Will Law (Akamai)
Ali Begen (Comcast)
Alex Giladi (Comcast)
And others

Add a new section:

1 DASH Events and timed metadata tracks timing and processing model

and client reference model

1.1 Introduction

This section describes the DASH events and time metadata track timing and processing model. It

describes the timing models of MPD and inband events as well as the timing of the timed metadata

tracks. This section also outlines the DASH player’s reference architecture for processing the DASH

events as well as timed metadata tracks, the possible dispatch modes and the information carried to

the Application. Finally, it defines the reference API for the Application to subscribe to the events

and/or metadata tracks as well as the API for dispatching event instances and metadata samples.

A server/application provider should consider the information provided in this annex for building

interactive application as the timing and processing model of the events and metadata impact the

usability and capabilities of application build using these features.

1.2 DASH Player architecture for processing DASH events and timed metadata

tracks

Figure 1 demonstrates a generic architecture of DASH Player including DASH Events and

timed metadata tracks processing models.

Figure 1- DASH Player architecture including the inband Event and Application-

related timed metadata handling

In the above figure:

1. The DASH Player processes the received MPD. For every Period, the MPD may include one
or multiple Event Streams (each scope by a scheme/value pair), and Adaptation Sets that
carry Representation/tracks for timed metadata. Some or all of these event streams/timed
metadata tracks may be suitable for consumption by the application. In this clause, we refer
to any of these streams/tracks as application event or metadata streams (AEMS).

2. The Application subscribes to all AEMSs of interest and also specifies the desired dispatch
mode for each AEMS.

3. If the MPD includes any MPD Event streams, the DASH Player parses each Event in the
Event Stream accordingly and appends the relevant to the Event & Timed Metadata Buffer,
based on their presentation time in MPD.

4. Based on the information in the MPD, the DASH Player selects and schedules the fetching
of media Segments and appends them to the Media Buffer. This is typically done to maintain
a stable playback buffer, but media segments are typically only accessed close to the time
before their playback is scheduled. Parsing a Segment includes:

a. Parsing high-level boxes such as Segment Index (sidx), Event Message (emsg),
Producer Reference Time (prft), movie fragment header (moof) boxes, and
interpreting the information in the DASH client. For inband event streams, the emsg
and typically the moof need to be parsed. The DASH client then uses this information
and appends the relevant data to the Event & Timed Metadata Buffer.

b. For an Application-related timed metadata track, the entire Representation/track is
parsed including the Initialization Segment (i.e. track header) as well as the Media
Segments (i.e. the movie fragments and media data containers). The DASH client
then uses this information and appends the relevant data to the Event & Timed
Metadata Buffer.

5. Event & Metadata Buffer passes the events and timed metadata samples to Event &
Metadata Synchronizer and Dispatcher function. An example of the Buffer’s data object is
defined in subclause 11 of this section.

6. The DASH Player-specific Events are dispatched to DASH Player’s Control, Selection &
Heuristic Logic, while the Application-related Events and timed metadata track samples are
dispatched to the application as the following. If an Application is subscribed to a specific
AEMS, dispatch the corresponding event instances or timed metadata samples, according to
the dispatch mode:

a. For on-receive dispatch mode, dispatch the entire event or timed metadata
information as soon as they are appended to the Event and Timed Metadata Buffer.

b. For on-start dispatch mode, dispatch the message data of the event their associated
presentation time or latest before the event duration has ceased, or timed metadata
samples at their presentation time using the synchronization signal from the media
decoder.

1.3 Inband Event timing parameters

Figure 2 presents the timing of an inband Events along the media timeline:

The

Figure 2 - Inband event timing parameter on the media timeline

As shown in Figure 2, every inband Event can be described by three timing parameters on

the media timeline:

1. Event Latest Arrival Time (LAT) which is the earliest presentation time of the
Segment containing the Event Message box. An inband Event is inserted in the
beginning of a Segment. Since each media segment has an earliest presentation
time equal to (LAT), LAT of the Segment carrying the Event Message box can be
considered as the time instance of that box on the media timeline. The DASH Player
is expected to fetch and parse the Segment before or at its earliest presentation time.
Therefore, an Event inserted in a Segment with EPT will be available in the client no
later than EPT of the carrying Segment on the media timeline. Therefore, the Event
inserted in a Segment will be ready to be processed and fetched no later than LAT
on the media timeline. In the case in which the event is inserted in the beginning of a
Chuck and the chucks are delivered in low latency mode, i.e. HTTP chunked
encoding mode, LAT is the earliest presentation time of the corresponding Chunk.

