Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 Meeting 102
S4-190222
28 January – 1 February 2019, Bruges, Belgium

Agenda item:
10.6
Source:
Qualcomm Incorporated
Title:
FS_XR5G: Updates to Key Technologies
Document for
Agreement

1 Introduction
The objective of this Study Item of FS_XR5G is to investigate the relevance of Augmented and Extended Reality in the context of 3GPP by:

· Analysing the different technologies and equipment in place that provide an Extended Reality experiences.

· Collecting the associated use cases and identifying the 3GPP service(s) they map to

· Analysing and identifying the media formats (including audio and video), metadata, accessibility features, interfaces and delivery procedures between client and server required to offer such an experience

· Identifying relevant client and network architectures and APIs that support XR use cases

· Identifying relevant QoS service parameters and other core network and radio functionalities that would be required or at least beneficial for XR use cases
· Collecting key performance indicators for relevant XR services and the applied technology components.

· Possibly conducting subjective tests so as to estimate the audio and video formats and encoding parameters required for ensuring the quality of experience as considered necessary

· Studying the processing requirements (both audio and video) and associated issues such as spatial resolutions, frame rate, latency and accuracy of field of “view” rotation

· Collecting information on market and standardization status and communication with relevant 3GPP groups and external organizations

· Drawing conclusions on the potential needs for standardization in 3GPP.
This document addresses additional aspects on key technologies.
2 Proposed Updates

4 Key technologies for Extended Reality
5.1
Introduction

This clause provides a brief overview on key technologies for extended reality. The information is expected to be updated regularly with new information being received. Relevant information may be added to TR26.928, once the descriptions has matured.
5.2
Technology Clusters
The following technology clusters are identified would deserve description and definition.
· Content representation

· Scene description

· Visual

· Meshes

· Projected Video

· Point Cloud

· Light field
· Text/graphics
· Audio

· Object/scene based
· Capturing systems and Production

· User-Generated
· Professionally Cinematic

· Professional Live event

· Computer-Generated (synthetic)

· Mixed
· Devices

· VR
· Cardboards

· Standalone HMD

· Flat rendering (smartphone, tablet, TV...)

· AR
· Phone-based

· Glasses

· Head-up display

· Platforms and Ecosystems
· AR/VR SDKs

· See below...
· Device/Chipset

· GPU

· Decoders

· Encoders

· Dedicated software?

· AI functions

· Sensors(e.g. depth, tracking...)/cameras

· Interfaces

· Display technologies

· Compression and Delivery - connectivity

· PCC

· MPEG-I audio

· Bluetooth/ USB-C/HDMI... 5G!

5.3
XR Form factors

Extended reality addresses also different form factors as shown in Figure 1. More details are expected to provided.

5.4
Ecosystems and Platforms

Oculus:

· Primary Focus: VR (Standalone and PC)
· Devices: Go (3DoF) launched, Quest (6DoF) early 2019
Google:

· Primary Focus: AR/AI (Smartphones + Lens) + Enterprise Glass

· Some technologogies
· Daydream VR
· ARCore
· Smart Lenses
· Google Glass
HTC Vive

· Primary Focus: VR (Standalone and PC)
Microsoft

· Primary Focus: AR (Standalone), PC VR
Apple:

· Primary Focus: AR/AI (Smartphone and Sensors)
· Some technologies:

· ARKit

Samsung:

Magic Leap

· Magic Leap Display Technology
· Images are “projected” onto the focal planes via waveguide.

· Six-layer waveguide display (akin to placing two translucent mini-TVs in front of one another).

· Custom projector and lens combination system that displays red, green, and blue colors at separate depths

· Creates the illusion of three-dimensional objects that can more realistically appear to blur with distance.

Also lots of activities start in China.

5.5
XR Perception Requirements

	Awareness of the user:

· Head-tracking

· Eye-tracking

· Face expression

· Hand tracking

· Body tracking

· Body pose est.
	[image: image1.png]

	Awareness of the environment

· Safe zone discovery

· Dynamic obstacle warning

· Geometric and semantic environment parsing

· Environmental lighting

· World mapping
	[image: image2.png]

