3GPP TS 26.142 V1.3.1 (2007-02)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Dynamic and Interactive Multimedia Scenes;

(Release 7)

[image: image1.wmf]GLOBAL SYSTEM FOR

MOBILE COMMUNICATIONS

R

[image: image2.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

Select keywords from list provided in specs database.

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

6Foreword

Introduction
6
1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
8
3.3
Abbreviations
8
4
Overview and Architecture
9
5
Media-type Definition
9
5.1
Introduction
9
5.2
Media Type Components
9
5.3
Scene description
10
5.3.1
Base Scene Description
10
5.3.2
Scene Description Extensions
10
5.3.2.1
Introduction
10
5.3.2.2
Rectangular clipping of a graphical object
10
5.3.2.3
Full-screen video
10
5.3.2.4
Full-screen SVG
10
5.3.2.5
Attributes clipBegin and clipEnd
10
5.3.2.6
Update Streams
11
5.3.2.7
Screen Orientation and Key Location
11
5.3.2.8
Repair Current-Time Indication
13
5.4
Scene Commands
13
5.4.1
Scene Updates
13
5.4.2
State management commands
14
5.5
Exotic Repair
14
5.6
Access unit definition(s)
14
5.6.1
DIMS Unit
14
5.6.1.1
Definition
14
5.6.1.2
DIMS Unit Header
14
5.6.2
Access Unit
15
5.7
XML Container format for updates
15
5.8
Overall timing model
15
5.9
Random Access, Tune-in and Error Recovery
16
5.9.1
Introduction
16
5.9.2
Terminal Processing Model
16
5.9.3
Random Access Points in Primary Streams
17
5.9.4
Random Access Points in Secondary Streams
17
6
Interaction, Scripting and State Management
18
6.1
Local interaction
18
6.2
Remote interaction
18
6.3
Scripting
18
7
Compression
19
8
Transport
19
8.1
Overview
19
8.2
Embedding in existing protocols (HTTP etc.)
20
8.3
Download (including progressive download)
20
8.3.1
Storage in ISO Base Media File Format Files
20
8.3.1.1
Introduction
20
8.3.1.2
Stream Type
20
8.3.1.3
Track and Media Header fields
20
8.3.1.4
Sample Dependency Table
20
8.3.1.5
Sample Entry Name and Format
21
8.3.1.6
Sample Format
22
8.3.1.7
Other Resources
22
8.3.1.8
Sync Samples
22
8.3.1.9
Separate Repair Track
22
8.4
Error Resilience
23
8.4.1
Priority
23
8.4.2
Recovery Points
24
8.4.2.1
Recovery Point Syntax
25
8.4.2.2
Type 1 Recovery Unit Syntax
25
8.4.2.3
Type 2 Recovery Unit Syntax
25
8.5
Streaming
25
8.5.1
RTP Payload format for DIMS Streams
25
8.5.1.1
RTP Header Usage
25
8.5.1.2
Common Packet Header
26
8.5.1.3
Single Time Packet
26
8.5.1.4
Fragmentation Packets
27
8.5.2
SDP Parameters
28
8.5.3
Separate Repair Stream
28
9
Resource usage and device capabilities
29
9.1
Capability Exchange (UAProf etc.)
29
9.2
Profile
29
9.3
Level
30
9.3.1
Introduction
30
9.3.2
Level Axes
30
9.3.3
Level 10 definition
30
9.3.4
Level 100 definition
31
10
Use of DIMS in existing subsystems
31
10.1
Codecs and Fonts
31
10.2
PSS
31
10.3
MBMS
31
10.4
MMS
31
11
Content usage guidelines
31
12
Security and Content Protection Considerations
31
13
Registered Types
32
13.1
RTP Payload format MIME Type
32
13.2
‘Codecs’ Parameter for 3GP files
33
14
Open issues and considerations
33
14.1
Interaction outside the multimedia sub-system
33
14.1.1
Input modalities
33
14.1.2
Interface with existing applications and sub-systems
33
14.1.3
Notifications
33
14.2
Extensibility considerations
33
Annex A
(normative): Conformance Criteria
34
Annex B
(informative): Change history
35

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

DIMS is a dynamic, interactive, scene-based media system which enables display and interactive control of multimedia data such as audio, video, graphics, images and text. It ranges from a movie enriched with vector graphics overlays and interactivity (possibly enhanced with closed captions), to complex multi-step services with fluid interaction/interactivity and different media types at each step. The demand for such Rich Media service is increasing at a high pace, spurred by the development of the next generation mobile infrastructure and the generalization of TV content to new mobile environments.

Examples
<<missing>>
1 Scope

DIMS defines a dynamic rich-media media system, including a media type, its transport, packaging, delivery, and interaction with the local terminal, user, and other local and remote sub-systems. Enhanced end-user experiences are provided by the coordinated management and synchronization of media and events, combined with end-user interaction. DIMS functionality is not restricted to or by the usage of a particular bearer; however, in 3GPP the DIMS system is currently scoped for use in MBMS, PSS and MMS.

The DIMS media type can be used as a generic media type, allowing creating dynamic interactive rich-media services and can also benefit, or be used in association with other media types (e.g.: audio codecs, video codecs, xhtml browser, etc.).

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document. <<ed: 1 and 8 are unused, and 7 only in a section that is going away>>
[1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2] W3C SVG Tiny 1.2, Scalable Vector Graphics (SVG) Tiny 1.2 Specification [Recommendation], http://www.w3.org/TR/SVGMobile12/
[3] Open Mobile Alliance, “ECMAScript Mobile Profile 1.0”, July 2004

[4] ISO/IEC 14496-20:2006 Information technology — Coding of audio-visual objects — Part 20: Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF), including ISO/IEC 14496-20:2006/COR1, ISO/IEC 14496-20:2006/AMD1

[5] ISO/IEC 14496-22 Information technology — Coding of audio-visual objects — Part 22: Open Font Format
[6] W3C Recommendation: "Synchronized Multimedia Integration Language (SMIL 2.0)-[Second Edition]", http://www.w3.org/TR/2005/REC-SMIL2-20050107/, January 2005
.
[7] 3GPP TS 26.346, "Multimedia Broadcast/Multicast Service (MBMS)”
[8] 3GPP TS 26.140: "Multimedia Messaging Service (MMS); Media Format and Codecs".

[9] 3GPP TS 26.234: “Transparent end-to-end Packet-switched Streaming Service (PSS); Protocols and codecs”

[10] 3GPP TS 26.244: "Transparent end-to-end streaming service; 3GPP file format (3GP)".

[11] The Unicode Consortium: "The Unicode Standard", Version 5.0, http://www.unicode.org/
[12] ISO/IEC 14496-12, Information technology — Coding of audio-visual objects — Part 12: ISO Base Media File Format
[13] IETF RFC 1952: "GZIP file format specification version 4.3", P. Deutsch., May 1996
[14] IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1", Fielding R., Gettys J., Mogul J., Frystyk H., Masinter L., Leach P., Berners-Lee T, June 1999
[15] IETF RFC 4329: “Scripting Media Types”, Hoehrmann B, April 2006
[16] IETF RFC 4281: “The Codecs Parameter for "Bucket" Media Types”, Gellens R., Singer D., Frodjh P., November 2005
[17] IETF STD 0064/RFC 3550: "RTP: A Transport Protocol for Real-Time Applications", H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, July 2003
[18] IETF RFC 2326: "Real Time Streaming Protocol (RTSP)" Schulzrinne H., Rao A., Lanphier R., April 1998
[19] W3C Document Object Model (DOM) Level 3 Events Specification, Version 1.0, W3C Working Draft 13 April 2006 http://www.w3.org/TR/DOM-Level-3-Events/

[20] IETF RFC 2046: "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", Freed N., Borenstein N., November 1996
[21] W3C XML Events, an Events Syntax for XML, W3C Recommendation 14 October 2003. http://www.w3.org/TR/2003/REC-xml-events-20031014
[22] W3C Media Access Events http://www.w3.org/TR/MediaAccessEvents/
[23] IETF STD 65, RFC 3551, "RTP Profile for Audio and Video Conferences with Minimal Control", Schulzrinne, H. and S. Casner, July 2003
[24] IETF RFC 3388: "Grouping of Media Lines in the Session Description Protocol (SDP)", Camarillo, G., Eriksson, Holler, J. and G, Schulzrinne, H., December 2002
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
3 Definitions, symbols and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

<<ed: these are all supplied by the editor and not yet reviewed or agreed>>
Scene:
A complete scene, suitable for starting a session or completely replacing the current scene in a session. (Functions very similarly to an I-frame in video.)