2. Event Presentation/Start Time (ST) which is the moment in the media timeline that
the Event becomes active. ST is the moment in the media timeline that the Event
becomes active. This value can be calculated using the parameters included in the
DashEventMessageBox.

3. Event duration (DU): the duration for which the Event is active. DU is signaled in the
Event Message box using a specific value.

1.4 Event message box format and event timing parameters

The ST of an event can be calculated using the values in the corresponding emsg box of

[MPEG-DASH] subclause 5.10.3.3.1:

𝑆𝑇

=

{

 (𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐸𝑃𝑇 − 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡)

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒
 +

𝑒𝑚𝑠𝑔@𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒_𝑑𝑒𝑙𝑡𝑎

𝑒𝑚𝑠𝑔@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒
 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 0

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡

𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝐵𝑎𝑠𝑒@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒
+
𝑒𝑚𝑠𝑔@𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛𝑡𝑖𝑚𝑒

𝑒𝑚𝑠𝑔@𝑡𝑖𝑚𝑒𝑠𝑐𝑎𝑙𝑒
 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 1

Equation 1. Event Start Time of inband event

Where:

• SegmentEPT is the earliest presentation time of the media Segment

• SegmentBase@PresentationTimeoffest is the presentation time offset of media

• emsg@x is the field x in emsg box, and

• ST is relative to the PeriodStart of the containing Period.

Note: ST is always equal to or larger than LAT in both versions of emsg.

Note: Since the media sample timescales might be different to the emsg’s timescale, ST

might not line up exactly with a media sample presentation time if different timescales are

used.

In this section, we use the following common variable names instead of some of above

variables to harmonize parameters between Inband events, MPD events, and timed

metadata samples:

• scheme_id = scheme_id_uri
• value = value

• presentation_time = ST
• duration = event_duration/timescale

• message_data = message_data()

1.5 MPD Events timing model

MPD Events carry a similar data model to inband Events but are carried in the MPD, under

the Period elements. Each Period event can have EventStream element(s), defining the

EventStream@schemeIdUri, EventStream@value, EventStream@timescale and contained

sequences of Event elements. Each event may have Event@presentationTime,

Event@duration, Event@id and Event@messageData attributes as specified in [MPEGDASH]

subclause 5.10.2.As is shown in Figure 3, each MPD Event has three timing parameters

along the media timeline:

1. The PeriodStart Time (LAT) of the Period element containing the EventStream
element.

2. Event Start Time (ST): the moment in the media timeline that a given MPD Event
becomes active and can be calculated from the attributeEvent@presentationTime.

3. Event duration (DU): the duration for which the event is active that can be calculated
from the attribute Event@duration.

Note that the first parameter is inherited from the Period containing the Events and only the

2nd and 3rd parameters are explicitly included in the Event element. Each EventStream also

has EventStream@timescale to scale the above parameters.

Figure 3 demonstrates these parameters in the media timeline.

Figure 3. MPD events timing model

The ST of an MPD event, relative to PeriodStart of Period containing the Event, can be

calculated using values in its EventStream and Event elements:

𝑺𝑻 =
𝑬𝒗𝒆𝒏𝒕𝑺𝒕𝒓𝒆𝒂𝒎@𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆𝑶𝒇𝒇𝒔𝒆𝒕

𝑬𝒗𝒆𝒏𝒕𝑺𝒕𝒓𝒆𝒂𝒎@𝒕𝒊𝒎𝒆𝒔𝒄𝒂𝒍𝒆
 +

𝑬𝒗𝒆𝒏𝒕@𝒑𝒓𝒆𝒔𝒆𝒏𝒕𝒂𝒕𝒊𝒐𝒏𝑻𝒊𝒎𝒆

𝑬𝒗𝒆𝒏𝒕𝑺𝒕𝒓𝒆𝒂𝒎@𝒕𝒊𝒎𝒆𝒔𝒄𝒂𝒍𝒆

Equation 2. Event Start Time of MPD event

In this section, we use the following common variable names instead of some of above

variables to harmonize parameters between Inband events, MPD events, and timed

metadata samples:

• scheme_id = EventStream@schemeIdUri
• value = EventStream@value
• presentation_time = ST
• duration = Event@duration/EventStream@timescale
• id = Event@id
• message_data = decode64(Event@messageData)

