3GPP SA4 Video Codec Ad-Hoc Meeting
Tdoc S4-AHP197

Conference Call, February 3, 2005

Source:
Nokia

Title:
H.264 and MPEG-4 Video Codec simulations for MBMS

Document for:
Information

Agenda item:

1 Summary

This paper presents simulations results of video simulations using MPEG-4 SP and H.264 in a simulated MBMS environment. Both error free and error prone conditions have been tested. For the MPEG-4 tests, the bit streams as presented in Tdoc S4-030718 have been used. For H.264, we tried to match the characteristics of these streams as closely as we could so to allow for a fair comparision. The encoding parameters are listed below. If SA4 is willing to accept the Nokia encoder as its test model, and the codec is made public, the tests could be reproduced easily with the information provided.

MBMS FEC was not implemented but simulated as well. The bit rate was increased by 10%, and we assumed (apparently wrongly) that this would allow only 5% repair. We could not factor in the bitrate for the FEC into the channel bit rate, because we had to use the pre-encoded MPEG-4 anchor bit streams.

Results show that in the error free case, three out of five sequences could be H.264-coded at a with PSNR at 2/3rd of the bitrate of MPEG-4. The high activity and blurry sequence football, and Kelsyville with its scene changes produced (from an H.264 point of view) worse results.

In the error prone cases, ...

2 Simulation Setup

2.1 Encoder and packetization

2.1.1 H.264

For all simulations, only a single coded bit stream has been used. In other words, we refrained from tuning the error resilience strength to the simulation conditions. We did so for two reasons: ease the simulation work (in the interest of time) and fairness against the MPEG-4 case, where we don't have an encoder to adjust error resilience strength. It seems clear that if we were adjusting the error resilience strength, results could not become worse but would probably be get better.

The encoding parameters have been set as follows:

· H.264 baseline, no Redundant Slices, no FMO, no ASO (fully compiant with current 3GPP spec)

· Four reference frames, utilized in the form of PppP, wherein the small p donates non-reference P pictures. Those non-reference P pictures were coded with a slightly coarser QP. (This concept is very similar to the use of B-pictures in MPEG, except that we don't have direct mode available in baseline).

· Slice headers were included after ~500 bytes for the 56 kbit/s simulations and ~1000 bytes for the 100 kbit/s simulations, for software engineering reasons. We believe this is not a big problem, because error concealment is still not very efficient: most coded pictures fit into one packet, and for those which are split, the split is in the last MB line or somewhere like this, which renders concelament pretty much useless.

· ConstrainedIntraPredictioFlag is on (intra MBs are not predicted from surrounding inter MBs -- good for error resilience but bad for coding efficiency).

· Simple RTP packetization: one NALU per packet. No interleaving, no aggregation.

· Fixed QP, changed once after 2/3 of the sequence (in line with 3GPP anchors)

· The coded sequences are between 125 and 336 frames long, and started with an IDR frame. Other IDR frames were inserted when the mode decision of the encoder suggested so (primarily in Kelsyville with its scene cuts).

If our results were not already as good as they are, we could also have used the following tools

· Fancy multi-path rate control

· Adaptive GOP structures (the PppP scheme is fixed)

· Rate-Distortion optimized mode decision

· ContrainedIntraPredictionFlag off

· And a dozen more, which I don't recall due to the late time.

It should be understood that the encoder is comparatively lightweight. We are certain that a full-blown authoring encoder (such as the Fraunhofer MPEG-4 encoder) could probably squeeze out another 2 or 3 dB under these simulation conditions. However, we cannot prove this due to shortage of time.

2.1.2 MPEG 4

Employed were pre-recorded bit streams as per Tdoc S4-030718. We believe these bit streams are highly optimized for the error free case. Packetization was performed by a hand-hacked tool based on the VCEG-N79 packetization code, adapted for RFC3640 and MPEG-4.

2.2 Simulator

The simulator is aligned with the Qualcomm code but modified to (optinally) support a MBMS FEC simulation. Two Qualcomm loss patterns were employed: 64 kbit/s and 128 kbit/s, with 80 ms PDU size, as per advise S4-APH196. Tests were run at all 0.5, 1.0, and 1.5 PDU loss rate.

Minimum simulation time was 40 runs of the 125 frame sequences, hence 5.55 seconds. We looped both seqcences and error patterns when necessary.

The layer 2 SDU bytes were considered a byte stream into which the IP/UDP/RTP/media packets were encapsulated without alignment. A total header overhead of 50 bytes was taken into account -- 40 bytes for IP/UDP/RTP, and 10 bytes for whatever framing in use. Since the number was kept identical for both the MPEG-4 and H.264 simulations, we do not believe that this arbitrary choice of framing overhead has a significant impact.

Simulations were run with and without the simulated FEC. Without simulated FEC, any damaged RTP packets (which are in part or fully located in a lost PDU) were dropped from the stream.

Tests with FEC were simulated as follows:

· A fixed FEC overhead of 10% in bit rate was taken into account. We assumed rather small misalignment in slice sizes and a reaonsably small block size, and hence did not factor in padding overhead of the hybrid padding approach (working assumption in SA4). As offline discussions on Wednesday revealed, that overhead is likely very small -- no more than a couple of dozen bytes per FEC block.

