

	
3GPP TSG SA WG4 #106 meeting	S4-191220
21st – 25th October, Busan, South Korea 	

Source: 	Nokia Corporation[footnoteRef:1] [1: Contact: Sebastian Schwarz, Igor Curcio, Nokia Technologies. Emails: sebastian.schwarz, igor.curcio@nokia.com.]

[bookmark: _GoBack]Title: 	Comments to AHVIC-200
Document for	Discussion
Agenda item: 	10.6

Introduction
Nokia has reviewed the document AHVIC-200 submitted by Qualcomm at one of the past SA4 conference calls. We have some comments that are embedded in the text below. Some more comments might come in the next meeting.
In general, the text seems too detailed, and the more the details, the more precise and updated should be the infoformation presented be.
To us the document looks quite simplified and including a somewhat outdated description of 3D graphics, in general touching quite few topics. Some information seems to be ripped from sources such as Wikipedia.

[bookmark: _Toc524259343][bookmark: _Toc532319850]

===== CHANGE =====
[bookmark: _Toc18575024]4.1.X	Spaces and Coordinate Systems
<check more details in WebXR and OpenXR>
Coordinate systems are essential for operating in 3-dimensional virtual and real worlds for XR applications.
The world coordinate system is the coordinate system in which the virtual world is created. It is expected to be a rectangular Cartesian coordinate system in which all axes are equally scaled.
A coordinate system is defined OpenXR [X] in clause 2.15 using a Cartesian right-handed coordinate system as shown in Figure 4.1.X.
<also check the WebXR space https://www.w3.org/TR/webxr/, clause 6.2>

Figure 4.1.x-1 Right-Handed Coordinate system
The conventions for mapping coordinate axes of any particular space to meaningful directions depend on and are documented with the description of the space.
A three-dimensional vector is defined by the (x,y,z) coordinates. If used to represent physical distances (rather than e.g. velocity or angular velocity) and not otherwise specified, values are in meters.
A four-dimensional or homogeneous vector is defined by the (x,y,z,w) coordinates. If used to represent physical distances, x, y, and z are in meters.
· orientation is a quaternion representing the orientation within a space.
· position is an 3D-vector representing position within a space.
A vertex (plural: vertices) is a point in the world.
A polygon is a plane figure that is described by a finite number of straight line segments connected to form a closed polygonal chain or polygonal circuit.
A triangle is the most common geometric primitive/polygon of computer graphics. It is defined by its three vertices and a normal vector - the normal vector serves to indicate the front face of the triangle and is a vector that is perpendicular to the surface. The triangle may be provided with a color or with a texture (image "glued" on top of it). Triangles always exist on a single plane, therefore they're preferred over rectangles.
===== CHANGE =====
4.2.X	Real-time 3D Rendering and Shaders
3D rendering is the process of converting 3D models into 2D images to be presented on a display. 3D rendering may include photorealistic effects or non-photorealistic styles. Rendering is the final process of creating the actual 2D image or animation from the prepared scene. These range from the distinctly non-realistic wireframe rendering through polygon-based rendering, to more advanced techniques such as ray tracing.
Typically, rendering needs to happen in real-time for video and interactive data. Rendering for interactive media, such as games and simulations, is calculated and displayed in real time, at rates of approximately 20 to 120 frames per second. In real-time rendering, the goal is to show as much information as possible as the eye can process in a fraction of a second (a.k.a. "in one frame": In the case of a 30 frame-per-second animation, a frame encompasses one 30th of a second). The primary goal is to achieve an as high as possible degree of photorealism at an acceptable minimum rendering speed (usually at least 24 frames per second, as that is the minimum the human eye needs to see to successfully create the illusion of movement). The rapid increase in computer processing power has allowed a progressively higher degree of realism even for real-time rendering, including techniques such as HDR rendering. Real-time rendering is often polygonal and aided by the computer's GPU.	Comment by Curcio, Igor (Nokia - FI/Tampere): Definitely not true in the general case if you just look at current computer games or sci-vis (scientific visualization) apps, for example.
Animations for non-interactive media, such as feature films and video, can take much more time to render. Non real-time rendering enables the leveraging of limited processing power in order to obtain higher image quality. However, in the context of XR in this Technical Report, the assumption of rendering is to be real-time to react to updated pose information, updates in the scene as produced, and so on.
Models of reflection/scattering and shading are used to describe the appearance of a surface. Modern 3D computer graphics rely on a simplified reflection model called the Phong reflection model. The Phong reflection is an empirical model of the local illumination of points on a surface. In the refraction of light, an important concept is the refractive index; in most 3D programming implementations, the term for this value is "index of refraction" (IOR).	Comment by Curcio, Igor (Nokia - FI/Tampere): Might have been true ~10 years ago. Current graphics leans heavily toward actually physically based rendering (PBR). Check here for more recent references:https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf

Shading can be broken down into two different techniques, which are often studied independently:
· Surface shading - how light spreads across a surface (mostly used in scanline rendering for real-time 3D rendering in video games)
· Reflection/scattering - how light interacts with a surface at a given point (mostly used in ray-traced renders for non real-time photorealistic and artistic 3D rendering in both CGI still 3D images and CGI non-interactive 3D animations)
Shading addresses how different types of scattering are distributed across the surface. Descriptions of this kind are typically expressed with a program called a shader. A simple example of shading is texture mapping, which uses an image to specify the diffuse color at each point on a surface, giving it more apparent detail.
The shaded three-dimensional objects are flattened so that the display device can display it in only two dimensions, referred to as 3D projection. The basic idea behind perspective projection is that objects that are further away are made smaller in relation to those that are closer to the eye.
<Explain Rendering steps create single diagram and explain shaders>
[image:]
[image:]
[image: IMR Pipeline]
[image: Programmable 3D-Pipeline.]
Shaders
The most important shader units are pixel shaders, vertex shaders, and geometry shaders. The Unified Shader has been introduced to take full advantage of all units. This gives you a single large pool of shader units. As required, the pool is divided into different groups of shaders. A strict separation between the shader types is therefore no longer useful.
<End of explanation>
4.3	3D and XR Visual Formats
4.3.1	Introduction
This clause introduces 3D and XR visual formats.
Static and dynamic
Image and video
4.3.2	Omnidirectional Images
See TR26.928 and projections
4.3.3	3D Meshes and Wire-frame Models
4.3.3.1	Introduction
A polygon mesh is a collection of vertices, edges and faces that defines the shape of a polyhedral object in 3D computer graphics and solid modeling. The faces usually consist of triangles (triangle mesh), quadrilaterals (quads), or other simple convex polygons (n-gons), since this simplifies rendering, but may also be more generally composed of concave polygons, or even polygons with holes.
https://en.wikipedia.org/wiki/Polygon_mesh
A wire-frame model, also wireframe model, is a visual representation of a three-dimensional (3D) physical object used in 3D computer graphics. It is created by specifying each edge of the physical object where two mathematically continuous smooth surfaces meet, or by connecting an object's constituent vertices using (straight) lines or curves. The object is projected into screen space and rendered by drawing lines at the location of each edge. The term "wire frame" comes from designers using metal wire to represent the three-dimensional shape of solid objects. 3D wire frame computer models allow for the construction and manipulation of solids and solid surfaces. 3D solid modeling efficiently draws higher quality representations of solids than conventional line drawing.
https://en.wikipedia.org/wiki/Wire-frame_model
4.3.3.2	Definition
Objects created with polygon meshes are represented by different types of elements. These include vertices, edges, faces, polygons and surfaces as shown in Figure 4.2.3-1. In many applications, only vertices, edges and either faces or polygons are stored.
[image: Elements of polygonal mesh modeling.]
Figure 4.2.3-1 Elements necessary for mesh representations ©Wikipedia (Mesh_overview.jpg: The original uploader was Rchoetzlein at English Wikipedia.derivative work: Lobsterbake [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)])
Polygon meshes are defined by the following elements:
· Vertex: A position in 3D space defined as (x,y,z) along with other information such as color (r,g,b), normal vector and texture coordinates.
· Edge: A connection between two vertices.
· Face: A closed set of edges, in which a triangle face has three edges, and a quad face has four edges. A polygon is a coplanar set of faces. In systems that support multi-sided faces, polygons and faces are equivalent. Mathematically a polygonal mesh may be considered an unstructured grid, or undirected graph, with additional properties of geometry, shape and topology.
· Surfaces: or smoothing groups, are useful, but not required to group smooth regions.
· Groups: Some mesh formats contain groups, which define separate elements of the mesh, and are useful for determining separate sub-objects for skeletal animation or separate actors for non-skeletal animation.
· Materials: defined to allow different portions of the mesh to use different shaders when rendered.
· UV coordinates: Most mesh formats also support some form of UV coordinates which are a separate 2D representation of the mesh "unfolded" to show what portion of a 2-dimensional texture map to apply to different polygons of the mesh. It is also possible for meshes to contain other such vertex attribute information such as colour, tangent vectors, weight maps to control animation, etc (sometimes also called channels).
4.3.3.3	Production and Capturing Systems
tbd
4.3.3.4	Rendering
A renderer may support only 3-sided faces, so polygons must be constructed of many of these, as shown above. However, many renderers either support quads and higher-sided polygons, or are able to convert polygons to triangles on the fly, making it unnecessary to store a mesh in a triangulated form.	Comment by Curcio, Igor (Nokia - FI/Tampere): This is extremely bad general advice to give to anyone. GPU hardware in the end deals with triangles alone, and unless you have total control over the conversion process from other primitives (i.e., you either implement the pipeline or author the content), the performance and quality implications are not trivial.