Scene Update:
A set of differences that make changes to the scene in the current session. (Similar to a P-frame in video).

3.2 Symbols

For the purposes of the present document, the following symbols apply:

3.3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

<<ed: not reviewed>>

API:
Application Program Interface

AU
Access Unit

AVP:
Audio/Video Profile

CTR:
Counter

DIMS:
Dynamic Interactive Multimedia Scene

DOM:
Document Object Model

FEC:
Forward Error Correction
FLUTE:
File deLivery over Unidirectional Transport
HTTP:
Hyper Text Transfer Protocol

IANA
Internet Assigned Numbers Authority
ID:
Identifier
LASeR:
Lightweight Application Scene Representation
MBMS:
Multimedia Broadcast/Multicast Service
MIME
Multipurpose Internet Mail Extensions

MMS:
Multimedia Messaging Service
PSS:
Packet Switch Service
RAP:
Random Access Point
RTP:
Real-Time transport Protocol
RTSP:
Real Time Streaming Protocol

RU
Recovery Unit

SDP:
Session Description Protocol

SI
Switch Intra (I) Frame

SMIL:
Synchronised Multimedia Integration Language

SU
Scene Update
SVG:
Scalable Vector Graphic
TCP:
Transmission Control Protocol
UAProf:
User-Agent Profile
uDOM:
microDOM
UDP:
User Datagram Protocol
UE:
User Equipment
URL:
Uniform Resource Locator
URN:
Uniform Resource Name
W3C:
World Wide Web Consortium
XML:
eXtensible Markup Language
4 Overview and Architecture

[image: image3.wmf]

R

i

ch

M

ed

i

a

conte

n

t

(

s

cen

e

s,

sce

n

e

upda

t

e

s

,

discr

et

e

an

d

continuous

me

d

ia

Con

t

aine

r

Forma

t

 /

Transport

Pack

e

ts

Rich

M

edia

Se

r

ve

r

R

e

mo

t

e

In

t

er

a

c

t

ion

M

echa

n

is

m

s

Forward Tran

s

m

i

ssion

(Unic

a

s

t

, Mu

lt

i

c

as

t

,

Broad

c

a

s

t

Downl

o

ad

and St

r

e

a

m

ing

Protocols

T

r

anspo

r

t

 M

echanis

m

s

Loc

a

l

Inter

a

c

t

ion

M

echa

n

is

m

s

Rich

M

edia

C

l

ient

Ric

h

Me

d

ia

Play

e

r

Is th

e

playerÕ

s

reques

t

remo

t

e in

natur

e

?

send

reque

s

t

yes

no

Figure 4‑1: GENERAL ARCHITECTURE OF THE RICH MEDIA SYSTEM

The rich media system can be perceived as client-server architecture, comprising 3 main components: The rich media server, transport mechanisms and the rich media client. Figure 4‑1illustrates the general architecture. The server takes as input, rich media content comprised of scene description, discrete (e.g. images) and continuous (e.g. audio, video) media. The scene description can be dynamically updated through scene updates. The rich media content can be encapsulated into a container format, containing additional information such as media synchronization, metadata, and hint tracks for packetization. The system then utilizes various transport mechanisms for 1-to-1 and 1-to-many protocols for download, progressive download and streaming scenarios. The content is played on the client, allowing for local and remote interactivity of feedback and data requests.
5 Media-type Definition

5.1 Introduction

The DIMS media type allows spatial and temporal layout of the multimedia scene. This scene can consist of any combination of still pictures, videos, audio channels and animated graphics. It includes an update mechanism that allows for partial updates of the existing scene, as well as updating the presentation with a completely new scene and stream tune-in functionality.
5.2 Media Type Components

The DIMS media type consists of:

· Base scene description, which is SVG Tiny 1.2 [2]
· Scene description extensions

· Scene commands
5.3 Scene description

5.3.1 Base Scene Description

SVG Tiny 1.2 provides the basic DIMS scene functionality; layout, inclusion and referencing of objects, synchronization of object timelines and a rendering model.

The full syntax and semantics of SVG Tiny 1.2 shall be supported for DIMS scene functionality.
5.3.2 Scene Description Extensions

5.3.2.1 Introduction

Extensions defined here are designed so that
a) when the same functionality is present in profiles of SVG other than SVG Tiny 1.2, then the extension is compatible with that or a restricted version of that.
b) A terminal implementing both this specification and SVG (any version) can use a common implementation of the DOM tree, scene graph, rendering model etc. without having variant handling that depends on whether the scene was built using DIMS or SVG.
c) No extensions are required to be present in all documents; content authored to the SVG Tiny 1.2 specification may be used as the initial scene of a stream designed to this specification.
<<Editors note: SA4 agrees to work towards aligning these extensions with W3C SVG specification>>
The following extensions are defined here. The namespace called ‘dims:’ here is associated with the URN <<TBD>>.
5.3.2.2 Rectangular clipping of a graphical object

The lsr:rectClip mechanism provides pixel aligned clipping defined as a transformable rectangle

The lsr:rectClip element shall be supported. The definition of lsr:rectClip is defined in subclause 6.8.28 of [4].

<<ed note: Note: There is ongoing discussion with MPEG on modifying the syntax (for e.g. changing size attribute to x, y. width, height attributes).>>

5.3.2.3 Full-screen video

The full-screen video feature consists of a new attribute lsr:fullscreen on the SVG video element.

The lsr:fullscreen element shall be supported. The lsr:fullscreen attribute is defined in subclause 6.8.40.2 of [4].
5.3.2.4 Full-screen SVG
The fullscreen SVG feature consists of an attribute ‘fullscreen’ to the <svg> element to hint that the scene should be rendered on the full screen. With the attribute set to true the DIMS UE should negotiate the rendering area with its parent UE and get as large part of the screen as possible for the DIMS canvas.
<<ed Note: namespace of ‘fullscreen’ attribute on <svg> is TBD.>>
5.3.2.5
Attributes clipBegin and clipEnd
Attributes clipBegin and clipEnd defined in sub clause 7.6.1 of [6] shall be supported on the following elements: video, audio, animation, and “updateThing” element as described in section 5.3.2.6.
5.3.2.6 Update Streams

This specification defines a new element ‘updateThing’ <<ed: better name please>> to link secondary streams of updates to a scene. All timing attributes defined in [2] section 16.2.7 are defined for this element, except the "fill" attribute. This element has an implicit “simple duration” of 'indefinite'. The synchronization attributes defined in [2] section 12.6 can be used with this element.

<<ed: this element may be a proper subset of LASeR updateSource, and if so, a common name and namespace should be used>>
Attribute definitions:
All timing attributes defined in [2] section 16.2.7 are defined for this element, except the "fill" attribute.
xlink:href = "<iri>"

An IRI reference to an update document or a DIMS stream/file. this attribute specifies the location of the stream of updates. In the absence of this attribute, this element does not have any effect. In the absence of this attribute, this element does not have any effect. This attribute is not animatable and not inheritable.

<<ed: lsr:syncRef – TBD from ISO/IEC 14496-20/AMD1>>

5.3.2.7 Screen Orientation and Key Location

Two events and two feature strings are defined that make it possible for scenes to adapt to the screen layout. The events are:

· screenOrientationPortrait

· screenOrientationLandscape

They are in the <<ed: TBD>> namespace. Whenever the terminal detects a change of orientation, angle, or screen size, one of these two events is dispatched. A portrait event is dispatched if the screen is taller than it is wide, and a landscape event is dispatched if the screen is wider than it is tall. It is the responsibility of the system below the scene to orient the screen buffer to user; the DIMS scene author does not do this.

