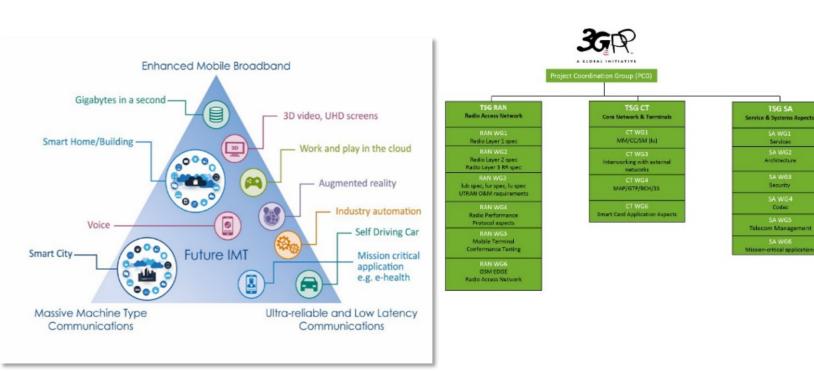

3GPP achievements on VR & ongoing developments on XR over 5G

Gilles Teniou 3GPP SA4 Vice-Chairman

Orange

5G VISION



5G / IMT-2020 VISION

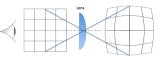
- Address demands and business contexts of 2020 and beyond.
- Enable a fully mobile and connected society.
- Empower socio-economic transformations in countless ways.

From the vision to standards

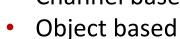
3GPP SA4 addresses the media distribution and codecs aspects such as audiovisuals and conversational services

3GPP Specifications and Reports:								
Requirements	21 series							
Service aspects ("stage 1")	22 series							
Technical realization ("stage 2")	23 series							
Signalling protocols ("stage 3") - user								
equipment to network	24 series							
Radio aspects	25 series							
CODECs	26 series							
Data	27 series							
Signalling protocols ("stage 3") -(RSS-CN) and OAM&P and Charging (overflow from								
32 range)	28 series							
Signalling protocols ("stage 3") - intra-fixed-								
network	29 series							
Programme management	30 series							
Subscriber Identity Module (SIM / USIM), IC								
Cards. Test specs.	31 series							
OAM&P and Charging	32 series							
Security aspects	33 series							
UE and (U)SIM test specifications	34 series							
Security algorithms	35 series							
LTE (Evolved UTRA), LTE-Advanced, LTE-								
Advanced Pro radio technology	36 series							
Multiple radio access technology aspects	37 series							
Radio technology beyond LTE	38 series							

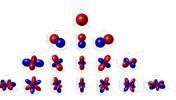
Checkpoint on VR (360)


April 2016 – June 2017: Study on Virtual reality

Optical aberrations

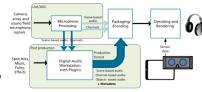


- Capture
- Stitching
- Projection
- Packing
- Encoding/decoding
- Rendering



VR Audio Workflow

- Content production
- Audio production formats
- Rendering systems
- Data exchange
- Ambisonics analysis
- Rendering



