3GPP S4-AHP318, 11 – 12 January 2007
Tdoc S4-AHP318

Source:
Nokia
Title:
Caching support in FLUTE
Document for:
Discussion and Proposal

Agenda Item:
4.2
1 Introduction

MBMS allows for the realization of different service delivery scenarios. An MBMS user service or application may use one or several MBMS delivery methods. An MBMS delivery method can either be a file download method or a streaming method. Several applications may benefit from this flexibility to combine file download and streaming methods in order to achieve optimal delivery mechanisms. Examples of such applications are interactive mobile TV services, where the audio/visual content is transported using the MBMS streaming method, while additional content such as interactive documents or related commercial ads are delivered using the file download method.
Applications may use the download method, either as the main component of an application, e.g. in the case of a ring tone download service, or as means of acquiring files in a background download mode.
Such applications introduce new challenges to the MBMS delivery methods. We identified that support for caching directives is missing and needs to be addressed in MBMS USE.

UEs are typically devices with limited storage capacity. Some applications rely on pre-download of some files/media objects to be used later on by the application. Without guidance from the BM-SC or service provider, the memory management of the file download application/FLUTE receiver is not optimal and may lead to situations where some content is dropped from the UE memory while it is still being needed. In other situations, some stale content may be kept in the UE memory wasting storage capacity.

2 Caching at Transport Layer

FLUTE may be used in one of the following modes, as described in [TS 26.346]:

· Promiscuous mode: all files of the session are received
· One-copy mode: receive a file or a set of files specified by the application.
· Keep-updated mode: receive any new version of a file or a set of files that becomes available in the FLUTE session.
Depending on the mode of operation, the receiver may have to store the received files into a local cache and make those files available for the application. The cache is typically maintained by the FLUTE receiver as the download usually happens as a background process initiated by the application. Furthermore, several applications may want to perform pre-fetching of content, to make it available for the application when it is needed. The retrieved files are then cached and provided to the application whenever those are needed. An example of such an application could be an offline web site browsing application, which instructs the FLUTE receiver to operate in the Keep-updated mode. The application may then provide this information to the receiver upon request.
Applications may also share access to the same files, which makes a common cache more suitable as it saves both memory space and connection bandwidth. An application that requests a specific file from a FLUTE receiver, will receive the already cached copy instead of having to wait until the FLUTE receiver connects to the MBMS download session and receives the file. The file might be carouselled at a later time or it might be not yet available at the file download session, which will lead to large delays in the application and by consequence to a diminished user experience.
Hence, it is then beneficial to introduce the caching functionality at the transport layer, in a similar way to the HTTP protocol.

3 Caching in FLUTE
In this section, a proposal for MBMS service enhancement to enable caching support is introduced.
The caching functionality that is defined in this proposal allows the server to indicate to the receiver how long it should optimally keep a file in its memory. The caching mechanism defined in this proposal can be seen as a subset of the caching mechanism in HTTP 1.1. HTTP 1.1 defines caching directives for the HTTP client as well as for intermediate nodes. It is based on the possibility of the ability of the client to poll the HTTP server in order to find out if a new version of the file is available. The FLUTE caching directives may be used in combination with HTTP, so that stale files may be updated through HTTP. On the other hand, a web browser may first try to acquire a file through FLUTE as it might provider a cheaper means of delivery. Only if the file is not available or cannot be retrieved, will the browser perform an HTTP request. Alternatively, both FLUTE and HTTP may share the same cache for improved efficiency of both delivery methods.
The caching directives are defined as an extension to the FLUTE protocol. The FLUTE specification and its extension in 3GPP MBMS TS 26.346 provide extension mechanisms in the FDT XML schema. The schema definitions allow for backwards compatibility as Rel. 6 UEs will simply ignore elements of the FDT that could not be identified according to the Rel. 6 specification.
In the following, the extension to the FLUTE FDT is described.
3.1 Caching Directives

The BM-SC can use the cache directives to indicate recommendations to the FLUTE receiver on how to cache a given file or set of files.