<<ed: paragraph TBD>>Many systems have two softkeys adjacent to the screen. In this model, when the softkeys are at the bottom, the primary softkey, which generates the event ‘primarySoftKey’ when pressed, is to the left, and the secondary softkey, which generates the event ‘secondarySoftKey’ when pressed, is to the right. Therefore if the softkeys are reported to be on the right, the primary is at the bottom, and the secondary at the top of the right edge.<<ed: the whole issue of relating key physical locations to the screen buffer and to the events they generate is still undecided>>

The angle between the long (primary) axis of the screen and vertical is reported in degrees in screenAngle, to the best of the terminal’s capability. This angle is measured clockwise from vertical (see diagram) and would normally be close to 0 or 180 in portrait events, and close to 90 or 270 in landscape events.

[image: image4.wmf]

scree

n

 pr

im

ar

y

a

x

i

s

v

er

t

i

ca

l

a

Figure 5‑1: Screen Orientation

These events have the following interface.

interface ScreenOrientationEvent : Event
{

const unsigned short SOFTKEYS_NONE
= 0;

const unsigned short SOFTKEYS_LEFT
= 1;

const unsigned short SOFTKEYS_RIGHT
= 2;

const unsigned short SOFTKEYS_TOP
= 3;

const unsigned short SOFTKEYS_BOTTOM
= 4;

readonly attribute unsigned long screenWidth;

readonly attribute unsigned long screenHeight;

readonly attribute unsigned long screenAngle;

readonly attribute unsigned short softKeysLocation;
}
SOFTKEYS_LEFT – indicates that the device soft keys are to the left of the screen in the current screen orientation.

SOFTKEYS_RIGHT - indicates that the device soft keys are to the right of the screen in the current screen orientation.

SOFTKEYS_TOP - indicates that the device soft keys are at the top of the screen in the current screen orientation.

SOFTKEYS_BOTTOM - indicates that the device soft keys are at the bottom of the screen in the current screen orientation.

SOFTKEYS_NONE - indicates that the device has no soft keys or their position cannot be reported in this way

screenWidth - contains the new screen display or viewport width
screenHeight -contains the new screen display or viewport height

screenAngle – documents the angle between the primary axis of the screen, and vertical.

softKeysLocation - indicates the location of the device soft keys in response to the orientation change. The possible values are SOFTKEYS_LEFT, SOFTKEYS_RIGHT, SOFTKEYS_TOP, SOFTKEYS_BOTTOM or SOFTKEYS_NONE.

The screen orientation events shall be supported in DIMS. If the terminal has an orientation sensor, or other physical adaptation that causes the available screen drawing area to change (e.g. a partial cover), events shall be generated whenever the terminal detects a change in any of the parameters to these events. These events may be used in the following circumstances:

1) To register event listeners based on the screen orientation events so that the script can be invoked when the event occurs. This can be done either through the application using uDOM APIs or declaratively via the <ev:listener> element with <ev:event> attribute set to one of the screen orientation events and invoking the appropriate <handler> element.

2) Timed Elements that can be defined to begin or end based on screen orientation events.

The following feature strings must also be supported, in order to allow the use of the switch element:

· urn:<<ed: tbd>>:orientLandscape for typical ‘landscape’ orientation

· urn:<<ed: tbd>>:orientPortrait for typical ‘portrait’ orientation

If the most recent event generated was a portrait event, then the portrait feature tests as true; if the most recent event was a landscape event, the landscape feature tests as true. At any time, exactly one of these features must test as true.

An example use of these feature strings is as follows:

<switch>

<g requiredExtensions=” urn:<<ed: tbd>>:orientPortrait”>

… layout for portrait …

</g>

<g requiredExtensions=” urn:<<ed: tbd>>:orientLandscape”>

… layout for landscape…

</g>
</switch>
5.3.2.8

5.3.2.9

5.4 Scene Commands
Scene Updates

The scene update mechanism allows reception of updates that change parts of the current scene, without having to replace the entire scene.
To account for the different update scenarios two update mechanisms are defined:

· Primary-stream updates: Updates are delivered to the client in the same stream as the original scene.

· Secondary-stream updates: Updates are delivered to the client in separate streams from the original scene, e.g. in an interactive scenario or initiated from the scene mark-up.

In a primary-stream case, the updates and/or scene replacements are sent in the same stream as the initial scene. The temporal management of samples in a primary stream is based upon transport level timestamps. A secondary stream is a stream that does not contain the initial scene. A secondary stream is initiated directly from the DIMS mark-up using the ‘updateThing’ element.

The following LASeR commands from clauses 6.7 of
 [4] in LASeR ML format shall be supported.

· Insert

· Element

· attribute

· New value in list attribute

· Delete

· Element

· Attribute

· Value in list attribute

· Replace

· Element

· Attribute

· Value in list attribute

· Add

5.4.1 State management commands

LASeR commands “Save”, “restore”, and “clean” as defined in [4] shall be supported.
Exotic Repair
<<ed: This is either ‘Distributed RAP’ from S4-060458 or ‘Rolling RAP’ from section 4 etc, of S4-060429. The signalling at the transport level of the DRAP/ Rolling RAP functionality is needed in both cases and appears to be identical.>>

5.4.2

5.4.2.1

5.4.3

5.4.3.1

5.5
DIMS Unit Definition
5.5.1 Definition

A DIMS Unit is built from a header and a body. The DIMS Unit Body is either

a. a complete SVG document as specified in clause 5.3, possibly using extensions;

b. or a textually concatenated sequence of scene commands as specified in clause 5.4; <<ed: we may want an XML wrapper around a set of commands here>>
c. or an ‘exotic repair’ as specified in clause 5.5.
A DIMS Unit Body may be compressed.

DIMS Units are framed and identified by the transport layer. Each DIMS Unit has certain characteristics, signalled by the DIMS Unit Header.
There are DIMS Units used in repair processing, and DIMS Units used in normal processing. Repair DIMS Units, and DIMS Units marked as random-access points, are used in random access, tune-in, and error recovery; for a full description of their processing model, see clause 5.9.1 below.
5.5.2 DIMS Unit Header
DIMS Unit Header is 3 bytes long. The first byte contains flags, and the second two bytes contain the length of the DIMS Unit Body, encoded as a big-endian (network byte order) value.

The flag byte has the following definition:

bit 0
is-Scene
bit 1
is-RAP
bit 2
is-Repair
bit 3
repair-Complete
bit 4
priority
bit 5
compression
bit 6-8
reserved, must be set to 0, and ignored when processing
These fields have the following definitions:

is-Scene:
when 1, indicates that the DIMS Unit contains a Scene Description as documented in clause 5.3; when 0, indicates that the DIMS Unit contains one or more Scene Commands as documented in clause 5.4 or an exotic repair as specified in clause 5.5.
is-RAP:
when 1, indicates a Random Access Point; when 0, indicates a non-Random-access point

is-repair:
when 0, indicates a main (normal processing) DIMS Unit; when 1, signals a repair DIMS Unit
repair-complete:
must be 0 on DIMS Units with is-repair==0; on DIMS Units with is-repair==1, when 1, indicates that repair processing is completed by this DIMS Unit, and normal processing should begin, and when 0, indicates that repair processing should continue;
priority
set to 1 indicates a high-priority unit; when set to 0 indicates a low-priority unit. A unit should be marked as low-priority if all of the following are true if this DIMS Unit is lost or not processed by the terminal, and shall be marked as high-priority otherwise:
1 all succeeding DIMS Units can be decoded and operated on without error (e.g. their DOM updates do not depend on the possibly lost command(s).

2 the visual and semantic nature of the scene is satisfactory to the content author.
DIMS Units with is-repair set to 1 should normally be marked as low-priority, to avoid their loss causing an un-needed repair when repair and normal data are carried in the same transport.
Informative note: The setting of the priority field is, due to point 2, partly at the discretion of the content creator. An example of a simple method of evaluating point 2 is to see if, when the next packet is received, the terminal state is identical to what it would have been if the DIMS Unit(s) had not been lost in the first place.

<<ed: we should think hard about the possibly very bursty content, where a packet loss might not be detected for a long period. >>
compression:
indicates the compression applied;
0 indicates no compression (textual format);
1 indicates GZIP compression of the textual format;

5.6

5.7 Overall timing model

The SVG timing model applies, with the addition of the processing of updates at their times. All events and “ready” updates are applied at their time. The relative timing of updates and events with the same activation times is not defined by this specification.

