3GPP TSG-SA4 PSM Ad-hoc Meeting
Tdoc S4-AHPxxx

11 – 12 January, 2007, Dusseldorf, Germany

Source:
Nokia

Title:
MBMS handover during file download
Document for:
Discussion & Decision
Agenda Item:
4.2
1 Introduction
One of the objectives of MBMS-USE is to specify the application/transport layer signalling needed for MBMS content distribution in unicast mode (over streaming and interactive bearers). Another objective is to specify optimization techniques for MBMS content delivery.
In this document, we analyze the use case of a mobile roaming from an MBMS-coverage area to MBMS-outage area in the middle of an MBMS file download session. We present various alternatives to ensure smooth handover and propose the use of HTTP chunked mode for the same purpose.
2 MBMS Handover
[image: image1.wmf]Time

Broadcast/multicast

Reception (FLUTE)

Unicast

Reception (?)

Handover

TOI = 2, SBN = 1

Session Start

TOI = 2, SBN = 2

TOI = 3, SBN = 1

Time

Broadcast/multicast

Reception (FLUTE)

Unicast

Reception (?)

Handover

TOI = 2, SBN = 1

Session Start

TOI = 2, SBN = 2

TOI = 3, SBN = 1

The MBMS client started file download via FLUTE when it is in an MBMS-coverage area. The FLUTE session consists of multiple objects each divided into multiple source blocks according to the source blocking algorithm specified. While receiving the second FLUTE packet from the source block with TOI = 2 and SBN = 2, the MBMS client strayed into MBMS-outage area. The receiver has to receive the remaining data in unicast mode. In the next three subsections, we examine three alternative solutions to do this job.
2.1 OMA-PUSH

According to the proposal in 3GPP Tdoc S4-060662, the BM-SC may perform OMA-PUSH to the client whenever there is an updated FDT. The client need not do any polling for the FDT updates. However, this approach has the following drawbacks.
The BM-SC does not have any information on the state of the MBMS client, i.e., The BM-SC has no idea of which objects or source blocks or symbols are yet to be delivered to the MBMS client via OTA-HTTP. The behaviour of the BM-SC after receiving the above mentioned unicast registration request is not clear. It can behave in either one of the following ways:

· If a FLUTE session involves multiple objects of various sizes, then the BM-SC has to transmit all objects of the FLUTE session via OTA-HTTP session, including the objects the client had already received in the FLUTE session, which is wastage of resources.

· Alternatively, after receiving the above mentioned registration request, if the BM-SC sends only the remaining objects via OTA-HTTP, then the client has some ‘holes’ in the received data. The client has no data from the point when it stopped receiving FLUTE transmission and the point when the BM-SC starts sending the data via OTA-HTTP. At the end of the OTA-HTTP session, the client still has to initiate another HTTP session for PtP repair of the incomplete objects/source blocks.
2.2 FLUTE/UDP over unicast
This approach has the advantage that the server needs no additional processing, However it needs unnecessary transmission/processing overhead for FLUTE headers and FEC repair symbols, both of which are unnecessary for the reliable point to point delivery. Additionally a new RTSP session is to be setup for FLUTE/UDP transport.

(Note that for hybrid streaming + download use case, this is justified since an RTSP session must be setup for RTP/UDP transport of streaming media.)

2.3 Extensions to PtP repair mechanism
The PtP repair request/response mechanism specified in section 9 of MBMS TS 26.346 [1]can be extended for the MBMS handover use case also under some special circumstances.

When the MBMS client moves from an MBMS-covered area into MBMS-outage area, it can trigger the PtP file repair mechanism. The client shall attempt to perform FEC decoding of all source blocks of all objects received so far, determine the number/identity of the missing symbols, send an HTTP GET request to the repair server by including all required details (e.g., fileURI, SBN, number of missing symbols, ESIs of missing symbols etc). If the client had already received the FDT and if the FDT remains static for the rest of the FLUTE session, then it knows which fileURIs/objects to expect in the remainder of the FLUTE session. Hence the client can request the repair server for the remaining symbols in the current source block, the remaining source blocks in the current object and the remaining objects in the current session. Thus the MBMS client can reuse the PtP repair request mechanism for the MBMS handover use case also.

However, the FDTs are very likely to be dynamic i.e., there may be new instances of FDTs transferred in the same FLUTE session. The client cannot assume that the FDTs are static, since FLUTE explicitly allows FDTs to be dynamic and it allows new instances of FDTs to be delivered in-band of the FLUTE session. Thus PtP repair request mechanism cannot always be overloaded to cover the MBMS handover use case.

Thus we need a solution that
· can be used for both static and dynamic FDTs
· does not use excessive overhead.