In which decode() function is:

𝑑𝑒𝑐𝑜𝑑𝑒(𝑥) = {
𝑥 𝐸𝑣𝑒𝑛𝑡@𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 𝑛𝑜𝑡 𝑝𝑟𝑒𝑠𝑒𝑛𝑡
𝑏𝑎𝑠𝑒64 𝑑𝑒𝑐𝑜𝑑𝑖𝑛𝑔 𝑜𝑓 (𝑥) 𝐸𝑣𝑒𝑛𝑡@𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔 = 𝑏𝑎𝑠𝑒64

Note that the DASH client shall Base64 decode the Event@messageData value if the received

Event@contentEncoding value is base64.

1.6 Timed metadata sample timing model

An alternative way to convey information synchronized to a media is using timed metadata

tracks. Timed metadata tracks are ISOBMFF formatted tracks that obey the following

characteristics according to [ISOBMFF]:

1. The sample description box stsd in the MovieBox contains a sampleEntry that is
a URIMetaSampleEntry, to signal that the media samples contain metadata based
on a urn in a URIBox to signal that scheme.

2. The Handler Box hdlr has handler_type set to meta to signal the fact that the track
contains metadata

3. The null media header nmhd is used in the minf box

4. Contain metadata (non-media data relating to presentation) embedded in
ISOBMFF samples

Figure 4 shows the timing model for a simple ISOBMFF timed metadata sample.

Figure 4. Timing parameters of a timed metadata sample on the media timeline

As shown in this figure, the metadata sample timing includes metadata sample presentation

time (ST) and metadata sample duration (DU). Also one or more metadata samples are

included in a segment with Segment earliest presentation time (LAT).

Note that the metadata sample duration cannot go beyond DASH Segments/ISOBMFF

fragment duration for fragmented metadata tracks, i.e. to the next fragment.

In this document, we use the following variable names instead of some of above variables to

harmonize parameters between Inband events, MPD events, and timed metadata samples

used in dispatch process:

• scheme_id = track URI , signalled in URIBox in URIMetaSampleEntry

• timescale = track timescale in mdhd box.

• presentation_time = sample presentation time/timescale

• duration = sample duration/timescale

• message_data = sample data (exteracted from mdat)

1.7 Events and timed metadata sample dispatch timing modes

1.7.1 Dispatech timing

Figure 5 shows two possible dispatch timing models for DASH events and timed metadata

samples.

Figure 5. The Application events and timed metadata dispatch modes

In this figure, two modes are shown:

1. on-receive Dispatch Mode: Dispatching at LAT or earlier. Since the segment
carrying an emsg/metadata sample has to be parsed at or before LAT on the media
timeline, the event/metadata sample shall be dispatched at or before this time to the
Application in this mode. The Application has a duration of ST-LAT for preparing for
the event. In this mode, the DASH Player doesn’t need to maintain the state of
Application events or metadata samples. Applications must maintain the state for
any event/metadata sample, its ST and DU, and monitor its activation duration, if
they needs these. Applications may also need to schedule each event/sample at its
ST.

2. on-start Dispatch Mode: Dispatching exactly at ST, which is the start/presentation
time of the event/metadata sample. The DASH player shall dispatch the event to the
application at the presentation time of the corresponding media sample, or in the
case of the start of playback after that moment and during the event duration, at the
earliest time within the event duration. In this mode, since the Applications receives
the event/sample at its start/presentation time, it may need to act on the received
data immediately.

Note: According to ISO/IEC 23009-1, the parameter duration has a different meaning in
each dispatch mode. In the case of on-start, duration defines the duration starting from ST
in which DASH Player shall disp atch the event exactly once. In the nromal playback, the

player dispatches the event at ST. However if DASH Player for instance seek to a moment
after ST and during the above duration, then it must dispatch the event immidiately. In the
case of on-receive, duration is a property of event instance and is defined by the
scheme_id owner.

1.8 The Dispatch Processing Model

1.8.1 Prerequisite

Application is subscribed to a specific event stream identified by a (scheme/value) pair with

a specific dispatch_mode, either on start or on_receive, as described in subclause 10 of this

section.

The processing model varies depending on dispatch_mode.