DIMS inherits timed elements from SVG Tiny 1.2 and defines an additional one: the updateSource element, which supports the same timing and synchronization as the media elements. DIMS uses the run-time synchronization functionality that SVG Mobile 1.2 inherits from SMIL 2.1 [6]. <<ed: SMIL 2.1 or 2.0?>>
The scene time is set to zero when an initial scene is loaded. Scene time advances according to the SVG Tiny 1.2 timing model.
Logically XML fragments are sent in access units which have Media Time timestamps (MT). The timing model defines how to translate these into scene time. These media time stamps may not have a known origin, and are expressed on a timescale declared at the transport layer. Note that the equations below do not show the correction for timescale units, for simplicity.
We define a NewScene access unit as one access unit containing an "svg" element. The media timestamp MT(ns) of that access unit is arbitrary, but the defined SceneTime of it is zero; ST(ns) = 0.
ST(AUwithNewScene) = 0
The XML fragment which supplies the construct "r" is sent in a later access unit with media timestamp MT(r). The defined scene time of that access unit is:
If there was a NewScene in this stream:
ST(r) = MT(r) - MT(AUofLastNewScene)

If there was no NewScene in this stream:
ST(r) = MT(r) - MT(FirstAU) + streamOffset

streamOffset is determined by the syncBehavior attribute just as for other media elements.
Note: streamOffset is determined as:
· The resolved value of the begin attribute of updateThing pulling that stream if syncBehavior=”locked”;

· When syncBehavior is not locked, the streamOffset is equal to the scene time when the first AU of the secondary stream is applied, and may change during the stream playback (e.g. buffer underrun).
The processing model for scene updates is the same as for script and event processing. This specification does not mandate any processing order for simultaneous scripts, events and updates. This specification does not mandate any processing order for DIMS units, scripts or events that shall be processed at a single time instant. A DIMS unit does however have exclusive access to the scene tree during processing. DIMS Units shall be processed in decoding order, i.e. sequence number order in RTP or order inside a sample in the 3GP file format. <<ed: missing, that DIMS Units are processed in stream order!>>

<<ed note: check with SVG WG that there is a consensus on saying that all events and DOM manipulations need to be processed before rendering>>
5.8 Random Access, Tune-in and Error Recovery

5.8.1 Introduction

Random access points in streams are either essential random access points or redundant random access points. Essential random access points are processed by terminals in all states. Redundant random access points should only be processed by terminals needing to perform random access, tune-in, or error recovery.

A redundant random access point in a primary scene consists of a Base Scene or an exotic Tune-in point including the extension to indicate the current presentation time.

5.8.2 Random access points are indicated in the DIMS Unit header using the is-RAP flag. Redundant random access points have the is-Repair flag set to 1; essential Random Access points have this flag set to 0.
Terminal Processing Model

In the following pseudo-code, the terminal may be processing a stream under one of three conditions:

a) normal processing, ‘normal’;
b) when repair is needed ‘repair-needed’;
c) after repair starts but before it is complete, ‘in-repair’.
Repair-needed state is entered under any of the following circumstances:

a) after opening a stream

b) after performing random access;
c) after loss of a high-priority DIMS Unit in normal processing,
d) after the loss of any DIMS Unit in in-repair processing
A DIMS Unit is processed by the terminal depending on the terminal state, and the DIMS Unit characteristics as indicated by the DIMS Unit header.
for each DIMS-Unit:

if (processing-state == normal) {

if DIMS-Unit.is-repair

then Discard(DIMS-Unit)

else Process(DIMS-Unit);

}
else {

// repair-needed or in-repair

if DIMS-Unit.is-RAP ||

((processing-state == in-repair) && (DIMS-Unit.is-repair))

then {

Process(DIMS-Unit);

if (not DIMS-Unit.is-repair)

 or (DIMS-Unit.repair-complete)

then processing-state := normal;

else processing-state := in-repair;

}

else Discard(DIMS-Unit);

}

A Scene Description is processed as a complete replacement for the current scene tree. That is, the entire DOM is discarded and replaced with the result of parsing the SVG element. All DIMS Units retain (and possibly modify) the current scene tree.
Commands that cannot be executed (e.g. they refer to a DOM node which does not exist) must be ignored when in repair-needed or in-repair state. This condition should not arise in normal state, and their handling in this state is not defined by this specification.
5.8.3 Random Access Points in Primary Streams

A Random Access Point (essential or redundant) in a primary stream must be a Scene Description or an Exotic RAP. When used, this scene becomes the current scene and replaces all previous data.

A redundant Random Access Point in a primary stream must have the current_scene_time attribute on the SVG element. This is used to establish the current SceneTime of the scene, so that terminals tuning-in, performing random-access, or recovering from a lost high-priority DIMS Unit achieve the same SceneTime as terminals which had processed the entire stream from the most recent non-repair Random Access Point. This roll-forward is performed after parsing of the </svg> tag and in exactly the same way as a ‘seek’ in SVT Tiny 1.2, according to <<ed: URL ref needed into the SVG T1.2 spec.>>.
5.8.4 Random Access Points in Secondary Streams

A Random Access Point in a secondary stream is a series of LASeR commands which are used to “clean” the scene. Here the term cleaning refers to making the scene in such a state that when, after the commands are applied the decoding can continue as normal.

The secondary stream shall be encoded in such a way that it does not matter which packets were lost – the cleaning will work well anyway. The cleaning will include removing any objects which should have been removed, etc.
Note: A simple way of encoding such a stream would be to only let updates in a secondary stream make modifications to a few nodes. Then the cleaning up could be as simple as removing these few nodes and reinserting them, removing all potential errors.

·
·
·

6 Interaction, Scripting and State Management

6.1 Local interaction

The supported local events and their management in DIMS are built upon the DOM Level 3 events model [19].

They include DOM Events (focus, activate, etc), SVG Events (connection, load, etc.) and general XML events [21] (user events, timing, key, and pointer events). <<ed: xml events - right reference?>>
The DOM Level 3 events and their description can be obtained from the SVG Tiny 1.2 draft specification [2].

The following other events shall be supported:

Events for streaming:

· The media access event defined [22] shall be supported.
<<ed: Note: The streaming events will be completed based on the W3C Streaming Events specification if it is released in the DIMS timeframe. >>
<<ed: we may well need extensions to specify DIMS-specific events>>
6.2 Remote interaction

Client-server communication is possible in the DIMS system using three different mechanisms:

· The client can open a suitable URL. The set of valid URL forms is not specified in DIMS, and includes protocols such as HTTP [14], RTSP [18] or MailTo. <<ed: this could usefully be re-phrased>>
· By establishing a socket connection between the client and the server using the Connection API in the uDOM [19]
· By using the HTTP specific uDOM methods getURL or postURL [19]
<<ed: Maybe add examples of when and how to use the different methods.>>
6.3 Scripting

SVG Tiny 1.2 contains a uDOM interface that provides linkage to a script engine and adds the possibility to modify the DOM representation of the scene from scripts.

ECMAScript mobile profile (MP) [3] can be used in conjunction with the script and handler elements and SVG µDOM API (Appendix A of [2]) in order to provide more powerful DOM manipulation, and interaction.

UEs supporting the DIMS media type shall support ECMAScript mobile profile (MP) [3] with the following extensions to uDOM API.

Table 1 adds to the table in A.8.12 of [2]. It contains trait access rules for DIMS extensions.

	Attribute
	Trait Getter
	Trait Setter
	Default Values
	Description

	fullscreen
	getTraitNS[true | false]
	setTraitNS[true | false]
	false
	Available on <video> and <svg> elements

	x
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Origin x of the <rectClip>

	y
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Origin y of the <rectClip>

	width
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Width of the clipping region defined by <rectClip>

	height
	getFloatTraitNS
	setFloatTraitNS
	0.0f
	Height of the clipping region defined by <rectClip>

Table 1: Trait access rules for DIMS extensions
Description of getFloatTraitNS and setFloatTraitNS methods

float getFloatTraitNS(in DOMString namespaceURI, in DOMString name) raises(DOMException);
- Same as getFloatTrait, but for namespaced traits. Parameter name must be a non-qualified trait name, i.e. without prefix.

Parameters:

namespaceURI - the namespaceURI of the trait to retrieve.
name - the name of the trait to retrieve.

Return Value:

the trait value as float.