The list of caching directives is a subset of the HTTP/1.1 caching directives and is as follows:

· no-cache: this directive is used to indicate to the receiver not to cache a specific file (or set of files). This is probably useful in the case where the file is expected to be highly dynamic (changes to the file occur quite often) or if the file will be used only once by the receiver application.
· max-stale: this directive indicates to the FLUTE receiver that a specific file (or set of files) should be cached for an indefinite period of time, if possible. The file has no expiry date.
· Expires: this directive is used by the server to indicate the expected expiry time of a specific file (or set of files). It indicates a date and time value in the HTTP date format or in the NTP timestamp format.
Additionally, the following caching directive is introduced to establish a priority between the different cache items:
· priority: this directive indicates the priority of this item. It should reflect the estimated number of times the file will be used during its validity time. The previous directives define a first level prioritization algorithm. In other words, files that are marked with max-stale have higher priority than files with a limited caching duration.

The previous directives can apply to a file, in which case they are present in the file element of the FDT. They can also apply to a set of files, which are described by a single FDT instance, in the case that the caching directives are in the FDT instance element.

4 Signalling of the Caching Directives

The caching directives are signalled to the FLUTE receiver within the FDT instances. The directives may apply to a single file or to all files of an FDT Instance. The following is the XML schema definition of the cache directive element.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema

xmlns="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="urn:3GPP:metadata:2007:MBMS:FLUTE:FDT"

elementFormDefault="qualified">

<xs:complexType name="MBMS-Session-Identity-Expiry-Type">

<xs:simpleContent>

<xs:extension base="MBMS-Session-Identity-Type">

<xs:attribute name="value" type="xs:unsignedInt" use="required"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:simpleType name="MBMS-Session-Identity-Type">

<xs:restriction base="xs:unsignedByte"/>

</xs:simpleType>

<xs:simpleType name="groupIdType">

<xs:restriction base="xs:string"></xs:restriction>

</xs:simpleType>

<xs:complexType name="Cache-Control">

<xs:attribute name="no-cache" use="optional" type="xs:boolean"/>

<xs:attribute name="max-stale" use="optional" type="xs:boolean"/>

<xs:attribute name="Expires" use="optional" type="xs:unsignedInt"/>

<xs:attribute name="priority" use="optional" type="xs:unsignedInt"/>

</xs :complexType>
</xs:schema>
5 Example signalling
In this section an example of an FDT instance which contains caching directives is given:
<?xml version="1.0" encoding="UTF-8"?>

<FDT-Instance

xmlns="urn:IETF:metadata:2005:FLUTE:FDT"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:IETF:metadata:2005:FLUTE:FDT 3gpp-flute-fdt-choice3.xsd"

FEC-OTI-FEC-Encoding-ID="1"

Complete="true"

Content-Encoding="gzip"

FEC-OTI-Encoding-Symbol-Length="512"

Expires="331129600">

<File

Content-Type="application/sdp"

Content-Length="7543"

Transfer-Length="4294"

TOI="2"

FEC-OTI-Encoding-Symbol-Length="16"

FEC-OTI-Scheme-Specific-Info="AAEBBA=="

Content-Location="http://www.example.com/fancy-session/movie.3gp">

<MBMS-Session-Identity>93</MBMS-Session-Identity>

<Cache-Control Expires="3342516234" Priority="5"/>

</File>

<File

Content-Type="String"

Content-Length="161934"

Transfer-Length="157821"

TOI="3"

FEC-OTI-Encoding-Symbol-Length="512"

Content-Location="http://www.example.com/fancy-session/trailer.3gp">

<MBMS-Session-Identity>93</MBMS-Session-Identity>

<Cache-Control no-cache="true"/>

</File>

<File

Content-Type="String"

Content-Length="14625"

Transfer-Length="13821"

TOI="4"

FEC-OTI-Encoding-Symbol-Length="512"

Content-Location="http://www.example.com/fancy-session/background.jpg">

<MBMS-Session-Identity>93</MBMS-Session-Identity>

<Cache-Control max-stale="true" Priority="50"/>

</File>

<MBMS-Session-Identity-Expiry value="3311288760">93</MBMS-Session-Identity-Expiry>

</FDT-Instance>

The example depicts the use of a “caching” XML element, which indicates the caching recommendation and the related attributes such as expiry time and priority.

