Page 1

3GPP TSG-SA4 Meeting #100
S4-181064
Kochi, India, Oct 15-19, 2018
	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.929
	CR
	-
	rev
	-
	Current version:
	0.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:

	Presentation delay metric

	
	

	Source to WG:
	Ericsson LM

	Source to TSG:
	S4

	
	

	Work item code:
	FS_QoE_VR
	
	Date:
	2018-10-09

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-16

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	Details are lacking for the presentation delay metric.

	
	

	Summary of change:
	Add more detailed metric text.

	
	

	Consequences if not approved:
	Unclear metric definitions.

	
	

	Clauses affected:
	8.2.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

8.2.4
Presentation Delay

8.2.4.1
Introduction
A possible presentation delay metric is measuring the delay between the wanted presentation time for a DASH segment, and the actual (maybe delayed) presentation time. Note that this is not exactly the same as "motion to photon delay" or "motion to high-quality content", as segments might arrive late not only due to user movement and interaction, but also due to other reasons.

On the other hand, from a user perspective, both are equally bad and give rise to the same type of artifacts and quality degradations, so it makes sense to just measure the presentation delay, and disregard the actual reason (e.g. head movement) which caused the delay. However, for most practical VR cases the main reasons for late segment arrival is likely to be fast head movement.
During playout the playhead position continuously moves forward unless the playout stops due to rebuffering. Assuming that any such rebuffering can be handled by the rebuffering metric (i.e. derived from the existing PlayList metric), the presentation delay metric only needs to deal with the possibly late arrival of video data during ongoing playout.

Thus the presentation delay for any DASH segment received is in principle the difference between the intended segment start time and the current playhead position. If the segment start time is later then the playhead position, the data is available on time (at least if we disregard any further device-internal processing delay). If the segment start time is earlier than the playhead position, the segment is late.

The question is how this delay can be practically measured, and how it relates to what the user really experiences. There are several technical possibilities, with varying degree of accuracy and implementation complexity, and the following (non-exhaustive) clauses outline some possible variants.

8.2.4.2
Ignore viewport and encoding quality
A relatively low-complex implementation is to ignore the actual viewport seen by the user, and assume that the VR client does only request segments which are relevant. For instance, for multiple-stream region-dependent encodings, it is assumed that the client changes to a more appropriate track when the user moves his head, and that all data requested and later received is actually used and relevant. In the same way, for region-based encodings, the regions (e.g. the tiles) requested and received are assumed to be relevant.

Thus for every DASH segment received, a delay is calculated based on the current playhead position and the defined start time for the received segment. If the segment request was done after the defined start time, the time of the segment request is used instead of the defined start time (to handle the case when only a part of a segment is needed). If the delay is negative (i.e. the segment arrived on time), the segment delay is set to zero.

Note that all segments are treated equally even if some segments are likely much more important, so this implementation is only a crude estimation of the impact on the user experience.

Input needed: Segment start time, playhead position.

8.2.4.3
Consider viewport but not encoding quality

A more complex implementation is to only consider delays which are probably visible to the user. For instance, when a DASH segment is received, the segment delay is calculated as in the previous clause, but the content coverage of the segment is also derived (e.g. via the CC metadata from the MPD).

The current viewport coverage is also derived (e.g. from the sensor and device data), and the overlap between the segment and the viewport is calculated. The segment delay is only considered if there is any overlap (alternatively, the delay is weighted by the percentage of the viewport covered by the segment).

Note that as the encoding quality of the content is not considered, a low-resolution background segment (which likely has large coverage) might be weighted higher than a high-resolution segment. Also, as the overlap is calculated when the segment is received, the user might have moved the viewport when the data in the segment is later rendered.

Input needed: Segment start time, playhead position, content coverage, viewport coverage, MPD.

8.2.4.4
Consider viewport and encoding quality

An even more complex implementation is to also consider the encoding quality. Encoding quality can be based on the relative QR quality ranking from the MPD, or it can be approximated as BPSPA (bits per second per area, i.e. segment size divided by segment length divided by the angular area coverage).

For instance, the current "steady state" quality level can be estimated by using the maximum quality value (QR or BPSPA) seen within a certain measurement window. In addition to the content and viewport overlap calculated as in the previous clause, the segment delay is only considered if the segment quality is the same (or close to) the steady state quality level. Thus low-quality background segments will not contribute to the delay measurements.

Note that also in this implementation the evaluation is done when a segment is received, so any head movements between evaluation and actual rendering is not accounted for.

Input needed: Segment start time, playhead position, content coverage, viewport coverage, MPD.

8.2.4.5
More advanced delay measurements

If more accurate delay measurements are needed the evaluation must likely be done close to rendering or viewport generation. However, assuming that the delay measurements will mostly be used to approximate the end user experience, it's not obvious that such advanced implementations are worthwhile. More detailed understanding is needed before proposing more advanced implementations.
8.2.4.6
Aggregation

The previous clauses only describe how individual delay measurements could be done, but to be practically useful these need to be aggregated into meaningful metrics (and reporting all individual segment delays is also bandwidth-demanding, especially for region-based (e.g. tiled) encodings).

Aggregation can in principle be done over a complete QoE reporting period, but it is probably better to enable aggregation over shorter intervals to increase the time resolution of the metrics.

Assuming that most VR services will have relatively decent quality (as otherwise they would not be used), many of the individual segment delay measurements should be zero or at least pretty small. Thus using simple linear averaging is probably not very useful, as this might hide any delay peaks.

Histogram binning could be used, as this will clearly show the distribution of the delays. To keep the amount of bins low bin sizes can be varied, e.g. by using logarithmic bins. Another alternative is to use percentiles to catch the best and the worst part of the delay distribution.
Yet another possibility would be to report on detailed segment level, but to only reports segments which:

- arrive later than a certain delay threshold (e.g >0 ms, report only late segments)

- cover more than a certain percentage of the viewport (e.g. >0%, report only visible segments)

- have a BPSPA value higher than a certain percentage of the steady-state BPSPA value (e.g. 75%)

Assuming that most segments do arrive on time, the resulting report will normally be reasonably small. This approach is exemplified in the next subclause.
8.2.4.7
Metric definition
The table below describes the metric for presentation delay. It is assumed that as part of the QoE configuration the three thresholds for delay, coverage and quality have been set. If not set, all segments will be reported.
Only the timestamp and the presentationDelay fields are mandatory, while the viewportCoverage and the relativeQuality fields are only reported if supported by the client. Note that although the timestamp identifies the reception time, it is still expressed in media time, not wall-clock time.
Table 1 Presentation delay metric
	Key
	Type
	Description

	SegmentList
	List
	A list of received segments fulfilling the delay, coverage and quality thresholds

	
	Entry
	Object
	An object containing information for one segment

	
	
	timestamp
	Media-Time
	Reception time for the segment

	
	
	presentationDelay
	Integer
	Delay compared to intended segment presentation time, in milliseconds

	
	
	viewportCoverage
	Integer
	Percentage of viewport covered by the segment (optional)

	
	
	relativeQuality
	Integer
	Segment BPSPA percentage relative to the steady-state BPSPA value (optional)