Exceptions:

DOMException - with error code NOT_SUPPORTED_ERR if the requested trait is not supported on this element or null.
DOMException - with error code TYPE_MISMATCH_ERR if requested trait's computed value cannot be converted to a float.

void setFloatTraitNS(in DOMString namespaceURI, in DOMString name, in float value)

raises(DOMException);
Same as setFloatTrait, but for namespaced traits. Parameter name must be a non-qualified trait name, i.e. without prefix.

Parameters:

namespaceURI - the namespaceURI of the trait to be set.
name - the name of the trait to be set.
value - the value of the trait to be set as float.

Exceptions:

DOMException - with error code NOT_SUPPORTED_ERR if the requested trait is not supported on this element or null.

DOMException - with error code TYPE_MISMATCH_ERR if the requested trait's value cannot be specified as a float (for e.g. NaN)

DOMException - with error code INVALID_ACCESS_ERR if the input value is an invalid value for the given trait or null.

6.4

7 Compression

Uncompressed XML shall be supported. XML compressed with GZIP [13] shall be supported.
8 Transport

8.1 Overview

The transport mechanisms support rich media delivery in the following modes: Unicast download (HTTP/TCP or MMS protocol), broadcast/multicast download (FLUTE/UDP), unicast streaming and broadcast/multicast streaming (RTP/UDP). For download mode, reliability is guaranteed by existing mechanisms in the transport and network layers, and no error resilience tools need to be designed at the application layer for rich media delivery. However, rich media transport in streaming mode is more challenging, with UDP being unreliable. Therefore, the RTP design provides some error resilience tools to help the media decoder cope with unreliable transport.

Rich media is a combination of continuous media and discrete media and relevant transport mechanisms for these two media types should be used. Rich media streaming is thus naturally realized by (a) streaming continuous media such as scene streams, video and audio; and (b) downloading the discrete media, such as images.
DIMS Units can be classified as either used in normal processing, or used only for ‘repair’ processing. For a given DIMS data-stream, these two kinds of DIMS Units can be managed either (a) in a single transport or (b) in two separate transports.
8.2 Embedding in existing protocols (HTTP etc.)

8.3 Download (including progressive download)

8.3.1 Storage in ISO Base Media File Format Files
8.3.1.1 Introduction

DIMS streams, both ‘primary’ streams (those containing SVG scenes) and secondary streams (which normally carry only updates) are carried in files of the ISO Base Media File Format [12] (including 3GP files [10]) according to this section. .

Either one or two tracks are used in the file for the normal and repair DIMS Units.

8.3.1.2 Stream Type

Scenes are carried in scene tracks in ISO family files. They therefore use:

(a) a video media handler ‘vmhd’;

(b) a media handler type of ‘sdsm’ (scene description media handler);

(c) a derivative of the base SampleEntry in the sample description box.

The timescale for the stream should be suitably chosen to achieve the desired accuracy of timing of access units.
8.3.1.3 Track and Media Header fields

The width and height in the track header shall be set in the desired ratio, and indicate the suggested minimum display size. A player on a system with an indefinitely large display, in the absence of a fullscreen request, could use this size as a suggested initial display size.

If the presentation has an expected, reasonable duration, then it is encoded as the track duration. Otherwise the ISO file format recommendation of maxint for the duration, when it is indeterminate, should be used.

The language code of the track should be set appropriately if the presentation is language-specific, or else the value ‘und’ (undetermined) or ‘mul’ (multiple) should be used.

8.3.1.4 Sample Dependency Table

The sample dependency table may be used. Note that the ‘unknown’ field values may be needed. The fields have the following semantics for DIMS streams:

sample_depends_on should be set according to whether the sample contains a normal DIMS Unit (not repair) with is-RAP set to 1:
0: unknown;

1: this sample does not contain a normal RAP;
2: this sample does contain a normal RAP;
3: reserved

sample_is_depended_on should be set according to the value of the P-bit in the DIMS Unit headers
0: unknown;

1: one or more DIMS Units have the P-bit set to 1;
2: no DIMS Unit has the P-bit set to 1 (low-priority access unit);

3: reserved
sample_has_redundancy should be set to indicate whether the sample contains repair DIMS Units:
0: unknown;
1: one or more DIMS Units have the is-repair bit set to 0;
2: no DIMS Unit has the is-repair set to 0;
3: reserved

8.3.1.5 Sample Entry Name and Format

The sample entry four-character code for scenes is ‘dims’. The configuration box must be present in the sample entry.

class SceneConfiguration extends FullBox (‘dimC’){

unsigned int(8) profile;

unsigned int(8) level;

unsigned int(5) reserved=0;

unsigned int(1) stream_type;

unsigned int(2) contains_repair;

string

text_encoding;

string

content_script_type;

}
class MPEG4BitRateBox extends Box(‘btrt’){

unsigned int(32) bufferSizeDB;

unsigned int(32) maxBitrate;

unsigned int(32) avgBitrate;
}

class DIMSSampleEntry() extends SampleEntry (‘dims’){

SceneConfiguration

config;

// mandatory

MPEG4BitRateBox

bitrateinfo;
// optional

DIMSSpecificInfoBox
dimsInfo;

// <<ed: TBD>>
}

The fields have the following semantics:

stream_type - takes the value 1 for primary streams (in which every random access point is a scene), and the value 0 for secondary streams. Files containing secondary streams are not normally playable by themselves, outside the context of the scene(s) they are designed to update.
contains_repair - takes the value 1 if the stream contains only DIMS Units with is-repair set to 0, the value 2 if the stream contains only DIMS Units with is-repair set to 1, and takes the value 3 if both occur. The value 0 is reserved. Note that streams containing only repair units must be linked to the stream that they repair (see section 8.3.1.9 below).

text_encoding - is a null terminated string with possible values taken the XML specification for character encoding in entities (e.g. section 4.3.3 of XML 1.0 Third edition). It describes the text encoding after the content has been de-compressed (e.g. after deflating). This field is only applicable if the content is transmitted as (possibly encoded) text.

content_script_type - is a null terminated string that identifies the scripting language used. It takes a suitable MIME type [20] from the IANA registry, such as “application/ecmascript” (see [15]).
bufferSizeDB gives the size of the decoding buffer for the elementary stream in bytes. This is the size of the largest textual access unit, in bytes (i.e. after GZIP de-compression).
maxBitrate gives the maximum rate in bits/second over any window of one second

avgBitrate gives the average rate in bits/second over the entire presentation
Note that the text_encoding and content_script_type are required to be consistent over all the access units described by this sample entry. This simplifies processing. It is an error to have a mismatch between these values and those present in the XML of the access units themselves.

<<ed: The definition, contents, and mandatory/optional status of the DIMS specific information is TBD. Note also that only one profile is intended for the first release of DIMS.>>
8.3.1.6 Sample Format

8.3.1.7 The old definition of Access Unit should be moved here

8.3.1.8 Other Resources

Other resources may be carried in the meta-data directories of ISO files, in the track containing the scene, the movie containing that track, or the file containing that movie. If there is no actual meta-data (the meta-data block is there merely to carry resources), the meta-data handler type ‘null’ may be used.

URL forms to address these resources are defined in the ISO specification, and are relative to the file containing the resource.
The meta data box may also be used for multi-scene presentations where the meta box includes the initial SVG scene, and one of the tracks provides the updates.
8.3.1.9 Sync Samples
The sync sample table marks Access Units in which any of the DIMS Units have the is-RAP bit set to 1.

Note: the use of the shadow sync box is deprecated.
8.3.1.10 Separate Repair Track
Repair DIMS Units may be stored in the file format using a separate track. These are structured the same as switch picture tracks in the AVC File Format (ISO/IEC 14496-15), using the support for SI pictures only. The repair track must be linked to the track which it repairs (the normal track) by a track reference of type ‘swto’ in the repair track.
Repair tracks are identified by this track reference, and must also have contains_repair set to “repair data only” in their sample entry. The track they repair must have contains_repair set to “normal data only”.
If a stream is converted from a single-track to two-tracks, some small adjustment may be needed. Specifically, any ‘normal’ DIMS Units following the repair-complete indication in the same access unit will need to be copied into the ‘repair’ track, marked as ‘repair’ DIMS Units, and the repair-complete indication moved to the last such DIMS Unit in the access unit.
A terminal may perform tune-in etc. using the ‘repair’ track by

a) finding the random access point in the repair track, closely preceding the desired play point, by using the sync sample table;

b) processing DIMS Units from the repair track until the repair-complete indication;

c) following the ‘swto’ track reference and commencing processing at the temporally next access unit in the linked (main) track.
8.4 Error Resilience

There are several error resilience mechanisms available in DIMS. Among these are:

· Priority: By separating essential and non-essential units one can determine if a loss need repair or not. This is described in the following section.
· Recovery Points: Recovery points can be set periodically. Recovery points are described in section 8.5.2

· Periodic Tune-in Points: Tune-in points can be placed periodically in a stream. In the case of error one can tune-in to the channel again.