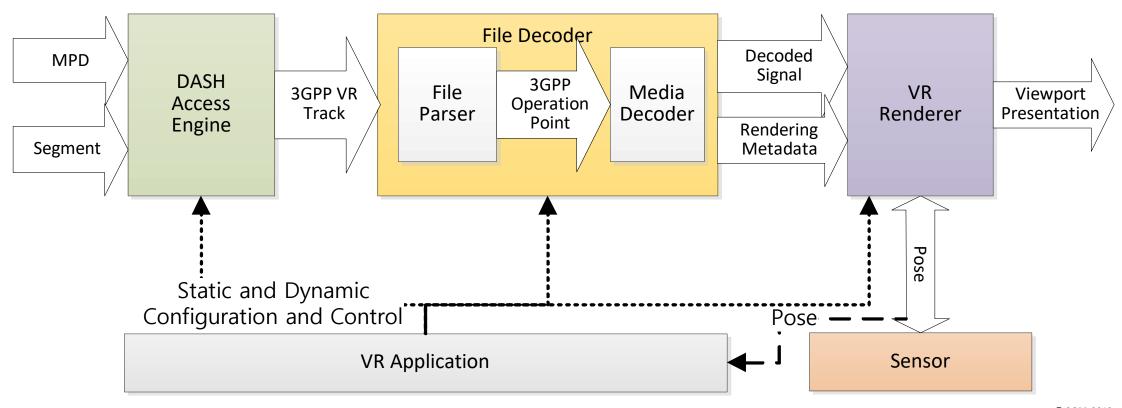
Virtual Reality

3GPP

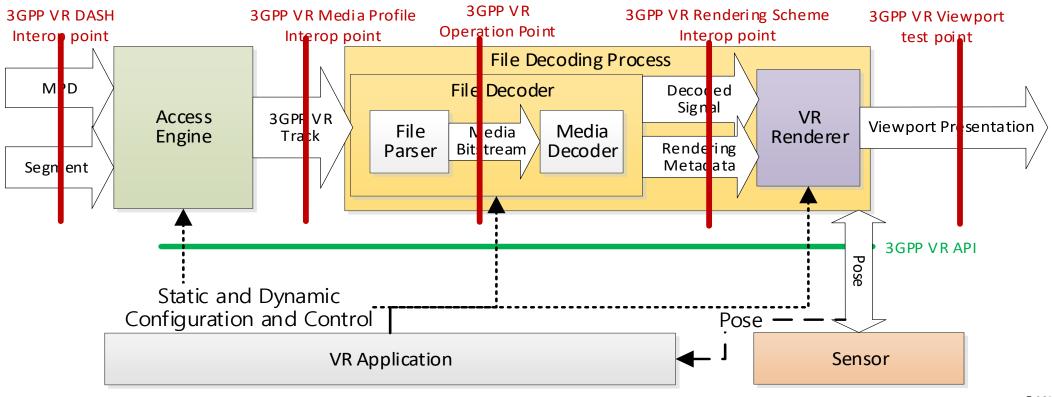
TR 26.918

(VR) media services over 3GPP

Checkpoint on VR (360)


- Definition of client architecture and API for VR streaming services
- Set of operating points covering the large range of device capabilities from Carboards to high-end tethered HMDs.
- Definition of Media profiles: mapping of operating points to DASH delivery
- System metadata is added to support rendering of 360 experiences on 2D screens, including the aspects of rendering without pose information

Virtual Reality profiles for streaming applications


VR Streaming client architecture and API

✓ VR S

VR Streaming client architecture and API

Video Operating points

- Basic: Based on H.264/AVC High Profile Level 5.1 for mono only, single stream, and reuse of single DASH adaptation set.
- Main: Based on H.265/HEVC High Profile Level 5.1 allowing mono and stereo, single stream, but either a single or multiple independent Adaptation Sets may be offered, such that a client can choose based on its current pose.
- Flexible: based on **H.265/HEVC** High Profile Level 5.1, but in addition to the Main Video features, it permits to **stream and combine multiple tiles** at the receiver for improved quality.

Operation Point name	Decoder	Bit depth	Typical Original Spatial Resolution	Frame Rate	Colour space format	Transfer Characteristics	Projection	Rotation	RWP	Stereo
Basic H.264/AVC	H.264/AVC HP@L5.1	8	Up to 4k	Up to 60 Hz	BT.709	BT.709	ERP w/o padding	No	No	No
Main H.265/HEVC	H.265/HEVC MP10@L5.1	8, 10	Up to 6k in mono and 3k in stereo	Up to 60 Hz	BT.709 BT.2020	BT.709	ERP w/o padding	No	Yes	Yes
Flexible H.265/HEVC	H.265/HEVC MP10@L5.1	8, 10	Up to 8k in mono and 3k in stereo	Up to 120 Hz	BT.709 BT.2020	BT.709, BT.2100 PQ	ERP w/o padding CMP	No	Yes	Yes