1. Common process

The DASH Player implements the following process:

1. Parse the emsg/timed metadata sample and retrieve scheme_uri/(value).

2. If Application is not subscribed to the scheme_uri/(value) pair, end the processing of
this emsg.

2. on-receive processing

The DASH Player implements the following process when dispatch_mode = on_receive:

• Dispatch the event/timed metadata, including ST, id, DU, timescale and
message_data as described in subclause 8 of this section.

3. on-start processing

The DASH Player set ups an Active Event Table for each subscribed scheme_uri/(value) in

the case of dispatch_mode = on_start. The Active Event Table maintains a single list of

emsg’s id that have been dispatched.

The DASH Player implements the following process when dispatch_mode = on_start:

1. Derive the event instance/metadata sample’s ST

2. If the current media presentation time value is smaller than ST, then go to Step 5.

3. Derive the ending time ET= ST + DU.

4. If the current presentation time value is greater than ET, then end processing.

5. In the case of event: Compare the event’s id with the entries of the Active Event Table

of the same scheme_uri/(value) pair:

• If an entry with the identical id value exists, end processing;

• If not, add emsg’s id to the corresponding the Active Event Table.

6. Dispatch the event/metadata message_data at time ST, or immediately if current
presentation time is larger than ST, as described in subclause 8 of this section.

1.9 The event/metadata buffer model

Along with the media samples, the event instances and timed metadata samples are

buffered. The event/metadata buffer should be managed with same scheme as the media

buffer, i.e. as long as a media sample exists in the media buffer, the corresponding events

and/or metadata samples should be maintained in the event/metadata buffer.

1.10 Prose description of APIs

The event/timed metadata API is an interface defined between a “DASH client” as defined in

3GPP TS 26.247 or ISO/IEC 23009-1 and a device application in the exchange of

subscription data and dispatch/transfer of matching DASH Event or timed metadata

information between these entities. The Event/timed metadata API is shown at Figure 1.

Note: In this section, the term "DASH Player" is used.

The description of the API below is strictly functional, i.e. implementation-agnostic, is

intended to be employed for the specification of the API in Javascript for the dash.js open

source DASH Player, and in IDL such as the OMG IDL or WebIDL. For example, the

subscribeEvent() method as defined below may be mapped to the existing

on(type,listener,scope) method as defined for the dash.js under MediaPlayerEvents.

As part of this API and prior to any operations, the DASH Player provides a list of

scheme_id/(value) listed in the MPD when it receives it. This list includes all MPD and

inband events as well as scheme_id of all timed metadata tracks. At this point, the

Application is aware of the possible events and metadata deliverable by the DASH Player.

1.10.1 Event and metadata track subscription

The subscription state diagram of DASH Player associated with the API is shown below in

Figure 6:

Figure 6 - State Diagram of DASH Player for the event/timed metadata API.

The scope of the above state diagram is the entire set of applicable events/timed metadata

streams being subscribed/unsubscribed, i.e. it is not indicating the state model of DASH

Player in the context of a single Event/timed metadata stream subscription/un-subscription.

The application subscribes to the reception of the desired event/timed metadata and

associated information by the subscribeEvent() method. The parameters to be passed in

this method are:

• scheme_uri – The scheme identifier for the event stream being subscribed to. This
must be one returned by the list of events the DASH player supplied. By setting this
value to urn:mpeg:dash:event:catchall:2020, the Application may subscribe to

all existing events and metadata schemes described in the MPD. In this case, the
value of value is irrelevant.

• value – A value of the event or timed metadata stream within the scope of the above
scheme_uri, optional to include. When not present, no default value is defined – i.e.,
no filtering criterion is associated with the Event scheme identification.

• dispatch_mode – Indicates when the event handler function identified in the
callback_function argument should be called:

o dispatch_mode = on_receive – provide the event/timed metadata sample data to
the Application as soon as it is detected by DASH Player;

o dispatch_mode = on_start – provide the event/timed metadata sample data to
the App at the start time of Event message or at the presentation time of timed
metadata sample.

The default mode for dispatch_mode should to be set to on_receive, i.e. if the

dispatch_mode is not passed during the subscribe_first operation, DASH Player

should assume dispatch_mode = on_receive for that specific subscription.

• callback_handler – the name of the function to be (asynchronously) called for an
event corresponding to the specified scheme_uri/(value). The callback function is
invoked with the arguments described below.