· Separation of static and dynamic data. This can even increase the efficiency of Distributed Random Access Points.

A combination of these methods can be used.

8.4.1 Priority

3
4

The counter (CTR) field is used to detect the loss of high priority units. Each packet contains, in its CTR field, the current value of the counter. After being placed in the packet, the CTR field is incremented by one for each packet containing one or more DIMS Units with high priority.
Informative note: A discontinuity in the sequence number indicates a lost packet. A discontinuity in the CTR field indicates the number of prioritized packets which have been lost.
An example of the use of the CTR and priority (P) bits is shown below:

[image: image5.wmf]

SU

P=1

CTR=5

SU

P=1

CTR=6

SU

P=0

CTR=7

SU

P=1

CTR=7

SU

P=1

CTR=0

Packe

t

l

o

s

t

The

expe

c

te

d

 v

a

lue

of

C

T

R

 a

f

te

r

 th

e

l

a

s

t

r

ec

e

ive

d

 pac

k

e

t

 w

as

 7, and

a

s

 t

h

e

v

a

lu

e

 of C

T

R

did not

inc

r

ea

s

e

during

th

e

 pac

k

e

t

 lo

s

s i

t

c

an

b

e

 e

s

ta

b

l

i

shed

t

hat th

e

 lo

s

t

p

ack

e

t(s)

h

ad

no

DIM

S

 D

a

t

a

 Un

i

ts

wi

th

prior

i

ty

P

=1

.

SU

P=1

CTR=5

SU

P=1

CTR=6

SU

P=1

CTR=7

SU

P=0

CTR=0

SU

P=1

CTR=0

P

acke

t

l

o

s

t

The

expe

c

te

d

 v

a

lue

of

C

T

R

 a

f

te

r

 th

e

l

a

s

t

r

ec

e

ive

d

 pac

k

e

t

 w

as

 7, and

a

s

 t

h

e

v

a

lu

e

 of C

T

R

incr

e

ase

d

 from

7

to

0

du

r

ing

t

h

e

p

a

ck

e

t loss i

t

c

an

b

e

e

s

t

ab

l

i

s

hed

th

a

t a

p

r

iori

ti

zed

p

ack

e

t

,

one or mor

e

 high

-

prior

i

ty

D

I

M

S

 D

a

t

a

 Un

i

ts

,

 w

a

s los

t

.

Figure 8‑1: Example of prioritization including detection of lost prioritized packets.

8.4.2 Recovery Points
<<ed: this whole discussion of ‘checkpoints’ is free-floating and not yet connected to the rest of the specification.>>

Recovery points can be placed in a stream and are typically referred to later in the stream to enable a recovery. Each recovery point has a Recovery_ID which identifies the state at that point. If there is more than one recovery point with the same Recovery_ID it is possible to move directly between these in the case of error.
Recovery points can be set in any type of DIMS unit. This is indicated by a Recovery_ID which is non-zero. The recovery point refers to the state of the DIMS scene directly after decoding of the unit.

[image: image6]
Figure 8‑2: DIMS example stream containing two recovery points with the same Recovery_ID
Figure 8‑2 shows an example stream containing two recovery points with the same Recovery_ID (here =1). The alternate path between these recovery points is indicated with a dashed line.

A second and more general method of using recovery points is in combination with recovery units. A type 1 recovery unit provides an entry point back into the main stream from a recovery point with the same Recovery_ID. It contains an update which takes the client from a recovery point to the desired state. Such units can be ignored by a client during normal playback.

[image: image7]
Figure 8‑3: DIMS example stream containing a single recovery point
Figure 8‑3 shows an example stream containing a single recovery point (here with Recovery ID=4) and a type 1 recovery unit (RU1). The alternate path between these points is indicated with a dashed line.

After decoding a recovery unit of type 1, decoding of the stream can continue like normal. This method makes it possible to add multiple recovery paths at arbitrary places in the stream. Note that the Recovery ID of a recovery unit indicates the state it requires before the update is applied and not the state after its application.

Finally a method to create an arbitrary recovery point in an arbitrary place of a stream is defined. Type 2 recovery units or packets take an arbitrary state and convert it to a recovery point with the help of an enclosed update. This makes it possible to increase robustness by being able to place the same recovery point at multiple places in an arbitrary stream. The obtained recovery point may also be signalled directly in the stream, although this is not necessary.

[image: image8]
Figure 8‑4: DIMS example stream containing two type 2 recovery units (RU2)
Figure 8‑4 shows an example stream containing two type 2 recovery units (RU2). In this case the same recovery point is signalled in two different places in the stream. The scene states need not be the same in these places and the updates in the recovery units are not necessarily the same, but they result in equivalent recovery points, here marked with Recovery_ID=7.

8.4.2.1 Recovery Point Syntax

A recovery point is signalled in the RTP payload header in the case of RTP, or as a parameter associated with a sample in the case of a 3GP file.

8.4.2.2 Type 1 Recovery Unit Syntax

A type 1 Recovery Packet is signalled in the type (T) field of the RTP payload header, or associated with a sample in the case of a 3GP file. The Recovery_ID shall be non-zero. The syntax is otherwise identical to a DIMS update unit.

For the case of 3GP files, recovery units (samples) are similarly marked in the same track or stored in a separate track so that they can be skipped during normal playback.

8.4.2.3 Type 2 Recovery Unit Syntax

A type 2 Recovery Packet is signalled in the type (T) field in the RTP payload header, or associated with a sample in the case of a 3GP file. The Recovery_ID must be non-zero. The syntax is otherwise identical to a DIMS update unit.

For the case of 3GP files, recovery units (samples) are similarly marked or stored in a separate track so that they can be skipped during normal playback.

8.5 Streaming

8.5.1
8.5.2 RTP Payload format for DIMS Streams

The RTP payload format defines two basic packet structures;
a) packets containing one or more entire DIMS units,
b) packets containing a single fragment of a DIMS Unit.
Depending on the underlying network and the unit size, it may be desirable to split DIMS units or aggregate them.

8.5.2.1 RTP Header Usage

The RTP header is defined in [17] and its use in this payload format is described below

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|V=2|P|X| CC |M| PT | sequence number |
+-+
| timestamp |
+-+
| synchronization source (SSRC) identifier |
+=+
| contributing source (CSRC) identifiers |
| |
+-+

Figure 8‑5: RTP HEADER

Marker bit (M): 1 bit - The marker bit is set for the last packet associated with a timestamp.
Informative note: This is useful when a scene is sent as a combination of a smaller scene and a series of scene updates in separate packets. In this case the marker bit of the packet containing the last scene update is to be set. This is in line with the normal use of the marker bit in video coding and enables efficient buffering.

Timestamp: 32 bits - The timestamp indicates the rendering instant of the DIMS sample.

The usage of the remaining RTP header fields follows the rules of [17].

8.5.2.2 Common Packet Header

The RTP payload comprises of a common header and has the following format:

+---------------+
|0|1|2|3|4|5|6|7|
+-+-+-+-+-+-+-+-+
| R |A| T | CTR |
+---------------+

Figure 8‑6: COMMON PAYLOAD HEADER

R: 2 bits
The R bits are reserved, shall be set to 0, and shall be ignored by the receiver.

A: 1 bit

When set to one, the A bit indicates that the packet contains one or more DIMS Units with is-RAP set, or the first fragment of a DIMS Unit with is-RAP set.