5.X
Graphics and Compute APIs
5.X.1
Introduction

Mention OpenGL and Direct3D and Metal. Unreal/Unity
5.X.2
Vulkan

5.X.2.1
Overview

Vulkan is a new generation graphics and compute API that provides high-efficiency, cross-platform access to modern GPUs used in a wide variety of devices from PCs and consoles to mobile phones and embedded platforms.
Details on the standardization work can be found here: https://www.khronos.org/vulkan/
A tutorial on Vulkan is provided here: https://vulkan-tutorial.com/
An overview presentation is available here: https://www.khronos.org/assets/uploads/developers/library/overview/Vulkan-1-1-Presentation_Mar18.pdf
An explanation of terminology is provided here: https://gpuopen.com/understanding-vulkan-objects/

This Vulkan APIs allow to describe what an application intends to do, which can lead to better performance and less surprising driver behavior compared to existing APIs like OpenGL and Direct3D. The ideas behind Vulkan are similar to those of Direct3D 12 and Metal, but Vulkan has the advantage of being fully cross-platform and allows you to develop for Windows, Linux and Android at the same time.
Vulkan is targeted at programmers who are enthusiastic about high performance computer graphics, and are willing to put some work in. If you are more interested in game development, rather than computer graphics, then you may wish to stick to OpenGL or Direct3D, which will not be deprecated in favor of Vulkan anytime soon. Another alternative is to use an engine like Unreal Engine or Unity, which will be able to use Vulkan while exposing a much higher level API to you.
5.X.2.2
Comparison
Figure 2 provides a comparison of features provided by OpenGL and Vulkan.
[image: image3.png]
Figure 2 Comparison of OpenGL and Vulkan
5.X.2.3
Vulkan Objects
The structure of Vulkan objects are provided in the below diagram. The diagram is divided into three sections. Each section has a main object, shown in red. All other objects in a section are created directly or indirectly from that main object.
[image: image4.png]
Instance
· is an object that an application can create. It represents the connection from the application to the Vulkan runtime. It also stores all application specific state required to use Vulkan.

PhysicalDevice
· represents a specific Vulkan-compatible device, like a graphics card. It can be queried for its vendorID , deviceID , and supported features, as well as other properties and limits.
· Can enumerate all available types of Queue Families. The graphics queue is the main one, but you may also have additional ones that support only Compute or Transfer.
· Can enumerate Memory Heaps and Memory Types inside them. A Memory Heap represents a specific pool of RAM. It may abstract your system RAM on the motherboard or a certain memory space in video RAM on a dedicated graphics card, or any other host- or device-specific memory the implementation wants to expose.

Device
· Considered as a logical device, or opened device. It is the main object that represents an initialized Vulkan device that is ready to create all other objects. During device creation, the application needs to specify which features it wants to enable, and some of them are fundamental like anisotropic texture filtering.
Queue
· is an object representing a queue of commands to be executed on the device. All the actual work to be done by the GPU is requested by filling CommandBuffers and submitting them to Queues.

· Multiple queues may exist, e.g. the main graphics queue and a compute queue, one can submit different CommandBuffers to each of them. This way you can enable asynchronous compute, which can lead to a substantial speed up if done right.
CommandPool
· is a simple object that is used to allocate CommandBuffers. It’s connected to a specific Queue Family.
CommandBuffer
· is allocated from a specific CommandPool. It represents a buffer of various commands to be executed by a logical Device. Various functions can be called on a command buffer. They are used to specify the order, type and parameters of tasks that should be performed when the CommandBuffer is submitted to a Queue and is finally consumed by the Device.

Sampler
· is set of state parameters, like filtering mode (nearest or linear) or addressing mode (repeat, clamp-to-edge, clamp-to-border etc.).
Buffer and Image
· are two types of resources that occupy device memory.
· Buffer is the simpler one. It is a container for any binary data that just has its length, expressed in bytes.
· Image represents a set of pixels. This is the object known in other graphics APIs as a texture. There are more parameters needed to specify creation of an Image. It can be 1D, 2D or 3D, have various pixel formats (like R8G8B8A8_UNORM or R32_SFLOAT) and can also consist of many discrete images, because it can have multiple array layers or MIP levels (or both). Detailed formats are here:

· https://www.khronos.org/registry/vulkan/specs/1.0/html/chap33.html
· https://vulkan.lunarg.com/doc/view/1.0.30.0/linux/vkspec.chunked/ch31s03.html
· Image is a separate object type because it doesn’t necessarily consist of just a linear set of pixels that can be accessed directly. Images can have a different implementation-specific internal format (tiling and layout) managed by the graphics driver.
· Buffers and Images aren’t always used directly in rendering. On top of them there is another layer, called views.
Views

· Views are defined by a set of parameters that can be used to look at a set of underlying data in a desired way.
· BufferView is an object created based on a specific buffer.
· ImageView is a set of parameters referring to a specific image. This allows the interpretation of pixels as having some other (compatible) format, swizzle any components, and limit the view to a specific range of MIP levels or array layers.

