3GPP TSG SA WG4 PSM Ad Hoc on DIMS

Tdoc S4-AHP333
14 - 16 March 2007, Paris, France

Source:
Ericsson
Title:
Random Access Points in DIMS
Document for:
Discussion
Introduction

This document brings up the issue of setting the document time in redundant random access points in DIMS.

Background

When tuning in to a redundant scene it is necessary to change the scene time from the default of zero to the required scene time. Three models of doing this have been discussed or proposed.
1. Changing the scene time before inserting the elements into the scene

2. Inserting the elements into the scene, and changing the scene time on the closing </svg> tag.

3. Using scripts to change the document time, leaving it up to the content creator.

Discussion
It is of our opinion that the fast forwarding that comes with changing the scene time in a redundant scene should be the same as for any other changing of the scene time. In other words only one model should need to be implemented on a client.

Given the same redundant tune-in point, the resulting scene from the different models is not necessarily the same. An example of when this is not the case is when scripts are used. Scripts are run (as required) on insertion. If a script reads the scene time it will get a different value depending on the model used. In other words, leaving the model undefined would result in different scenes on different implementations.
Model 1

Just as a plain SVG document has an implicit start time of zero, a redundant random access point could override this value. In this way the timeline of a document with timelineBegin = "onLoad" will start at the “correct” value.
Model 2

SVG contains a lot of functionality for progressive rendering, and it is up to an implementation to decide how often frames are rendered. Progressive rendering in this model will result in an incorrect scene being displayed until the closing </svg> tag is reached. A document with timelineBegin = "onLoad" will have a timeline that starts at 0, moves forward until the </svg> is reached (i.e. document time > 0, events may be fired, frames may be rendered), then seeked to the correct time.

A more explicit example of when this causes problems is given below:

A scene contains buttons of the type “move forward 10s”, “move back 10s”, etc. What happens if such a button is pressed before the closing </svg> tag is reached? Firstly, the delta of 10s will be added to an incorrect base, i.e. zero. Secondly, even if the button did contain an absolute time, the time will be changed when reaching the closing </svg> tag – overriding the users choice.
This type of scene could be used for navigation. In this model, the user has to wait until the scene is fully loaded before being able to correctly move further in the scene. In other words, one has to wait for something to load that one doesn’t even want, just to be able to seek further. On top of this, the scene will not move directly forward to the requested section, but will instead revert to zero first. In model 1 or model 3, a content creator could put seek buttons early in the rendering to avoid this.
Model 3

This model leaves the choice up to the content creator. It does however require that scripts are used to change the time. On the upside, redundant scenes are parsed in exactly the same way as non-redundant scenes.