T: 2 bits
The payload type as defined in Table 3 below:

Table 3: Summary of RTP Payload Types and Descriptions
	Type
	Description

	0
	Single Time packet

	
	

	
	

	
	

	1
	Fragmentation start Packet

	2
	Fragmentation continuing Packet

	3
	Fragmentation end Packet

	
	

CTR: 3 bits
The CTR is used to detect the loss of one or more high-priority DIMS Units as documented in section 8.4.1

8.5.2.3 Single Time Packet
These packets contain one or more complete DIMS units with the same timestamp. The common header values are:

· Type: 0

· A (RAP): as needed

·
·
The RTP payload is presented below.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Header(Type=0)| DIMS Unit(s) |
+-+-+-+-+-+-+-+-+ |
: :
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |...OPTIONAL RTP padding |
+-+

Figure 8‑7: Single Time Packet payload format

The DIMS units are placed in the RTP payload, in sequence, possibly following by RTP padding.
8.5.2.4

·
·
·
·

·
·
·
·

8.5.2.5 Fragmentation Packets
Frames that exceed the networks maximum transmission unit (MTU) need to be fragmented before transmission. By fragmenting at the RTP level one need not rely on lower layer fragmentation, e.g. IP.

The payload format defines fragmentation of DIMS units into two or more RTP packets.
Note: Fragmentation on the RTP level should however be seen as a solution only when fragmentation on the DIMS level is not possible. Fragmentation can be performed by splitting for example a scene into a scene and a number of scene updates. In this way packets can be created that are smaller than MTUs and can be decoded individually, which gives better error resilience when packets are lost.

The common header values are as follows.

· Type: 1, 2, or 3
· A (RAP): as needed in first fragment, and 0 in all other fragments

· CTR: must be identical in all the packets of a fragmented DIMS Unit; increments after the last fragment depending on the priority of the DIMS Unit

· Fragments consist of an integer number of consecutive octets of a DIMS unit.
·

Fragments of a DIMS unit shall be sent as a group and in consecutive order with respect to RTP sequence numbers. The first fragment shall be marked as type 1 and the last fragment shall be marked as type 3. Other fragments shall be marked as type 2.

Note: The DIMS Unit is complete with header. The header is not repeated in fragments.
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Header(type=1) | DDU Hdr | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| |
| Partial DIMS Unit payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|Hdr (type=2/3) | |
+-+-+-+-+-+-+-+-+ |
| |
| Partial DIMS Unit payload |
| |
| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| :...OPTIONAL RTP padding |
+-+

Figure 8‑8: FRAGMENTATION PACKET FORMATS
8.5.3

8.5.4 SDP Parameters
<<ed: this section is not agreed . The parameters will no doubt need work once the parameterization of the streams is clear also (i.e. what initialization information is needed).>>
<<we need to know what the normal technique is for ‘scalable coding’ or other places where streams are related, to do the repair/main separate streams trick>>
The Session Description specifies the clock rate, version profile and level. The fields in the Session Description Protocol (SDP) are defined as follows:

The media name in the "m=" line of SDP MUST be video.
The encoding name in the "a=rtpmap" line of SDP MUST be dims+xml.
The clock rate in the "a=rtpmap" line is not specified in this document. The resolution of the clock must be sufficient for the desired synchronization accuracy and for measuring packet arrival jitter. The clock rate of the referenced continuous media files within the presentation needs to be considered. For example, if the presentation contains referenced video which is to be synchronized with the presentation, the clock rate should be no less than 90,000.
The MIME parameters [20], when present, MUST be included in the "a=fmtp" line of SDP. These parameters are expressed as a MIME media type string, in the form of a semicolon separated list of parameter=value pairs.

An example of a media-level description in SDP format is shown below.

m=video 12345 RTP/AVP 96

a=rtpmap:96 dims+xml/100000

a=fmtp:96 Version-profile=10; Level=20;
8.5.4.1 Separate Repair Stream
Repair DIMS Units may be carried in RTP in a separate stream. The repair stream must be linked to the stream which it repairs (the normal track). This is done using the media identification and group attributes as specified in [24]. Both the stream containing main DIMS Units, and the stream containing repair DIMS Units must have a ‘mid’ (media identification) attribute, and they must be placed in a ‘group’ attribute of type <<ed: TBD>>.
Repair streams have contains_repair set to “repair data only”. The stream they repair must have contains_repair set to “normal data only”.
A terminal may perform tune-in etc. using the ‘repair’ stream by

a) looking for a random access point in the repair stream, or main stream;
b) if the random access point was in the repair stream, processing DIMS Units from the repair stream until the repair-complete indication;

c) continuing processing at the temporally next DIMS Unit in the normal stream.
An example might be:

v=0
o=adam 289083124 289083124 IN IP4 host.example.com
t=0 0
c=IN IP4 131.160.1.112
a=group:<<ed TBD>> 1 2
m=video 30000 RTP/AVP 97
a=rtpmap:97 dims+xml/90000
a=fmtp:97 version-profile=10; level=10; contains-repair=”normal”
a=mid:1
m=video 30002 RTP/AVP 98
a=rtpmap:98 dims+xml/90000
a=fmtp:98 version-profile=10; level=10; contains-repair=”repair”
a=mid:2

9 Resource usage and device capabilities

9.1 Capability Exchange (UAProf etc.)

9.2 Profile

A profile indicator in a stream indicates which features (also known as tools) are required to be supported on a terminal.

Profile indications are 8-bit integers. Only one profile is defined by this specification; other profiles may be defined in future

Mobile Profile : Profile Indicator Value 10.

When DIMS is supported within MMS, PSS or MBMS, then the support for the following media types is also required in profile 10:

· Support for images

· Support for embedded audio in 3GP and AMR files

· Support for embedded video in 3GP files;

<<ed: the text above is an indicator of work needing to be done and is not yet agreed. this is also an area where OMA RME alignment is expected to have an impact>>
As required in the SVG specification, SVG fonts shall be supported. The lack of hinting in SVG fonts means that small text which is anti-aliased may become unreadable. This problem is even more evident when text is rotated or animated. Recommendation: SVG fonts should be used with care.

The Open Font Format [5] should be supported at level <<ed: TBD>>.

Device-native fonts and fonts identified by generic family names may be used.
<<ed: Discussion at SA4#42 Seville indicated that the profiles may also require support for other media types (e.g. video) or codecs within those types (e.g. H.263)>>

9.3 Level

9.3.1 Introduction

Level indicators provide a way to measure the degree of support required in a terminal to render a given scene or scene stream satisfactorily.
The following level constraints are to be respected by the content. DIMS Implementations will be able to use the level indicator to optimize the rendering of the content. The dims:level attribute shall be supported on the svg element, with integer values (not animatable, not inheritable, default is <<ed: TBD>> for the unlimited level <<ed: TBD>>).

9.3.2 Level Axes

<<This section TBD>>

Levels are measured on the following axes:

1 Bitrate of the scene stream, including the initial scene, embedded graphics, audio, video etc. (That is, the minimum bit-rate channel over which the scene could be delivered in a real-time fashion).

2 Overall memory requirements, including DOM tree, buffers, animation values, scripts and their state including variables, and so on. The size of the DOM tree is measured by the number of nodes in the tree; the number of attributes, or the size of their values, is not calculated.

3 Required frame rate for animations.

4 The maximum number of simultaneously playing video streams.

5 The maximum number of simultaneously playing audio streams.

6 The maximum number of simultaneously active DIMS scenes.

7 The maximum number of animations that run concurrently.

8 The minimum screen space needed to display the scene.

9 The maximum permitted update rate, averaged over any period of 1 second.

<<ed: clearly these are placeholder values; as the spec. advances, we may need to tinker with the axes, and surely with the points along them. On memory usage, the ideal would be to have reference software for DIMS and measure the memory use of the DOM tree by that software, and set limits for that.>>
The following sections define the available levels.

9.3.3 Level 10 definition

<<TBD>>

This level contains the following restriction:
Only one instantiation of a DIMS scene is allowed
Only one Video instantiation along with a DIMS scene is allowed.
On the Video Element, the attribute transformBehavior shall be restricted to values “pinned | pinned90 | pinned180 | pinned270”, and the attribute overlay shall be restricted to values “top”.
The following limits also apply:
	Level
	Rate
	DOM nodes
	Frame rate
	#Video
	#Audio
	#Anims
	Screen size

	10
	256 kbit/s
	300
	15
	1
	1
	10
	160x120

9.3.4 Level 100 definition

This high-end level does not contain any restrictions.