Audio Operating point

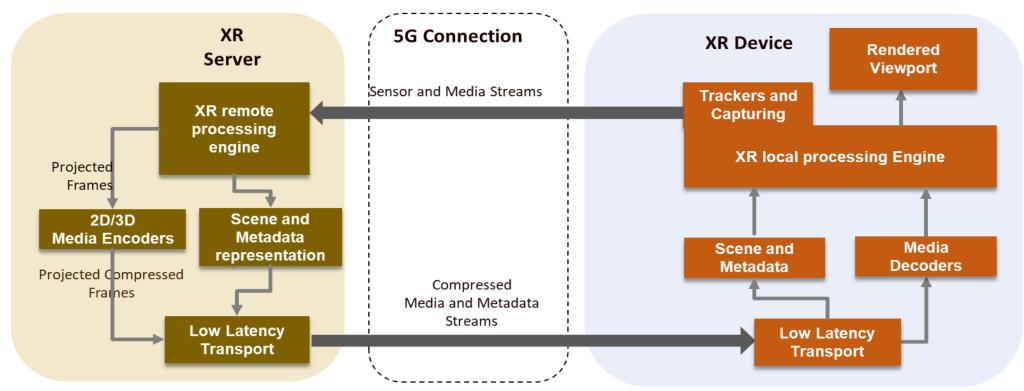
- MPEG-H 3D Audio Baseline profile. This technology enables the distribution of channel, object and scene-based 3D audio.
 - Additional interesting technologies enabling the distribution of channel, object and scene-based 3D audio were considered, and the characterization results of all proposed technologies are documented in TR 26.818.

Study Item launched in July 2018

- Extended Reality (XR)
 - an envelope that includes
 - VR (Virtual Reality)
 - AR (Augmented Reality)
 - MR (Mixed Reality)

The study addresses:

- VR cases in more than 360° navigation
 - 3DOF+ 3 axis rotations + 3 axis translations limited to head movement with fixed body
 - 6DOF Full free navigation (user can walk and look around)
- AR cases where synthetic objects are overlaid with the real environment
- MR cases where those synthetic additions are meant to be part of the real world



Objectives

- Analysing the different technologies and equipment in place that provide an Extended Reality experiences.
- <u>Collecting</u> the associated <u>use cases</u> and identifying the 3GPP service(s) they map to
- Identifying
 - media formats (including audio and video), metadata, accessibility features...
 - client and network architectures and APIs that support XR use cases
 - QoS service parameters and other core network and radio functionalities that would be required or at least beneficial for XR use cases
- Possibly <u>conducting</u> subjective tests so as to estimate the audio and video formats and encoding parameters required for ensuring the quality of experience as considered necessary

Reference architecture under consideration

- Some Use cases identified so far...
 - 3D messaging
 - Ability to capture and send 3D models via MMS
 - Streaming of Immersive 6DoF
 - Free navigation/ multiple viewpoints in video content
 - Immersive online gaming and spectator mode
 - Free navigation in CGI content

- Remote assistance in Industry
 - AR guided assistance for onsite operations
- Realtime 3D communication
 - Immersive conferences including poster sharing
- Online shopping with AR
 - Augmented reality placement of products at home
- AR streaming with Localization registry
 - On-site virtual guides (museums...)

13

Other topics on track

- QoE Metrics for VR
 - Objective: define device capability and latency metrics for the optimization of the quality of experience
 - <u>Timeline</u>: Release 16 (end of 2019)
- Immersive Voice and Audio Services (IVAS)
 - Objective: Immersive extension of the EVS (enhanced Voice Services) codec defined by 3GPP
 - <u>Timeline</u>: Release 17 (end of 2020)
- Immersive Teleconferencing and Telepresence for Remote Terminals (ITT4RT)
 - Objective: introduce immersive media support for 3GPP conversational services.
 - <u>Timeline</u>: Release 17 (end of 2020)
- 5G Media Streaming architecture (5GMSA)
 - Objective: Modular architecture for streaming services including edge compute and slicing
 - <u>Timeline</u>: Release 16 (end of 2019)

For more Information

Join us in our effort in defining standards for next generation or contact us:

- Frédéric Gabin: 3GPP SA4 chairman frederic.gabin@ericsson.com
- Gilles Teniou: 3GPP SA4 Vice-chairman gilles.teniou@orange.com
- Thomas Stockhammer: XR 5G Rapporteur tsto@qti.qualcomm.com

www.3gpp.org