Descriptors
· don’t exist on their own, but are always grouped in descriptor sets. Before a descriptor set is produced, its layout is specified by creating a DescriptorSetLayout, which behaves like a template for a descriptor set.
· a DescriptorPool is simple object used to allocate descriptor sets. When creating a descriptor pool, the maximum number of descriptor sets and descriptors of different types are defined.
· Are allocated. The DescriptorSet represents memory that holds actual descriptors, and it can be configured so that a descriptor points to specific Buffer, BufferView, Image or Sampler.
· Several DescriptorSets can be bound as active sets in a CommandBuffer to be used by rendering commands. This function requires another object as well – PipelineLayout, because there may be multiple DescriptorSets bound and Vulkan wants to know in advance how many and what types of them it should expect.
PipelineLayout
· represents a configuration of the rendering pipeline in terms of what types of descriptor sets will be bound to the CommandBuffer.
· the rendering of frames are planned in advance and organized into passes and subpasses.
· For example, you can specify the number of triangles to render on submission. The crucial part when defining a RenderPass in Vulkan is the number and formats of attachments that will be used in that pass.
Attachment
· is Vulkan’s name for what you might otherwise know as a render target – an Image to be used as output from rendering.
· It is described by their formats. For example, a simple rendering pass may use a color attachment with format R8G8B8A8_UNORM and a depth-stencil attachment with format D16_UNORM .
· It can also be specified whether your attachment should have its content preserved, discarded or cleared at the beginning of the pass.
Framebuffer
· represents a link to actual Images that can be used as attachments (render targets).
· The application creates such an object by specifying the RenderPass and a set of ImageViews.
· is another layer on top of Images and basically groups these ImageViews together to be bound as attachments during rendering of a specific RenderPass.
· Whenever rendering of a RenderPass is started, a function is called and you also pass the Framebuffer to it.
Pipeline
· composes most of the objects listed before.
· represents the configuration of the whole pipeline and has a lot of parameters.
· One of them is PipelineLayout – it defines the layout of descriptors and push constants.
· There are two types of Pipelines – ComputePipeline and GraphicsPipeline.
· ComputePipeline is the simpler one, because all it supports is compute-only programs (sometimes called compute shaders).
· GraphicsPipeline is much more complex, because it encompasses all the parameters like vertex, fragment, geometry, compute and tessellation where applicable, plus things like vertex attributes, primitive topology, backface culling, and blending mode, etc..
· For each different set of parameters needed during rendering a new Pipeline is created.
Shaders

· can access these resources (Buffers, Images and Samplers) through descriptors.
· Shader compilation is a multi-stage process in Vulkan.
· Vulkan accepts an intermediate format called SPIR-V.
· A buffer filled with data in SPIR-V is used to create a ShaderModule. This object represents a piece of shader code, possibly in some partially compiled form, but it’s not anything the GPU can execute yet.
· Only when creating the Pipeline for each shader stage the (vertex, tessellation control, tessellation evaluation, geometry, fragment, or compute) can be used
Query
· can be used to read back certain numeric values written by the GPU.
· There are different kinds of queries like Occlusion (telling you whether some pixels were rendered, i.e. they passed all of the pre- and post-shading tests and made it through to the frame) or Timestamp (a timestamp value from some GPU hardware counter).
Synchronization Objects:Fence, Semaphore and Event.
· A Fence signals to the host that the execution of a task has completed.
· It can be waited on, polled, and manually unsignaled on the host.
· Once the submitted queue completes the according fence is signaled.
· A Semaphore is created without configuration parameters.
· It can be used to control resource access across multiple queues.
· It can be signaled or waited on as part of command buffer submission, and it can be signaled on one queue (e.g. compute) and waited on other (e.g. graphics).
· An Event is also created without parameters.
· It can be waited on or signaled on the GPU as a separate command submitted to CommandBuffer
· It can also be set, reset and waited upon.
5.X.2.4
Usage of Objects in Real-time
<tbd>
3 Proposal

It is proposed to
· Add a reference model for rendering based on Vulkan to the permanent document
· [image: image5.png][image: image6.jpg]
Figure � SEQ Figure * ARABIC �12� XR Form Factors

- 4/4 -

[image: image7.png]