10 Use of DIMS in existing subsystems

<<ed: this section is a to-be-deleted placeholder for CRs to the PSS, MMS and MBMS definitions>>

10.1 Codecs and Fonts

10.2 PSS

10.3 MBMS

FEC can be used to recover from packet loss in the MBMS framework [7]. When DIMS content is used, suitable media level recovery (a random access point such as a replacement scene, redundant scene, etc.) should be present at the beginning of each FEC source block. This facilitates immediate rendering of the DIMS content after FEC decoding, thus reducing tune-in latency.
10.4 MMS

11 Content usage guidelines

The SVGT1.2 guideline defined in ANNEX L of PSS release 7 [9] apply here.

Content creators should take into account the DIMS levels definitions.

12 Security and Content Protection Considerations

13 Registered Types

13.1 RTP Payload format MIME Type

Type name: video <<ed: was ‘application’ but see the SDP section above>>
Subtype name: dims+xml

Required parameters:

Version-profile - Specifies the profile of DIMS used, for example the value indicating Mobile Profile

Level – Specifies the minimum DIMS level needed to be able to display the scene

Optional parameters:

stream_type - takes the value “primary” for primary streams (in which every random access point is a scene), and the value “secondary” for secondary streams. Secondary streams are not normally playable by themselves, outside the context of the scene(s) they are designed to update.
contains_repair - takes the value “normal” if the stream contains only DIMS Units with is-repair set to 0, the value “repair” if the stream contains only DIMS Units with is-repair set to 1, and takes the value “normal+repair” if both occur. Note that streams containing only repair units must be linked to the stream that they repair (see section 8.5.3 above).
text_encoding - is a null terminated string enclosed in double-quotes with possible values taken the XML specification for character encoding in entities (e.g. section 4.3.3 of XML 1.0 Third edition). It describes the text encoding after the content has been decompressed (e.g. after deflating). The default value is “UTF-8” [11]. This field is only applicable if the content is transmitted as (possibly encoded) text.
content_script_type - is a string enclosed in double-quotes that identifies the scripting language used. It takes a suitable MIME type [20] from the IANA registry, such as “application/ecmascript” (see [15]), or the value “none”. The default value is “none”.

user_compression_URI - takes a URI declaring the type of compression used when the DIMS Unit header signals user-compression. If this value is not used, then this string may be empty; otherwise, it must be a quoted URI identifying the compression scheme used.
Encoding considerations:

This media type is currently only defined for transport via RTP

Security considerations:

RTP packets using the payload format defined in this specification are subject to the security considerations discussed in the RTP specification [17] and any applicable RTP profile, e.g., AVP [23].

Interoperability considerations:

None
Published specification:

3GPP TS 26.142
Applications that use this media type:

DIMS Streaming applications

Additional information:

Magic number(s): None
File extension(s): None
Macintosh file type code(s): None

Person & email address to contact for further information:

Clinton Priddle

clinton.priddle@ericsson.com
Multimedia Technologies, Ericsson

Intended usage:

COMMON

Restrictions on usage:

None
Author:

3GPP SA4 WG
Change controller:

3GPP TSG SA
<<ed: this section needs to be consistent with 8.4.1.2, that is, they need to permit signalling of the same parameters>>

13.2 ‘Codecs’ Parameter for 3GP files

When DIMS content is supplied in 3GP files which are identified by MIME type, the ‘codecs’ parameter defined in [16] may be used to indicate that DIMS content is present. The codecs parameter takes the sample entry name as defined above (that is, ‘dims’).

14 Open issues and considerations

14.1 Interaction outside the multimedia sub-system

14.1.1 Input modalities

14.1.2 Interface with existing applications and sub-systems

14.1.3 Notifications

14.2 Extensibility considerations

Annex A (normative):
Conformance Criteria

DIMS constructs scenes which are possibly updated over time. Conformant terminals must support the delivery of the scenes and updates in formats specified in the 'compression' section above, and in the transport environments specified in the 'transport' section.

For the initial scene, a DIMS document can be extracted from the transport, and de-compressed if necessary, yielding an XML document. This XML is referred to here as the "initial DIMS document". Similarly, after all updates for a given instant have been applied to the scene tree, there is logically an XML document that is equivalent to the scene DOM tree; these are called "subsequent DIMS documents" here.

Initial and subsequent DIMS documents must conform to all of:

· the conformance requirements of SVG Tiny 1.2;

· the conformance requirements of the DIMS extensions;

· the conformance requirements of the LASeR Commands and LASeR scene extensions as specified in ISO/IEC 14496-4/AMD20 (LASeR Conformance)

· the limitations of the profile and level indications under which they are delivered.

Conformance with SVG Tiny 1.2 is according to the conformance criteria in Appendix D of [2], with the following exceptions:

· The conformance criteria in the SVG spec regarding codecs shall not apply for the DIMS media type.

Note: Codecs supported are defined in 3gpp specification

· Section D4 is not in scope of DIMS

· Section D7 is not in scope for DIMS

<<editors note:

· This section is under construction, and is not yet agreed or even complete

· Conformance criteria for scene extensions and LASeR commands will be added in this section

· The review of conformance criteria regarding binarisation shall be finalised by the next meeting

· Updates of the SVG Tiny 1.2 specification 20060810 annex D will be reviewed in particular section D6 bullet 4, the understanding is that fullscreen and rectclip follows the actual rules

· missing are statements about transport conformance, and other areas of the DIMS specification outside the scene tree>>
Annex B (informative):
Change history

:

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	December 06
	34
	
	
	
	Version 1.0.0 presented at TSG SA#34 (for information)
	
	1.0.0

	Jan 07
	S4-070156
	
	
	
	Updated at SA4 Seville
	1.0.0
	1.2.0

	Feb 07
	S4-070195
	
	
	
	Updated at SA4 Seville
	1.2.0
	1.3.0

	Mar 07
	S4-AHP326
	
	
	
	Editor’s draft for the DIMS ad-hoc
	1.3.0
	1.3.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

SU

SU

SU

SU

Recovery can be performed when any of these packets are lost.

...

Recovery_ID= 1

SU

Recovery_ID= 1

SU

SU

SU

SU

SU

SU

Recovery_ID= 4

SU

RU1

...

Recovery can be performed when any of these packets are lost.

Recovery_ID= 4

SU

SU

SU

SU

RU2

Recovery_ID= 7

SU

SU

SU

RU2

Recovery_ID= 7

�Why refer to SMIL 2.0 when SVG refers to 2.1?

�Is it intentional the fullscreen video and fullscreen SVG are defined so differently? In the LASeR spec, nothing else may be rendered at the same time as the video. It is not a "hint" as the fullscreen SVG.

�This section should be moved to 5.9.3

�We need a far more precise reference, 6.7 contains a lot of things we dont need, e.g. a waiting tree, etc. Maybe reference each individually?

�Is this really needed? This tells us nothing, we have to look into the file to see which script languages are actually used anyway. The default script type is given in the SVG element also.

_1089962766.doc

Rich Media content (scenes, scene updates, discrete and continuous media

Container Format /

Transport Packets

Rich Media Server

Remote Interaction Mechanisms

Forward Transmission (Unicast, Multicast, Broadcast Download and Streaming Protocols

Transport Mechanisms

Rich Media Client

Local Interaction Mechanisms

Rich Media Player

Is the player’s request remote in nature?

send

request

yes

no

_1105635054.doc

vertical

screen primary axis

a

_1108034639.doc
[image: image1.bmp]

The expected value of CTR after the last received packet was 7, and as the value of CTR increased from 7 to 0 during the packet loss it can be established that a prioritized packet, one or more high-priority DIMS Data Units, was lost.

Packet lost

SU

P=1

CTR=0

SU

P=0

CTR=0

SU

P=1

CTR=7

SU

P=1

CTR=6

SU

P=1

CTR=5

The expected value of CTR after the last received packet was 7, and as the value of CTR did not increase during the packet loss it can be established that the lost packet(s) had no DIMS Data Units with priority P=1.

Packet lost

SU

P=1

CTR=0

SU

P=1

CTR=7

SU

P=0

CTR=7

SU

P=1

CTR=6

SU

P=1

CTR=5

_953458302.unknown