Note: ISO/IEC 23009-1 does not include any explicit signaling for the desired dispatch mode
in MPD or timed metadata track. In the current design, an Application relays its desired
dispatch mode to DASH Player when it subscribes to an event stream or timed metadata

track. In this approach, the scheme owner should consider the dispatch mode as part of the
scheme design and define whether any specific dispatch mode should be selected during
the design of the scheme.

Editor’s Note: If any service provider or application developer believes an explicit signaling of
dispatch mode is needed for some use-cases, they are requested to provide such use-case
during for considering introducing a @dispatchMode attribute in MPD.

Upon successful execution of the event/timed metadata subscription call, the DASH Player

shall monitor the source of potential Event stream information, i.e., the MPD or incoming

DASH Segments, for matching values of the subscribed scheme_uri/(value). The

parentheses around value is because this parameter may be absent in the event/timed

metadata subscription call. When a matching event/metadata sample is detected, DASH

Player invokes the function specified in the callbackFunction argument with the following

parameters. It should additionally provide to the Application the current presentation time at

DASH Player when performing the dispatch action. The parameters to be passed in this

method are shown in Table 1 below:

Table 1. Event/timed metadata API parameters and datatypes

API Parameter MPD event Inband emsg Metadata Data Type ‘on-receive’ ‘on-start’

scheme_id
EventStream@sch

emeIdUri
scheme_id_uri

timed

metadata track

URI

Y Y

value
EventStream@valu

e
value

Y Y

presentation_time
Event@presentatio

nTime
presentation_time

timed

metadata

sample

presentation

time

unsigned

int(64)

in milliseconds

Y N

duration Event@duration event_duration

timed

metadata

sample

duration

unsigned

int(32)

in milliseconds

Y N

id Event@id id
unsigned

int(32)
Y N

message_data
Event@messageD

ata
message_data()

timed

metadata

sample data in

mdat

unsigned int(8)

x messageSize

Y Y

Y= Yes, N= NO, O= Optional

When the duration of the event is unknown, the vairable duration shall be set to its maximum

value (xFFFFFFFF = 4,294,967,295).

Note: In the case of ‘emsg’ version 0, DASH Player is expected to calculate

presentation_time from presentation_time_delta.

In order to remove a listener the unsubscribeEvent() function is called with the following

arguments:

• scheme_uri - A unique identifier scheme for the associated DASH Event stream of
interest to the Application.

• value
• callback_handler

If a specific listener is given in the callback_function argument, then only that listener is

removed for the specified scheme_uri/(value). Omitting or passing null to the

callback_function argument would remove all event listeners for the specified

scheme_uri/(value).

1.11 Detailed processing

As shown in Figure 1, the event/metadata buffer holds the events or metadata samples to be

processed. We assume that this buffer has same data structure to hold events or metadata.

We use Table 3 to define this Event/Metadata Internal Object (EMIO), shown in Table 2:

Table 2. The Event/Metadata Internal Object (EMIO)

event-metadata-internal-object {

string scheme_id_uri;

string value;

unsigned int(32) presentation_time;

unsigned int(32) duration;

unsigned int(32) id;

unsigned int(8) message_data();

}

The process for converting the received event/metadata sample to EMIO is as following:

1. For MPD event

a. For each period

i. Parse each EventStream

ii. Get Eventstream common parameters

iii. For each Event Stream:

1. Parse each event

2. For each event

a. Calculate presentation time and event duration

b. Add it to EMIO

2. For inband event

a. For each Segment

i. Parse event boxes as well as moof

ii. Calculate EPT of segment

iii. For each event:

1. Map emsg box parameters to EMIO

3. For simple metadata samples

a. For each Segment

i. Parse moof

ii. For each sample:

1. Parse the format

2. map the data to EMIO

1.12 DASH Event Metadata WebIDL API

1.12.1 Abstract

This sectionspecifies an WebIDL API that a user agent or DASH client can expose for application

access to DASH events. This builds upon Media Source Extensions.