3 Proposed Mechanism

We propose to use the HTTP/1.1 chunked mode to deliver updates of the FDT of the session in a push like mode.
3.1 HTTP Chunked Mode
The chunked mode is defined in HTTP/1.1 in order to support dynamic content generation and delivery from the server. In several cases, the web server might not be aware of the exact length of the content. The chunked mode is a form of transfer encoding that allows the content to be split into chunks of known length and send each to the receiver in a message part. HTTP 1.1 chunked mode is usually used with persistent connections which allows a push type delivery. The content of the message is transmitted using the Multipart/mixed content type, with each part of the message being delivered as a separate chunk. Each part of multipart mime message is separated by a boundary that is declared in the Content-Type header. Any string that is not expected to appear in the message payload may be used as separator. Each part of the multipart mime message has also to specify the content type of that part.

[image: image2.emf]R

e

s

p

o

n

s

e

S

t

r

e

a

m

HTTP Response

Chunk #1

Chunk #2

Chunk #3

Last Chunk

.

.

.

HTTP/1.1 200 OK <CR><LF>

Content-type: multipart/mixed; boundary=separator-

string<CR><LF>

Transfer-encoding: chunked<CR><LF>

<CR><LF>

27 <CR><LF>

--separator-string<CR><LF>

Content-type: xml/vnd.3gpp.fdt<CR><LF>

<FDT-Instance

Expires=”3634334987">...<CR><LF>

32 <CR><LF>

--separator-string<CR><LF>

Content-type: xml/vnd.3gpp.fdt<CR><LF>

<FDT-Instance

Expires=”3634334987">...<CR><LF>

2C <CR><LF>

--separator-string<CR><LF>

Content-type: text/xml<CR><LF>

<FDT-Instance

Expires=”3634334987">...<CR><LF>

0 <CR><LF>

3.2 Usage for Unicast

In order to allow for push delivery of the contents of a FLUTE session, each FDT instance is encoded as one part of a multipart mime message and sent as a separate chunk. The receiver will be able to interpret each of the separate chunks to extract the FDT instance out of it. The content type of each part of the message has to be set to “text/xml” or another mime type to indicate that the content is an FDT instance.

After parsing the FDT instance and update the FDT, the receiver is able to identify which files of the session are of interest and can perform an HTTP GET request to retrieve a specific file. The server may indicate the end of the session using the Connection header field of HTTP with a value set to “closed”.
3.3 Handover Details
· Terminal gets out of MBMS coverage area

· Terminal retrieves the unicastAccessURI from the service announcement, establishes a persistent TCP connection with the web server, and sends a GET request towards the server. The request URL is identical to the unicastAccessURI, which uniquely identifies the FLUTE session at the server. The request may look as follows:
 GET /flute_service?serviceId=2987324 HTTP/1.1
 Host: www.example.com
· The web server identifies that this is a request to initiate the unicast delivery of a FLUTE session and identifies the service based on the “serviceId” parameter, which is identical to the service Id indicated by the service announcement.

· The HTTP server creates a response message indicating whether it is willing to serve the receiver. In case of success the response message may look as follows:
 HTTP/1.1 200 OK
 Content-type: multipart/mixed
 Transfer-encoding: chunked

· Whenever a new FDT instance becomes available, the HTTP server creates a new chunk and dispatches the new FDT instance as a new part of the multipart mime message.

· The receiver checks each newly received chunk and updates its FDT accordingly.

· The receiver sends a GET request to retrieve the files of interest.

4 Conclusion

Various alternative solutions for MBMS roaming during a MBMS download session are analyzed. The proposed method has the following advantages:

· It does not require a full implementation of OTA-HTTP or OTA-WSP to realize the push delivery.
· Support for HTTP/1.1 is already required by the file repair functionality and this implementation is inline with that function.
· It provides a single solution for unicast delivery of MBMS file download sessions with both static and dynamic FDTs.

Nokia proposes the solution in section 3 be adopted to support the MBMS download in unicast mode.

5 References

[1] 3GPP TSG SA, ”Multimedia Broadcast Multicast Services: Protocols and Codecs”
[2] RFC 2616, Hypertext Transfer Protocol – HTTP/1.1

� Ramakrishna Vedantham, Ramakrishna.Vedantham@Nokia.com

 Imed Bouazizi, Imed.Bouazizi@Nokia.com

 Igor Curcio, Igor.Curcio@Nokia.com

_1229780813.vsd
Response Stream

HTTP Response

Chunk #1

Chunk #2

Chunk #3

Last Chunk

.
.
.

HTTP/1.1 200 OK <CR><LF>
Content-type: multipart/mixed; boundary=separator-string<CR><LF>
Transfer-encoding: chunked<CR><LF>
<CR><LF>

27 <CR><LF>
--separator-string<CR><LF>
Content-type: xml/vnd.3gpp.fdt<CR><LF>
<FDT-Instance Expires=”3634334987">...<CR><LF>

32 <CR><LF>
--separator-string<CR><LF>
Content-type: xml/vnd.3gpp.fdt<CR><LF>
<FDT-Instance Expires=”3634334987">...<CR><LF>

2C <CR><LF>
--separator-string<CR><LF>
Content-type: text/xml<CR><LF>
<FDT-Instance Expires=”3634334987">...<CR><LF>

0 <CR><LF>