4.3.3.5	Storage and Data Formats
4.3.3.5.1	Introduction
Polygon meshes may be represented in a variety of ways, using different methods to store the vertex, edge and face data such as face-vertex, winged, half or quad-edge meshes, corner-table or vertex-vertex meshes. Each of the representations have particular advantages and drawbacks. The choice of the data structure is governed by the application, the performance required, size of the data, and the operations to be performed. For example, it is easier to deal with triangles than general polygons, especially in computational geometry. For certain operations it is necessary to have a fast access to topological information such as edges or neighboring faces; this requires more complex structures such as the winged-edge representation. For hardware rendering, compact, simple structures are needed; thus the corner-table (triangle fan) is commonly incorporated into low-level rendering APIs such as DirectX and OpenGL.
Many different formats for storage and data formats exist for storing polygon mesh data. Some of these formats are presented below.
4.3.3.5.2	PoLYgon (PLY) File Format
The PoLYgon (PLY) format (http://paulbourke.net/dataformats/ply/) is used to describe a 3D object as a list of vertices, faces and other elements, along with associated attributes. A single PLY file describes exactly one 3D object. The 3D object may be generated synthetically or captured from a real scene. Attributes of the 3D object elements that might be stored with the object include: color, surface normals, texture coordinates, transparency, etc. The format permits one to have different properties for the front and back of a polygon.
The PLY does not intend to act as a Scene Graph, so it does not include transformation matrices, multiple 3D objects, modeling hierarchies, or object sub-parts. A typical PLY object definition is a list of (x,y,z,r,g,b) triples for vertices and their color attributes (r,g,b), so they represent a point cloud. It may also include a list of faces that are described by indices into the list of the vertices. Vertices and faces elements of the 3D object representation.
PLY allows applications to create new attributes that attach to the elements of an object. New attributes are appended to the list of attributes of an element, in a way to maintain backwards compatibility. Attributes that are not understood by a parser are simply skipped.
Furthermore, PLY allows for extensions to create new element types and their associated attributes. Examples of such elements could be materials (ambient, diffuse and specular colors and coefficients). New elements can also discarded by programs that do not understand them.
A PLY file is structured as follows:
 Header
 Vertex List
 Face List
 (lists of other elements)
The header is a human-readable textual description of the PLY file. It contains a description of each element type, including the element's name (e.g. "vertex"), how many such elements are in the object, and a list of the various attributes associated with the element. The header also indicates whether the file is in binary or ASCII format. A list of elements for each element type follows the header in the order described in the header.
The following is an example PLY in binary format with 19928 vertices and 39421 faces:
	ply
format binary_little_endian 1.0
comment generated by 3GPP
element vertex 19928
property float x
property float y
property float z
property float nx
property float ny
property float nz
property int flags
property uchar red
property uchar green
property uchar blue
property uchar alpha
element face 39421
property list uchar int vertex_indices
property int flags
end_header
…

This example demonstrates the different components of a PLY file header. Each part of the header is a carriage-return terminated ASCII string that begins with a keyword. In case of binary representation, the file will be a mix of an ASCII header and binary representation of the elements, in little or big endian, depending on the architecture on which the ply file has been generated. The PLY file must start with the characters "ply".
The vertex attributes listed in this example are the (x,y,z) floating point coordinates, the (nx,ny,nz) representation of the normal vectors, a 32 bit flag mask, (r,g,b) 8-bit representations of the color of each vertex, an 8-bit representation of the transparency alpha channel. Faces are represented as a list of vertex indices with a flags attribute associated with each face.
4.3.3.5.2	OBJ File Format
The OBJ (or .OBJ) is a geometry definition file format. The file format is open and has been adopted by other 3D graphics application vendors.	Comment by Schwarz, Sebastian (Nokia - DE/Munich): Copy from https://vts-geospatial.org/tutorials/importobj.html

