3GPP TSG Video Ad-Hoc
Tdoc S4-AHP189
28 Jan 2005, Phone

Source:
David Singer, Apple;  Stephan Wenger, Nokia

Title:
  Considerations for Video Quality in MBMS
Document for:
  Discussion

Agenda Item:
  
1. Introduction

This is the beginning of a discussion piece attempting to highlight some of the issues surrounding the question of whether a codec can be made mandatory for MBMS video.

2. Basic Standards Motivation

Why do we develop standards?  I believe that two of the primary reasons are to establish viable services that are operated and supplied in an interoperable multi-vendor, competitive market.  For this to happen, at least the following two must hold true:

a) the service as defined must be viable, usable by the end-users, and of a sufficient quality as to be acceptable;

b) the specifications must delineate enough for the components to be interoperable;  the interfaces should not permit non-interoperability.

Standards should define viable services with well-defined interoperable interfaces.

3. Market Decisions and Standards

We have heard quite a lot recently about 'letting the market decide'.  And indeed, since open competition in a multi-vendor environment is our goal, we do indeed let the market decide as often as possible.  However, there are cases when it works less well.  

One crucial one is when the purchaser is unaware of the impact of their decision on the quality-of-service;  the most obvious example is for the speech encoder.  Though I buy my phone, I never hear the resulting speech quality that I send to others – it is therefore probably not a purchase quality decision I make.  Yet speech calls are the primary service;  they must work.  As a result, we have specified speech encoding precisely.  (Though note that there is a notorious phone on the market today with a microphone which prefers background noise over the local speech).

Another crucial aspect of letting the market decide is when the choice affects interoperability.  We all know that we can't use AMPS phones when roaming in GSM countries, for an obvious example.  When the market decides on basic protocol and coding standards, the market fragments (usually).  We don’t actually need to have a standards organization if buyers are going to decide everything and select technology directly from vendors.  But a fragmented market is a confused market, and it is slower-growing.

Another case is where we ‘step in’ to solve problems.  Generally, we have enough work to do in standards bodies;  we try to leave to implementation that which we can.  But when we encounter problems in practice, and the market does not, in fact, correct those problems, then it is appropriate to react.  The work of IMTC in detecting problems in our specs that affect intreroperability, and bringing in CR requests, is a perfect example.

Though MBMS is a new service, the use of video in cell-phones is not, and yet to date we are not aware of strong statements being made about the encoding quality actually seen in the field.  It would greatly assist both the general discussion on video quality, and this discussion on error resilience, to be informed of cases where (for example) a poor video encoder was not 'selected out' by the market, or where a non-error-resilient terminal was not.

We could do with examples of products (or their output) that fall below what we think of as acceptable quality.

Finally, there is a psychological aspect of setting requirements vs. letting the market decide.  In the absence of a requirement, vendors tend to do 'the best they can' — they are unsure of the competitive pressures, and therefore aim as high as possible.  If a specification sets a minimum threshold, there is an implicit statement that the minimum threshold is acceptable, and vendors may well now choose to cost-reduce (the device, or their effort) and implement only to that threshold.  If that is below what they would have achieved without the threshold being specified, we have achieved a reduction in service quality.  The quality of today's wireline phone service would be an example — it uses a 64 kbit channel, easily wide enough for excellent wide-band quality — yet it is locked to using G.711.  We should take care to avoid reducing quality by setting standards.

4. Maintaining Quality

It seems that there are two ways to manage quality:  specify thresholds against some quality measure that must be met, or specify techniques to use.

The use of thresholds requires that there is an appropriate objective measure that can be used.  In this case (video quality) there is no well-accepted measure of quality that correlates well to subjective quality even for error-free decoding, and the subjective nature of error-resilience makes this even harder.

Worse, the performance of error-resilience techniques will be very dependent on the error patterns and the source material coding.  One sequence may come through well, because the loss is mostly in un-referenced frames, when another with the same loss pattern has loss in a visually important area of an I frame.  This makes it doubly hard for a vendor to verify that they “meet a threshold” (on all material?  on all error patterns?).

For these reasons, it seems that anything we do at this point would be better focused on specifying techniques rather than thresholds.  However, this leaves open the question of how we are to assure ourselves that the techniques specified yield what we desire.

This is further complicated by the fact that SA5 has indicated (in response to a liaison) that realistic loss patterns will not be available for MBMS until the end of 2005, well past our deadlines for Release 6.  It seems that good judgment will be needed.