· The FEC block length was considered to be 5 seconds

· We (incorrectly according to Juergen Pandel) assumed that the 10% FEC overhead can repair 5% loss (apparently, in the environment given it could repair up to 10% loss).

· Whether a FEC block could be repaired was determined by taking into account the pecentage of lost PDUs in the time needed to transmit a FEC block (5 seconds). In other words, if 3 or fewer PDUs got lost, we assumed repair would work; otherwise we assumed repair would not work.

2.3 Depacketization and Decoder

2.3.1 H.264

Nokia's implementation of H.264 and packetization. The decoder contains error concealment -- however, since most of teh time a full picture is lost, this error concealment is not going to help much. Furthermore, the error concealment as implemented does not help when losses occur in IDR frames. Hence, we believe in spite of the presence of error concealment the comparision is fair.

2.3.2 MPEG 4

The de-packetizer is a hand-hacked tool, based on VCEG-N79, but adapted to support RFC3640 and MPEG-4 part 2 ES syntax (with respect to start codes). The publicaly available MoMuSys and Microsft decoders crashed when receiving the corrupted stream. We had to resort to a proprietary decoder with sufficient error robustness.

3 Simulation results for the error free case

	No
	Sequence
	Target Bitrate
H.264
	Obtained Bitrate H.264
	PSNR
H.264
	PSNR MPEG-4

	1
	Foreman
	56.01
	55.95
	33.41
	33.25

	2
	Foreman
	118.67
	118.05
	37.56
	36.94

	3
	Tempete
	50.49
	50.13
	26.63
	25.96

	4
	Tempete
	96.35
	95.89
	28.71
	28.40

	5
	Football
	48.27
	48.11
	25.62
	27.93

	6
	Football
	105.08
	104.60
	28.66
	30.55

	7
	Paris
	50.75
	50.1
	29.77
	29.76

	8
	Paris
	106.46
	105.99
	34.11
	34.08

	9
	Kelsyville
	56.75
	56.69
	36.80
	37.28

	10
	Kelsyville
	96.12
	95.80
	39.16
	39.66

For Forman and Tempete, H.264 is significantly better than MPEG-4. For Football and Kelsyville, MPEG-4 performs significantly better than H.264. For Paris the two peform very similar with a very slight advanatge of H.264. (Of course, H.264 is operating at only 66% of the bit rate).

The reason for the bad-performing football sequence is unclear -- possibly a shortcoming or even bug in the encoder. For Kelsyville, there reason may lie in problems with the scene cut detection.

4 Simulation results for the error prone cases

For PLR 1.5%

	No
	Sequence
	AVG PSNR H.264
	AVG PSNR
MPEG 4
	PSNR for the worst FEC block
H.264

	1
	Foreman
	32.235344
	
	20.681645

	2
	Foreman
	36.322538
	
	30.245031

	3
	Tempete
	25.846155
	
	22.313738

	4
	Tempete
	28.024412
	
	24.583576

	5
	Football
	25.239023
	
	22.509613

	6
	Football
	28.248709
	
	25.691980

	7
	Paris
	28.898124
	
	18.674052

	8
	Paris
	33.153035
	
	29.103571

	9
	Kelsyville
	35.614292
	
	27.860228

	10
	Kelsyville
	38.108328*
	
	Crashed

* The PSNR of the crashed test case is not taken into account. All the packets from the first IDR picture are lost. The decoder crashed when trying to build the slice group map.

For PLR 1.0%

	No
	Sequence
	AVG PSNR H.264
	AVG PSNR MPEG 4
	PSNR for worst FEC block H.264

	1
	Foreman
	32.843913
	
	29.175699

	2
	Foreman
	37.065455
	
	31.096400

	3
	Tempete
	26.149959
	
	22.183752

	4
	Tempete
	28.394814
	
	26.073990

	5
	Football
	25.446140
	
	23.441368

	6
	Football
	28.557176
	
	26.183782

	7
	Paris
	29.448666
	
	26.578917

	8
	Paris
	33.515684
	
	25.694938

	9
	Kelsyville
	36.245563
	
	34.821588

	10
	Kelsyville
	38.748173
	
	35.272186

For PLR 0.5%

	No
	Sequence
	AVG PSNR H.264
	AVG PSNR
MPEG 4
	PSNR for worst FEC block H.264

	1
	Foreman
	33.145314
	
	30.158936

	2
	Foreman
	37.419788
	
	37.419788

	3
	Tempete
	26.348917
	
	24.309596

	4
	Tempete
	28.505163
	
	26.196334

	5
	Football
	25.524289
	
	23.866243

	6
	Football
	28.618032
	
	28.618032

	7
	Paris
	29.474426
	
	27.713283

	8
	Paris
	33.716216
	
	33.716216

	9
	Kelsyville
	36.320366
	
	33.454774

	10
	Kelsyville
	38.859649
	
	37.205619

� Copied from Tdoc S4-030718

Page: 1/5

Page: 5/5