and http://docs.mcneel.com/rhino/5/help/en-us/fileio/wavefront_obj_import_export.htm
The OBJ file format is a simple data-format that represents 3D geometry alone — namely,
· the position of each vertex,
· the UV position of each texture coordinate vertex,
· vertex normals, and
· the faces that make each polygon defined as a list of vertices, and texture vertices.
Vertices are stored in a counter-clockwise order by default, making explicit declaration of face normals unnecessary. OBJ coordinates have no units, but OBJ files can contain scale information in a human readable comment line.
The OBJ file format is a textual file format that represents a set of commands to be run by the renderer. Commands are represented in separate lines, terminated by a newline. The first character of each line specifies the type of command.
The following is a description of the most common commands in an obj file:
comment line
This indicates a comment line and is ignored by the OBJ parser. It is quite common for comments to contain the number of vertices and/or faces an object defines.
v x y z
The “v” indicates a vertex command that specifies a vertex by its 3D space coordinates. The vertex is implicitly referenced by the its order of appearance in the file relative to other vertices. The indexing starts at index 1.
vt u v [w]
The vertex texture command specifies the UV (and optionally W) mapping of a texel. These values are specified as floating points in the range [0..1].
vn x y z
The vertex normal command specifies the normal vector for that vertex.
f v1[/vt1][/vn1] v2[/vt2][/vn2] v3[/vt3][/vn3] ...
The face command specifies a polygon established from the listed vertices. The list may contain as many vertices as desired. To reference a vertex, the index of the vertex in the file is used. For example 'f 2301 2302 2303 2304' means a face built from vertices 2301 to 2304. Each vertex of a face my also be associated with a vt index, which references the vertex texture command associated with this vertex. A vn index may also be specified to indicate the normal vector at that vertex. Either all vertices have associated texture maps and/or normals, or none of them.
If a normal is not provided for the vertices of a face, then the orientation of the face is determined from the orders the vertices are given. Vertex indices may be provided as relative offsets, when they are indicated as negative values.
g name
The group name command specifies a sub-object grouping. All 'f' face commands that follow are considered to be in the same group.
usemtl name
The use material command provides a reference to a material definition to be used. All 'f' face commands that follow will use the same material, until another usemtl command is encountered.
	#
OBJ File Generated by 3GPP
#
####
Object example.obj
#
Vertices: 19928
Faces: 39421
#
####

vn -0.944337 -0.259246 -0.202531
v 48.000000 98.000000 32.000000 0.474510 0.596078 0.807843
vt 0.994516 0.094271 0.045291

…
g FACE
usemtl face
f 4232/4232/4232 4470/4470/4470 4464/4464/4464
f 12188/12188/12188 11936/11936/11936 12442/12442/12442
f 16133/16133/16133 15903/15903/15903 16131/16131/16131
f 4232/4232/4232 4236/4236/4236 4470/4470/4470

4.3.3.6	Applications
tbd
4.3.4	Point Clouds
4.3.4.1	Introduction
A point cloud is a collection of data points defined by a given coordinates system. In a 3D coordinates system, for example, a point cloud may define the shape of some real or created physical system. Point clouds are used to create 3D meshes and other models used in 3D modeling for various fields including medical imaging, architecture, 3D printing, manufacturing, 3D gaming and various XR applications.	Comment by Schwarz, Sebastian (Nokia - DE/Munich): direct copy from https://whatis.techtarget.com/definition/point-cloud
Point clouds are often aligned with 3D models or with other point clouds, a process known as point set registration. In computer vision and pattern recognition, point set registration, also known as point matching, is the process of finding a spatial transformation that aligns two-point sets. The purpose of finding such a transformation includes merging multiple data sets into a globally consistent model, and mapping a new measurement to a known data set to identify features or to estimate its pose. Point set registration is used in augmented reality.
4.3.4.2	Definition
4.3.4.3	Production and Capturing Systems
Point clouds are generally produced by 3D scanners, which measure many points on the external surfaces of objects around them.
4.3.4.4	Rendering
While point clouds can be directly rendered and inspected,[3][4] point clouds are often converted to polygon mesh or triangle mesh models, NURBS surface models, or CAD models through a process commonly referred to as surface reconstruction.
4.3.4.5	Storage and Data Formats
tbd
4.3.4.6	Applications
4.3.5	Light Fields
4.3.5.1	Introduction
4.3.5.2	Definition
4.3.5.3	Production and Capturing Systems
4.3.5.4	Rendering
4.3.5.5	Storage and Data Formats
4.3.5.6	Applications
4.3.6	Conversion of Formats
<tbd>
4.3	Immersive Audio Formats
Tbd This clause introduces Immersive audio formats.
4.4	Scene Description
4.4.1	Introduction
4.4.2	Definition
4.4.3	Production and Capturing Systems
4.4.4	Rendering
4.4.5	Storage and Data Formats
4.4.6	Applications

image1.emf
y

x

z

Microsoft_Visio_Drawing.vsdx
y
x
z

image2.png
Application

Geometry

Rasterization

Screen

image3.png
Model- & Camera. Windon:

T mmmmT Lighting — m,mmnT clipping —_ Ve T

Objakt coordinate sCamers coordinates Clipping-Cocrdinates Device coordinat

image4.jpeg
Texture and ite Vi y

Alpha Blend

Geometry

Texture Data Depth Buffer Frame Buffer

Kol wershs

image5.png
Vertex-Shader
3D-Koordinaten

[
[antialiasing /)

[I] programmierbar

konfigurierbar

Shader

[fest verdrahtet

image6.png
vertices ~ edges faces polygons surfaces