Use measurement techniques to develop the specs but leave measurements and thresholds out of them.  Focus on techniques in the specs.

5. Video Quality

What factors affect the quality of experience for the recipient of an MBMS video stream, and to what extent do we need to control these factors to establish a base level of experience?

5.1 Source Quality

One of the primary factors affecting quality of experience is, of course, the quality of the source material and encoding.  Noisy signals compress and transmit poorly (we have often found that this is a greater predictor of quality than the encoder – noise is not compressible and tends to 'steal' bits from the signal).

In MBMS services – one-to-many services – the source is typically (exclusively?) a 'professional' content owner (the operator, for example), and they are, by definition, able to monitor their own signal (they can be one of the many of the one-to-many service).  If we can 'let the market decide' which codec to use (and we have heard this strongly argued) then it must be even more true that we can let the market decide which implementation of a codec to use.  In this case, the choice is in the hands of the agent who cares (the content owner) and who is able to monitor their result (either because the encoding is offline, or because they can also join the MBMS session).  If they make a poor decision, the consequences will reflect badly on them; no user will blame their handset or operator if (say), Estonian Live Sports looks dreadful, when Latvian Sports TV looks good;  they'll blame the Estonians.

In summary, we cannot understand how we can allow the choice of codec technology (which does affect both interoperability and service quality) but specify the encoder implementation (which does not).  This seems an inconsistent position for us to take.  And even if we specify the codec, it seems that in the case of MBMS, there is ample opportunity for the market to select the encoder, and monitor the result.

For MBMS at least, we don’t need to specify basic encoding quality at all.

5.2 Downstream Quality

However, the end-user's experience is also affected by factors downstream of the encoding and transmission, notably the network and the terminal.  Since the decoding of an error-free stream is fully specified (though, just like the microphone or speaker in speech calls, the display is not), we can, I think, ignore the local handset for the error-free case.

We are left with the impact of the network, and particularly packet-loss.

We should ignore the video process after decoding (RGB conversion, display processing, display).

5.3 Video Quality under Loss conditions

What happens when packets get lost in the network?  How does the signal look to the user?  This is a significant question for traditional PSS (without FEC or re-transmission) and for MBMS, where re-transmission is not an option.

There are techniques in a number of areas that can assist.

5.3.1 A side note on congestion loss.

It's important, by the way, to establish the causes of loss.  FEC is not an appropriate correction for systemic congestion loss, and is not systems-friendly for sporadic congestion loss.  If the dominant or only traffic through the congestion point is MBMS video, then FEC cannot possibly assist.  FEC is not a compression algorithm.  By adding FEC bits we cannot get more of the original bits through the congestion point;  an attempt to fit 120 kbit/s through a 100 kbit/s pipe will give 100 kbit/s of signal at most, and expanding the transmission to 130 kbit/s by adding FEC still cannot give more than 100 kbit/s of usable data.

If the competing traffic is not MBMS video, then when we add FEC we may slightly improve the video.  But that’s at the expense of the other traffic;  we’re taking a larger share of the pot.

Congestion loss is probably unusual for MBMS, but for point-point services may be more likely.  The only respectable response to congestion loss is to back off and be fair with the limited resource.  We must have streaming specs which recognize and respect this.  Not getting RTCP reports for point-point, for example, makes it much harder to detect loss at the transmitter.

Be careful to detect congestion loss and respond appropriately.

5.3.2 Decoder techniques that are de-coupled from the encoder.

These are the traditional error-recovery techniques.  They involve estimating the missing data, which usually takes the form of missing macroblocks.  Missing macroblocks can be simply estimated (e.g. by fill-in from the same spacial area of the preceding frame), or more complex techniques can be applied:  estimating the motion vectors and residuals by comparing nearby regions in space and time, for example.  There is a lot of literature on these.  The JM software for H.264 used to include some of these techniques.

Since these are de-coupled from the encoder, their use (or not) does not affect interoperability.  They make a good subject for a tech. note, but specs themselves don’t need to cover them.  But see below where we also discuss techniques in which the decoder performs better if the encoder assists;  both pure-decoder and encoder-assisted techniques are possible, and even possibly desirable.

Publish pure decoder-only techniques as a tech note.