1.12.2 DASHEvent Interface

[Constructor(SourceBuffer source)]

interface DASHEvent : EventTarget {

 readonly attribute EventData eventData;

 attribute EventHandler ondashevent;

 Promise setEvents(Eventlist eventList);

};

1.12.2.1 Attributes

eventData of type EventData, readonly

When an event is encountered, the DASH client MUST extract the event data, and MUST

initialize the object's eventData attribute to a string representation of the event data.

ondashevent of type EventHandler

This event handler is invoked when a new DASH event arrives.

setEvents() of type Promise

This promise must include an eventList argument that enumerates all events in which the

application is interested.

https://www.w3.org/TR/media-source/
file:///c:/Users/mandyam/Documents/QuIC/DASH-IF/2018/Event%20API/EventAPI.html%23idl-def-eventdata

1.12.3 EventData Interface

interface EventData {

 readonly attribute DOMString schemeIdURI;

 readonly attribute DOMString value;

 readonly attribute DOMTimeStamp? presentationTime;

 readonly attribute unsigned long? duration;

 readonly attribute unsigned long? id;

 readonly attribute ByteString messageData;

};

1.12.3.1 Attributes

schemeIdURI of type DOMString, readonly

The schemeIDURI attribute MUST return a URI that identifies the DASH event scheme.

value of type DOMString, readonly

The value attribute MUST return the value for the event stream element. The value

semantics are defined by the owners of the scheme identified in the schemeIdUri

attribute.

presentationTime of type DOMTimeStamp, readonly

The presentationTime attribute MUST return a value corresponding to the exact

moment in the media presentation timeline that the event becomes active. If this attribute

is not present then its value shall be set to NULL and the event is assumed to be active

immediately.

duration of type int, readonly

The duration attribute MUST return the time for which the event is in effect starting from

presentationTime. The value of the duration is in milliseconds. If this attribute is not present

then its value must be set to the maximum value (4294967295) and the event MUST be

persisted until another DASH event is received.

id of type int, readonly

The id attribute MUST return an identifying value for this event. If this value is not present

then its value must be set to NULL.

messageData of type ByteString, readonly

The messageData attribute MUST return the event message data payload.

1.12.4 EventList Interface

dictionary EventList {

 DOMString[] desiredSchemeIdURI;

https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-DOMString
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-unsigned-long
https://heycam.github.io/webidl/#idl-ByteString

 optional DOMString[] value;

 optional boolean[] dispatchMode;

};

EventList contains one or more valid event scheme URI's along with associated parameters.

1.12.4.1 Members

desiredSchemeIdURI of type DOMString[]

desiredSchemeIdURI is an array of valid DASH event scheme URI's. If the

desiredSchemeURI array is set to NULL, then all events will be sent to the handler.

value of type DOMString[]

value is an array of valid values for events. If the value array has only one member, then

that value will be applied to all scheme URI's. If more than one member is present in the

array then those values will be matched to each member in desiredSchemeIdURI in

order. A value array with more members than the desiredSchemeIdURI array should be

rejected if the desiredSchemeIdURI array is non-NULL. In the case of a non-NULL

desiredSchemeIdURI array, members of the value array can be set to NULL if all values

are acceptable for the associated Scheme URI. If the desiredSchemeIdURI array is NULL,

then the value array can have only one member.

dispatchMode of type boolean[]

dispathMode is an array of dispatch mode settings for events (true indicating a dispatch on

receipt of the event, false representing a dispatch on the start of the event) . If the

dispatchMode array has only one member, then that dispatch mode will be applied to all

scheme URI's. If more than one member is present in the array then those values will be

matched to each member in desiredSchemeIdURI in order. A dispatchMode array with

more members than the desiredSchemeIdURI array should be rejected if the

desiredSchemeIdURI array is non-NULL. In the case of a non-NULL

desiredSchemeIdURI array, members of the dispatchMode array can be set to NULL if

both dispatch modes are acceptable for the associated Scheme URI. If the

desiredSchemeIdURI array is NULL, then the dispatchMode array can have only one

member.

1.12.5 Example

<html>

<body>

<script>

 function onSourceOpen(videoTag, e) {

 var mediaSource = e.target;

 if (mediaSource.sourceBuffers.length > 0)

 return;

 try {

 dashevent = new DashEvent(mediaSource);

 dashevent.setEvents(["schemeURI1","schemeURI2"]).then(

 {

 console.log('Desired event list set');

 }

 }

 catche (e)

 {

 console.error('Failed to create Dash event handler due to: ' +

e);

 return;

 }

 dashevent.ondashevent = dashEventHandler;

 function dashEventHandler(event){

 }

 }

</script>

<video id="v" autoplay> </video>

<script>

 var video = document.getElementById('v');

 var mediaSource = new MediaSource();

 mediaSource.addEventListener('sourceopen', onSourceOpen.bind(this,

video));

 video.src = window.URL.createObjectURL(mediaSource);

</script>

</body>

</html>