5.3.3 Encoder techniques decoupled from the decoder.

There are actions which the encoder can take to mitigate the effects of errors, particularly when the causes and nature of errors is taken into account.  

5.3.3.1 Channel Matching

In RTP for example it has long been a principle not to use IP fragmentation, but instead match the RTP packet size to the MTU of the physical layer.  This is one step at avoiding 'error exaggeration' — when a small error (the loss of a physical transmission unit) is magnified (other physical transmission units that did arrive are discarded, because they were other fragments of the same IP packet).  Channel matching is a non-trivial excercise in 3GPP due to the presence of so many factors such as RoHC, but clearly, writing at least guidelines to inform the encoding and packetization process here is desirable;  not everyone understands the 3GPP network layers below the IP layer.

Publish tech notes on ‘channel matching’ and datagram sizing.

5.3.3.2 Encoding for recovery

In a number of transmission systems, video is encoded to ensure that every macroblock on the screen is periodically refreshed without using motion estimation (an 'I macroblock') periodically.  This involves tracking the motion vectors so that the oldest influence on a given macroblock is calculated, and when that would exceed a threshold, an I macroblock is made instead.  This is called by various names:  macroblock spreading, gradual decoder refresh (GDR), and so on.  

This has impact on the bit-rate smoothness of the stream:  I frames are usually larger than interpolated ones, and using GDR one can send complete I-frames much more rarely, and perhaps never.

It also affects tune-in.  If the receiver waits for an I-frame after tuning in, there is an ugly tension between good tune-in with frequent I-frames, and managing a low bit-rate.  The user perception however is much better if the scene starts building incrementally immediately on tune-in, even if it takes a while to be perfect.  Some study is needed here.

Finally, of course, this has a self-repairing aspect to it.  If an error occurs, the stream is constructed to self-heal within a GDR period (in the absence of further errors).

Investigate the human factors around the use of GDR.

5.3.3.3 De-localizing the loss

In some cases, the perceptual impact of loss can be reduced simply by spreading it out in time or space.  An extreme example is the loss of half a frame;  if the top half of the frame is lost, there is an obvious impact.  That impact maybe less if alternate pixels or lines are lost (the picture merely looks rather blurry).  Similarly it may be better to lose fragments of several frames in succession, especially if those fragments are spacially de-correlated, than to lose a whole frame.

Look at encoder and tranmission techniques for de-localizing loss.

5.3.4 Encoder-assisted decoder techniques

A number of the decoder techniques work a lot better if the encoder assists.  Those that involve more subtle macroblock estimation (e.g. by interpolation) for example, work better when the losses are surrounded by non-lost data.  A macroblock can be more closely estimated if its adjacent macroblocks (in time and space) are received.  This is the motivation for FMO (flexible macroblock ordering).  For these techniques to be effective, the encoder needs to know what the decoder 'might' do for recovery, if it is to assist effectively.

Another example is the transmission of redundant encodings:  the sending of redundant encodings of video areas (with different dependencies and in different packets).  This has an obvious effect on bit-rate, however (and it is not obvious that simple redundant encoding is a good use of bits).

5.3.5 Encoder-decoder co-operative techniques

In this class fall a number of solutions which do not work unless the two ends agree on a protocol.  The most obvious of these are non-systematic error-correcting codes.  Unless the two ends agree on the technique, nothing works.  Re-transmission also falls into this category (though it's irrelevant for MBMS).  Finally, techniques which give 'improvements' to error resilience algorithms (e.g. by sending some of the residual information which could be applied after motion-vector estimation) are also in this class.

If techniques in this class are to be used, they must be specified, obviously.  But there is probably more to be gained from de-coupled techniques — decoder-side and encoder-side recommendations — before we go to techniques which work best or only when the two sides knowingly co-operate.

Focus on de-coupled techniques first.

6. Summary

1. We should strive to identify problems that have occurred in practice, and solve those.

2. We should identify problems where the market will not self-correct or self-select the better products, and leave the market to decide on those where it can and does,

3. Use measurement techniques to develop the specs but leave measurements and thresholds out of them.  Focus on techniques in the specs.

4. Don’t worry about error-free coding quality for MBMS.

5. Be careful to detect congestion loss and respond appropriately, in all specs (PSS, PSC and MBMS)

6. Focus on de-coupled techniques first, and only after we’ve assessed those consider techniques that require or benefit from encoder-decoder co-operation.











5

